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ATTRACTOR FOR THE NON-AUTONOMOUS
LONG WAVE-SHORT WAVE RESONANCE

INTERACTION EQUATION WITH DAMPING∗
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Abstract In this paper, the long wave-short wave resonance interaction equa-
tion with a nonlinear term in bounded domain was studied. When β ≥ 3

2
, we

obtained the existence and uniqueness of the weak solution of system (1.1)-
(1.4) by Galërkin’s method, and further proved the existence of the compact
uniform attractor for damped driven by the non-autonomous long wave-short
wave resonance interaction equation.
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1. Introduction
The long wave-short wave (LS) resonance equation appeared in a recent study of the
interaction of surface waves with gravity and capillary modes, as well as the analysis
of internal waves and Rosby waves [12]. In the plasma physics, the long wave-short
wave resonance equation explains the high frequency electron plasma resonance
and associated low frequency ion density perturbation [22]. A general theory on the
interaction between short wave and electromagnetic wave was presented [6].

The long wave-short wave resonance equation has attracted extensive attention
from many physicists and mathematicians, due to its rich physical and mathematical
properties. For one-dimensional wave propagation, there were many studies on this
interaction. Guo [7, 13] verified the existence of global solutions for the long wave-
short wave equation and the generalized long wave-short wave equation, respectively.
In [14], Guo studied the orbital stability of the solitary waves of the long wave-
short wave resonance equation. In [15], Guo studied the asymptotic behavior of the
solutions of long wave-short wave equations with zero order dissipation in H2

per ×
H1

per. The approximate inertial manifolds of LS equation was in [16]. In [4,5,19,24,
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25, 29], the well-posedness of Cauchy problem for long wave-short wave resonance
equation was studied.

In recent years, the study of attractors in dynamics has attracted extensive atten-
tion [20]. We can get its global attractors in [10,19,28,29] for autonomous systems.
But unlike autonomous systems, non-autonomous systems have special temporal
correlation. So we have obtained the attractors of non-autonomous system, such as
pullback attractors (see [2,18,23]) and uniform attractors (see [1,27]). In this paper,
we prove the uniform attractor of the long wave-short wave resonance interaction
equation with damping (1.1)-(1.3) by defining the relevant uniform attractor in [9].

In this paper, we consider the following long wave-short wave resonance inter-
action equation with damping:

iut + uxx − uv + |u|β−1u+ iγu = f(x, t), (1.1)
vt + αv + γ|u|2x = g(x, t). (1.2)

Under the following initial condition

u(x, 0) = u0(x), v(x, 0) = v0(x), ∀x ∈ Ω, (1.3)

and the boundary value conditions

u(x−D, t) = u(x+D, t), v(x−D, t) = v(x+D, t), ∀x ∈ Ω, (1.4)

where x ∈ Ω = [−D,D] ⊂ R, D > 0 and α, β and γ are positive constants. u
and v are unknown functions, u and f are complex functions, v and g are real
functions. Non-autonomous terms f and g are time-dependent external forces.
When β = 2 or 3, the well-posedness of the solution of the long wave-short wave
resonance interaction equation has been studied by many people. When β = 3, Gao
first studied the well-posedness of the solution of the non-autonomous long wave-
short wave resonance interaction equation and obtained the existence of attractors
in [11], and then Cui proved the existence of uniform attractors in [9]. In [21], the
author has also proved the well-posedness of the solution for the long wave-short
wave resonance interaction equation and studied the existence of global attractors
for the equation when β = 2. In this paper, our aim here is, firstly, to get the
well-posedness of solutions for problem (1.1)-(1.4) for β ≥ 3

2 and then to derive the
existence of the compact uniform attractor.

The rest of this paper is organized as follows. In section 2, we introduce symbols
and preliminary results, and recall some facts about the uniform attractor. In
section 3, a priori estimate of the solution is obtained. In section 4, existence and
uniqueness of the weak solution of the system (1.1)-(1.4) are proved. In section 5,
the existence of the strong compact uniform attractor for (1.1)-(1.4) is obtained.

2. Preliminary
In this section, we introduce some notations and preliminary results used in this
paper. Firstly, We have added the subscript “per” to the usual Sobolev space
to represent the Sobolev space over the periodic region. Now, we denote some
notations:

Lp
per =: Lp

per(Ω) = {u ∈ Lp(Ω), u(x−D) = u(x+D), 1 ≤ p ≤ ∞},
Hp

per =: Hp
per(Ω) = {u ∈ L2

per(Ω), D
αu ∈ L2

per(Ω), |α| ≤ p, 1 ≤ p <∞},
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where Ω = [−D,D] ⊂ R, D > 0. Especially, when p = 2, the first formula becomes
the space L2

per, and (·, ·), || · || denote the inner product and norm of L2
per(Ω), which

are defined as follows:

(u, v) =

∫
Ω

u(x)v(x)dx, u, v ∈ L2
per, ||u||2 =

∫
Ω

u(x)u(x)dx, u ∈ L2
per,

and u denotes the conjugate complex quantity of u. Similarly, we denote the norm
of Lp

per(Ω) for all by ∥ · ∥p. And ∥ · ∥Hp denotes the norm of Hp
per(Ω), which is

defined by ∥u∥2Hp =
∑

|α|≤p

∥Dαu∥2 for all 1 ≤ p <∞.

For simplicity and convenience, the letter C represents a constant, which may
vary in different lines. C(·, ·) represents the constant C represented by the param-
eters appearing in parentheses.

Next, we introduce Sobolev embedding theorem for one-dimensional domain
used in the following section.

Theorem 2.1. Let Ω be a bounded open subset of R1, and suppose ∂Ω is C1.
Assume p > 2, and u ∈ H1(Ω). Then u ∈ Lp(Ω), with the estimate

∥u∥p ≤ C∥u∥
p+2
2p ∥ux∥

p−2
2p , (2.1)

the constant C depending only on p and Ω.

Finally, the definitions(see [7–9]) and some main lemmas(see [3, 8, 17]) about
uniform attractors are clarified. Let (X, ∥ · ∥X) be a Banach space, then we have
the following definitions and lemma.

Definition 2.1. Suppose f(t) : R → X is a function, and T (·) is the translation
operator. The set

H(f) = {T (s)f(t) = f(t+ s)|s ∈ R}. (2.2)

is defined the hull of f in X, denoted by H(f).

(i) f is said to be translation bounded in L2(R;X) if H(f) is bounded in which

∥f∥2L2
b(R;X) := sup

t∈R

∫ t+1

t

∥f(t)∥2Xds <∞, (2.3)

then L2
b(R;X) consists of all the translation bounded functions in L2(R;X);

(ii) The collection of all the translation compact functions in L2
loc(R;X) is denoted

by L2
c(R;X).

Definition 2.2. Suppose
∑

is a parameter set. If for each σ ∈
∑

, the mapping
Uσ(t, τ) : X → X satisfies

(i) Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,
(ii) Uσ(τ, τ) = I (the identity operator on X), τ ∈ R,

where {Uσ(t, τ), t ≥ τ, τ ∈ R}, σ ∈
∑

is said to be a family of processes in X.
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Let B0, B ∈ B(E) be the set of bounded subsets of E. If for any τ ∈ R, there
exists t0 = t0(τ,B) ≥ τ such that ∪σ∈

∑Uσ(t, τ)B ⊆ B0 for all t ≥ t0. Then B0 is
said to be uniformly absorbing set for the family of processes {Uσ∈

∑(t, τ)},
A set Y ⊂ E is called uniformly attracting for the family of process {Uσ(t, τ)},

σ ∈
∑

if, for each fixed τ ∈ R and every B ∈ B(E), it satisfies that

lim
t→+∞

(
sup
σ∈

∑ distE(Uσ(t, τ)B, Y )

)
= 0. (2.4)

Definition 2.3. A closed set A∑ ⊂ X is called the uniform attractor of the family
of processes {Uσ(t, τ)}σ∈∑ if it is uniformly attracting (attracting property) and
it is contained in any closed uniformly attracting set A′ of the family of processes
{Uσ(t, τ)}σ∈∑ : A∑ ⊆ A′ (minimality property).

Definition 2.4. {Uσ(t, τ)}σ∈∑, a family of processes inX, is said to be (X×
∑
, X)-

continuous, if, for any fixed T and τ , T ≥ τ , projection (uτ , σ) → Uσ(T, τ)uτ is
continuous from X ×

∑
to X.

Definition 2.5. The space Lp(0, T ;X) represents all measurable functions f :
[0, T ] → X with the norm

∥f∥Lp(0,T ;X) =

(∫ T

0

∥f(t)∥pXdt

)1/p

<∞, (2.5)

for 1 ≤ p <∞, and

∥f∥L∞(0,T ;X) = ess sup
0≤t≤T

∥f(t)∥X <∞, (2.6)

for p = ∞.

Lemma 2.1. Let
∑

be a compact metric space and suppose {T (h)|h ≥ 0} is a
family of operators defined on

∑
, satisfying

(i)

T (h)
∑

=
∑

, ∀h ∈ R+; (2.7)

(ii) translation identity:

Uσ(t+ h, τ + h) = UT (h)σ(t, τ),

∀σ ∈
∑

, t ≥ τ, τ ∈ R, h ≥ 0, (2.8)

where Uσ(T, τ) is an arbitrary process in compact metric space E.

Note that if the family of processes {Uσ∈
∑(T, τ)} is (E×

∑
, E)-continuous and

it has a uniform compact attracting set, then the skew product flow corresponding
to it has a global attractor A on E ×

∑
. And the projection of A on

∑
, A∑, is

the compact uniform attractor of {Uσ∈
∑(T, τ)}.

Remark 2.1. Assumption (2.8) holds if the system has a unique solution.

Lemma 2.2. Let (X, ∥ · ∥X) be a uniform convex Banach space (particularly, a
Hilbert space), and let {xk}k≥0 be a sequence in X. If xk ⇀ x0 and ∥xk∥X → ∥x0∥X ,
then xk → x0.
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Lemma 2.3. Let {xk}k≥0 be a sequence in the uniform convex Banach space X.
If xk ⇀ x0, then

sup
k≥1

∥xk∥X <∞,

∥x0∥X ≤ lim inf
k→∞

∥xk∥X . (2.9)

Next, we introduceW (x, t) = (u(x, t), v(x, t)) and Y (x, t) = (f(x, t), g(x, t)). We
denote the space of W (x, t) = (u(x, t), v(x, t)) by E0 = H2(Ω)

⋂
H1

per(Ω)×H1
per(Ω)

with norm

∥W∥E0
=
(
∥u∥2H2 + ∥v∥2H1

)1/2
. (2.10)

Similarly, we denote the space of Y (x, t) by
∑

0 with norm

∥Y ∥∑
0
=
(
∥f∥2H2 + ∥g∥2H1

)1/2
. (2.11)

Definition 2.6. Suppose that the symbol Y (x, t) belongs to the symbol space
∑

,
defined by ∑

= {Y0(x, s+ r) | r ∈ R+}, (2.12)

where Y0 = (f0(x, t), g0(x, t)) ∈ L2
c(R;E0) and the closure is taken in the sense of

local quadratic mean convergence topology in the topological space L2
loc(R;

∑
0).

Moreover, we assume f0t(x, t) ∈ L2
b(R;H1).

Remark 2.2. Due to the conception of translation compact/boundedness, we re-
mark that

(i) ∀Y1 ∈
∑

, ∥Y1∥2L2
b(R;

∑
0)

≤ ∥Y0∥2L2
b(R;

∑
0)

;

(ii) T (t)
∑

=
∑

, ∀t ∈ R, where T (t)f(s) = f(s+ t) is a translation operator.

3. A priori estimates
In order to obtain the existence and uniqueness of weak solutions in the next section,
in the following, we establish some uniform a priori estimate of the solutions both
in time t and in symbol space (Y ∈ Σ).

Lemma 3.1. If uτ ∈ L2(Ω), Y (x, t) satisfy Definition 2.6, then for the weak solu-
tion of the problem (1.1)-(1.4), we have

∥u∥2 ≤ C1, ∀t ≥ t1, (3.1)

where C1 = C1(γ, f0), t1 = C(γ, f0, ∥uτ∥).

Proof. Taking the inner product of (1.1) with u and taking the imaginary part,
we get

1

2

d

dt
∥u∥2 + γ∥u∥2 = Im

∫
Ω

fudx. (3.2)

By using Young’s inequality, we get
d

dt
∥u∥2 + γ

2
∥u∥2 ≤ 1

γ
∥f∥2L2

b(R;H1) ≤
1

γ
∥f0∥2L2

b(R;H1). (3.3)

And then by Gronwall’s inequality, we can complete the proof.
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Lemma 3.2. If Wτ ∈ H1 ×H, 2γ ≥ α and Y (x, t) satisfy Definition 2.6, then for
the weak solution of the problem (1.1)-(1.4), we have

∥W (t)∥2H1×H ≤ C2, ∀t ≥ t2, (3.4)

where C2 = C(α, β, γ, f, g, Y0, f0t), t2 = C(α, β, γ, f, g, Y0, f0t, ∥Wτ∥H1×H).

Proof. Taking the inner product of (1.1) with u and taking the real part, we get
that

∥ux∥2 +
∫
Ω

v|u|2dx− Re

∫
Ω

|u|β+1dx = −Re(f, u). (3.5)

Taking the inner product of (1.1) with ut and taking the real part, we get that

d

dt
∥ux∥2 + 2Re

∫
Ω

uvutdx− 2Re

∫
Ω

|u|β−1uutdx = −2Re(f, ut). (3.6)

Since
d

dt
(Re(f, u)) = Re(ft, u) + Re(f, ut), (3.7)

d

dt
Re

∫
Ω

v|u|2dx =

∫
Ω

vt|u|2dx+ 2Re

∫
Ω

vuutdx, (3.8)

d

dt
Re

∫
Ω

|u|β+1dx = (β + 1)Re

∫
Ω

|u|β−1uutdx. (3.9)

(3.6) can be written as follows

d

dt
∥ux∥2 +

d

dt

∫
Ω

|u|2vdx− 2

β + 1

d

dt
Re

∫
Ω

|u|β+1dx−
∫
Ω

|u|2vtdx

=− 2
d

dt
(Re(f, u)) + 2Re(ft, u). (3.10)

Combining (3.5) and (3.10), we get

d

dt
(∥ux∥2 +

∫
Ω

|u|2vdx− 2

β + 1
Re

∫
Ω

|u|β+1dx+ 2Re(f, u))

+2α∥ux∥2 + 2α

∫
Ω

v|u|2dx− 2αRe

∫
Ω

|u|β+1dx+ 2αRe(f, u)

−
∫
Ω

|u|2vtdx− 2Re(ft, u) = 0. (3.11)

Note that, by (1.1),

Re(ft, u) = Re

∫
Ω

ftudx

= Re

∫
Ω

(iutt + uxxt − utv − uvt + β|u|β−1ut + iγut)udx

=

∫
Ω

(Reuxxtu− Reutvu− |u|2vt +Reβ|u|β−1utu)dx

= −1

2

d

dt
∥ux∥2−

1

2

∫
Ω

|u|2vtdx−
1

2

d

dt

∫
Ω

|u|2vdx+ β

β + 1

d

dt
Re

∫
Ω

|u|β+1dx.

(3.12)
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So (3.11) can be written that

d

dt
(2∥ux∥2 + 2

∫
Ω

|u|2vdx− 2Re

∫
Ω

|u|β+1dx+ 2Re(f, u))

+2α∥ux∥2 + 2α

∫
Ω

v|u|2dx− 2αRe

∫
Ω

|u|β+1dx+ 2αRe(f, u) = 0. (3.13)

Taking the inner product of (1.2) with v, we get that

d

dt
∥v∥2 + 2α∥v∥2 + 2γ

∫
Ω

|u|2xvdx = 2(g, v). (3.14)

Note that, by (1.1)∫
Ω

|u|2xvdx

=2Re

∫
Ω

(uv)uxdx

=2Re

∫
Ω

(iut + uxx + |u|β−1u+ iγu− f)uxdx

=− d

dt
Im

∫
Ω

uuxdx− 2γIm

∫
Ω

uuxdx− 2Re

∫
Ω

fuxdx. (3.15)

Without loss of generality, we may assume that 2γ ≥ α. Applying (3.13)-(3.15), we
get

d

dt
(2∥ux∥2 + ∥v∥2 + 2

∫
Ω

|u|2vdx− 2γIm

∫
Ω

uuxdx− 2Re

∫
Ω

|u|β+1dx

+ 2Re(f, u)) + α(2∥ux∥2 + ∥v∥2 + 2

∫
Ω

|u|2vdx− 2γIm

∫
Ω

uuxdx

− 2Re

∫
Ω

|u|β+1dx+ 2Re(f, u))

=− α∥v∥2 + 2γ(2γ − α)Im

∫
Ω

uuxdx+ 4γRe

∫
Ω

fuxdx+ 2(g, v). (3.16)

Let

φ(u, v) =2∥ux∥2 + ∥v∥2 + 2

∫
Ω

|u|2vdx− 2γIm

∫
Ω

uuxdx

− 2Re

∫
Ω

|u|β+1dx+ 2Re(f, u),

ϕ(u, v) =− α∥v∥2 + 2γ(2γ − α)Im

∫
Ω

uuxdx+ 4γRe

∫
Ω

fuxdx+ 2(g, v),

and then (3.16) can be written in the following form

d

dt
φ(u, v) + αφ(u, v) = ϕ(u, v). (3.17)
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We choose some suitable εi(i = 1, 2, 3) and use Young’s inequality to obtain that

ϕ(u, v) =− α∥v∥2 + 2γ(2γ − α)Im

∫
Ω

uuxdx+ 4γRe

∫
Ω

fuxdx+ 2(g, v)

≤2γ(2γ − α)Im

∫
Ω

uuxdx+ 4γRe

∫
Ω

fuxdx+ 2(g, v)

≤ε1∥ux∥2 + C(ε1)∥u∥2 + ε2∥ux∥2 + C(ε2)∥f∥2 + ε3∥v∥2 + C(ε3)∥g∥2

≤α
2
(∥ux∥2 + ∥v∥2) + C

≤α
2
φ(u, v) + C, (3.18)

where C = C(ε1, ε2, ε3, ∥u∥, ∥f∥, ∥g∥). So (3.17) can be written as follows

d

dt
φ(u, v) +

α

2
φ(u, v) ≤ C. (3.19)

By using the Gronwall inequality as follows

φ(u, v) ≤ φ(u0, v0)e
−α

2 t +
2C

α
(1− e−

α
2 t). (3.20)

By using Hölder’s inequality, we get∫
Ω

|u|2dx ≤ (

∫
Ω

|u|2dx) 1
2 ≤ . . . ≤ (

∫
Ω

|u|2(β+1)dx)
1

β+1 ,

∥u∥2(β+1) ≤
∫
Ω

|u|2(β+1)dx. (3.21)

Now we estimate the value of φ(u, v),

φ(u, v) =2∥ux∥2 + ∥v∥2 + 2

∫
Ω

|u|2vdx− 2γIm

∫
Ω

uuxdx

− 2Re

∫
Ω

|u|β+1dx+ 2Re(f, u),

≥2∥ux∥2 + ∥v∥2 − ε1∥ux∥2 − ε2∥v∥2

− C(ε1, ε2)(∥u∥4 + ∥u∥6 + ∥u∥β+1 + ∥f∥2)

≥1

2
(∥ux∥2 + ∥v∥2)− C. (3.22)

By using (3.20) and (3.22) we have

∥ux∥2 + ∥v∥2 ≤ C, ∀t ≥ t2, (3.23)

where C = C(α, β, γ, f, g, Y0, f0t), t2 = C(α, β, γ, f, g, Y0, f0t, ∥Wτ∥H1×H).

Lemma 3.3. If Wτ ∈ E0, β ≥ 3
2 and Y (x, t) satisfy Definition 2.6, then for the

weak solution of the problem (1.1)-(1.4), we have

∥W (t)∥2H2×H1 ≤ C3, ∀t ≥ t3, (3.24)

where C3 = C(α, β, γ, f, g, Y0, f0t), t3 = C(α, β, γ, f, g, Y0, f0t, ∥Wτ∥E0
).
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Proof. Taking the inner product of (1.1) with uxx and taking the real part, we
get that

∥uxx∥2 − Re

∫
Ω

vuuxxdx+Re

∫
Ω

|u|β−1uuxxdx = Re

∫
Ω

fuxxdx. (3.25)

Taking the inner product of (1.1) with uxxt and taking the real part, we get that

1

2

d

dt
∥uxx∥2 − Re

∫
Ω

vuuxxtdx+Re

∫
Ω

|u|β−1uuxxtdx = Re

∫
Ω

fuxxtdx. (3.26)

Since

Re
d

dt
(f, uxx) =Re(ft, uxx) + Re(f, uxxt), (3.27)

Re

∫
Ω

uvuxxtdx =
d

dt
Re

∫
Ω

uvuxxdx− Re

∫
Ω

(uv)tuxxdx, (3.28)

Re

∫
Ω

|u|β−1uuxxtdx =
d

dt
Re

∫
Ω

|u|β−1uuxxdx− βRe

∫
Ω

|u|β−1utuxxdx. (3.29)

Note that, by (1.1),

Re(ft, uxx)

=Re

∫
Ω

ftuxxdx

=Re

∫
Ω

(iutt + uxxt − utv − uvt + β|u|β−1ut + iγut)uxxdx

=

∫
Ω

(Reuxxtuxx − Reutvuxx − Reuvtuxx +Reβ|u|β−1utuxx)dx

=
1

2

d

dt
∥uxx∥ − Re

∫
Ω

(uv)tuxxdx+ βRe

∫
Ω

|u|β−1utuxxdx. (3.30)

From (3.25) and (3.26), we can infer that

d

dt
(∥uxx∥2 − 2Re

∫
Ω

uvuxxdx+ 2Re

∫
Ω

|u|β−1uuxxdx− 2Re

∫
Ω

fuxxdx)

+2α∥uxx∥2 − 2αRe

∫
Ω

uvuxxdx+ 2αRe

∫
Ω

|u|β−1uuxxdx− 2αRe

∫
Ω

fuxxdx

+2Re

∫
Ω

utvuxxdx+ 2Re

∫
Ω

uvtuxxdx− 2Re

∫
Ω

ftuxxdx = 0. (3.31)

From (1.1) we can get

Re

∫
Ω

utvuxxdx

=− Re

∫
Ω

i(f − uxx + uv − |u|β−1u− iγu)vuxxdx

=Im

∫
Ω

fvuxxdx+ Im

∫
Ω

uv2uxxdx− γRe

∫
Ω

uvuxxdx− Im

∫
Ω

|u|β−1uvuxxdx.
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From (1.2) we can get

Re

∫
Ω

uvtuxxdx

=Re

∫
Ω

u(−αv − γ|u|2x + g)uxxdx

=− αRe

∫
Ω

uvuxxdx− γRe

∫
Ω

u|u|2xuxxdx+Re

∫
Ω

guuxxdx.

Inserting the above two equalities into (3.31) we obtain
d

dt
(∥uxx∥2 − 2Re

∫
Ω

vuuxxdx+ 2Re

∫
Ω

|u|β−1uuxxdx− 2Re

∫
Ω

fuxxdx)

+2α∥uxx∥2 − (4α+ 2γ)Re

∫
Ω

vuuxxdx+ 2αRe

∫
Ω

|u|β−1uuxxdx

−2αRe

∫
Ω

fuxxdx+ 2Im

∫
Ω

fvuxxdx+ 2Im

∫
Ω

uv2uxxdx

−2Im

∫
Ω

|u|β−1uvuxxdx− 2γRe

∫
Ω

u|u|2xuxxdx

+2Re

∫
Ω

guuxxdx− 2Re

∫
Ω

ftuxxdx = 0. (3.32)

We differentiate (1.2) with respect to x and take the inner product with vx to get
1

2

d

dt
∥vx∥2 + α∥vx∥2 + 2γRe

∫
Ω

uuxxvxdx+ 2γ

∫
Ω

|u2x|vxdx =

∫
Ω

gxvxdx. (3.33)

Note that,

Re

∫
Ω

uuxxvxdx = Re

∫
Ω

(uv)xuxxdx− Re

∫
Ω

uxuxxvdx,

by (1.1), we get

Re

∫
Ω

(uv)xuxxdx

=Re

∫
Ω

(iuxt + uxxx − iγux − fx + β|u|β−1ux)uxxdx

=− Im

∫
Ω

uxtuxxdx− γIm

∫
Ω

uxuxxdx− Re

∫
Ω

fxuxxdx

+ βRe

∫
Ω

|u|β−1uxuxxdx,

through integrating by parts yields, we have

Im

∫
Ω

uxtuxxdx =
1

2

d

dt
Im

∫
Ω

uxuxxdx,

and then, we obtain that

Re

∫
Ω

(uv)xuxxdx =− 1

2

d

dt
Im

∫
Ω

uxuxxdx− γIm

∫
Ω

uxuxxdx

− Re

∫
Ω

fxuxxdx+ βRe

∫
Ω

|u|β−1uxuxxdx.
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Therefore, we have

Re

∫
Ω

uuxxvxdx =− 1

2

d

dt
Im

∫
Ω

uxuxxdx− γIm

∫
Ω

uxuxxdx− Re

∫
Ω

fxuxxdx

+ βRe

∫
Ω

|u|β−1uxuxxdx− Re

∫
Ω

uxuxxvdx.

Inserting the above equalities into (3.33) we obtain

d

dt
(∥vx∥2 − 2αIm

∫
Ω

uxuxxdx) + 2α∥vx∥2 − 4αγIm

∫
Ω

uxuxxdx

−4αRe

∫
Ω

uxvuxxdx− 4αRe

∫
Ω

fxuxxdx+ 4αβRe

∫
Ω

|u|β−1uxuxxdx

+4

∫
Ω

|ux|2vxdx− 2

∫
Ω

gxvxdx = 0. (3.34)

By some basic calculation from (3.32) and (3.34), we have

d

dt
φ1(u, v) + αφ1(u, v) = ϕ1(u, v), (3.35)

where

φ1(u, v) =2∥uxx∥2 + ∥vx∥2 − 2Re

∫
Ω

vuuxxdx

− 2Re

∫
Ω

fuxxdx+ 2Re

∫
Ω

|u|β−1uuxxdx,

ϕ1(u, v) =− α∥vx∥2 − 4γ

∫
Ω

|ux|2vxdx− 4γRe

∫
Ω

uvxuxxdx+ 2

∫
Ω

gxvxdx.

Next, Gagliardo-Nirenberg inequality, Young’s inequality and Holder’s inequality
are used to estimate ϕ1(u, v).∫

Ω

|ux|2vxdx ≤ε
∫
Ω

|ux|4dx+ C(ε)∥vx∥2

≤ε∥uxx∥2 + C(ε)(∥ux∥4 + ∥ux∥6) + C(ε)∥vx∥2

≤ε∥uxx∥2 + C(ε)∥vx∥2 + C, (3.36)

Re

∫
Ω

gxvxdx ≤∥gx∥∥vx∥

≤ε∥vx∥2 + C(ε)∥gx∥2, (3.37)

Re

∫
Ω

uvxuxxdx ≤|u∥∞∥vx∥∥uxx∥

≤ε∥vx∥2 + C(ε)∥uxx∥2. (3.38)

From the above estimates, we can get

ϕ1(u, v) ≤
α

2
(∥ux∥2 + ∥v∥2) + C

≤α
2
φ1(u, v) + C. (3.39)
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So (3.35) can be written as follows:

d

dt
φ1(u, v) +

α

2
φ1(u, v) ≤ C, (3.40)

where C = C(α, β, γ, ∥u∥H1 , ∥v∥H , ∥f∥H1 , ∥g∥H1). So using Gronwall inequality, we
can get that

φ1(u, v) ≤ e−
α
2 tφ1(u0, v0) +

2C

α
(1− e−

α
2 t). (3.41)

Since 2β − 3 ≥ 0 for β ≥ 3
2 , using the formula of integration by parts, we have

Re

∫
Ω

|u|β−1uuxxdx

=−Re

∫
Ω

|u|β−1|ux|2dx− (β − 1)Re

∫
Ω

|u|β−3u|ux|2dx

≥− ∥u∥β−1
2(β−1)∥ux∥

2
4 − (β − 1)∥u∥β−3

∞ ∥u∥∥ux∥24

≥− C∥u∥
β
2 ∥ux∥

2β−1
4 ∥uxx∥

5
4 − C∥u∥

β−1
2 ∥ux∥

2β−3
4 ∥uxx∥

5
4

≥− ε1∥uxx∥2 − C(ε1)∥u∥
4β
3 ∥ux∥

2(2β−1)
3 − ε2∥uxx∥2 − C(ε2)∥u∥

4(β−1)
3 ∥ux∥

2(2β−3)
3

≥− (ε1 + ε2)∥uxx∥2 − C(ε1, ε2). (3.42)

And then, we have

Re

∫
Ω

uvuxxdx

≤ε3∥uxx∥2 + C(ε3)(

∫
Ω

|v|4dx+

∫
Ω

|u|4dx)

≤ε3∥uxx∥2 + C(ε3)(∥v∥3∥vx∥+ ∥u∥3∥ux∥),

Re

∫
Ω

fuxxdx

≤ε3∥uxx∥2 + C(ε3)∥f∥2. (3.43)

By using the above estimates and choosing the appropriate εi(i = 1, 2, 3), we get

φ1(u, v) ≥
1

2
(∥uxx∥2 + ∥vx∥2)− C. (3.44)

And from the discussion of (3.41) and (3.44), we get

∥W (t)∥2H2×H1 ≤ C, ∀t ≥ t3, (3.45)

where C = C(α, β, γ, f, g, Y0, f0t), t3 = C(α, β, γ, f, g, Y0, f0t, ∥Wτ∥E0).

4. Existence and Uniqueness of the Solution
In this section, we will prove that the system (1.1)-(1.4) has a unique global weak
solution. Since a prior estimate of the solution has been established in section
3, the existence of the solution can be easily obtained by Galërkin’s method(see
[16,17,26,29]). In this section, we will show the unique existence theorem and give
a simple proof.
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Theorem 4.1. Assume that β ≥ 3
2 and Y (x, t) satisfy Definition 2.6, for each Wτ ∈

E0, system (1.1)-(1.4) has a unique global weak solution W (x, t) ∈ L∞(τ, t;E0),
∀T > τ.

Proof. We will prove the existence and uniqueness of a global solution respec-
tively.
Step 1. The existence of solution

Using Galërkin’s method, we have the following approximate solution to ap-
proach the solution of (1.1)-(1.4):

(ul, vl) =

l∑
j=1

ωl
j(t)ηj(x), (4.1)

where {ηj}lj=1 is a orthogonal basis of H(Ω), and (ul, vl) satisfies

(iult + ulxx − ulvl + |ul|β−1ul + iγul, ηj) = (f(x, t), ηj),

(vlt + αvl + γ|ul|2x, ηj) = (g(x, t), ηj),

(W l(x, τ)ηj) = (Wτ , ηj),

W l(x+ 2D, t) =W l(x, t). (4.2)

We get that (4.2) is an initial-boundary value problem of ordinary differential equa-
tions. According to the standard existence of ordinary differential equations and
the priori estimates in Section 3, we obtain the unique solution for (4.2). Similar
to [13,26], we get

{W l}∞l=1
∗
⇀W (x, t) in L∞(τ, t;E0), ∀T > τ,

where ∗
⇀ means weak star convergence.

Step 2. The uniqueness of solution.
Suppose that W1(x, t) = (u1, v1) and W2(x, t) = (u2, v2) are two solutions of

(1.1)-(1.4). Let W (x, t) = (u, v) = (u1, v1)− (u2, v2), then W (x, t) satisfy

iut + uxx + u2v2 − u1v1

+|u1|β−1u1 − |u2|β−1u2 + iγu = 0,

vt + αv + γ(|u1|2x − |u2|2x) = 0,

W |t=τ = 0, W |∂Ω = 0. (4.3)

Similar to [13,26], we can get that ∥W∥2 = 0. Therefore, we complete the proof of
the theorem.

5. Uniform Absorbing Set and Uniform Attractor
In this section, we will prove the existence of the strong compact uniform attractor
of problem (1.1)-(1.4) applying Ball et al.’s idea (see [3, 26]). Firstly, we construct
a bounded uniformly absorbing set. Next, we prove the the existence of weakly
compact uniform attractor of the system. Lastly, we derive that the weak uniform
attractor is actually the strong one. In this section, “⇀” represents weak conver-
gence, “ ∗

⇀” represents weak star convergence, and {Uσ∈
∑(t, τ)} represents a family

of processes in E0 satisfying definition 2.2.
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Theorem 5.1. Suppose β ≥ 3
2 and {Uσ∈

∑(t, τ)} is a family of processes in E0. Un-
der assumptions of Theorem 4.1, then it admits a strong compact uniform attractor
A∑.

Proof. We prove this theorem by three steps.
Step 1. {Uσ∈

∑(t, τ)} possess a bounded uniformly absorbing set in E0.
Let B0 = {W ∈ E0; ∥W∥2E0

≤ C(α, β, γ, ∥Y0∥L2
c(R;

∑
0)
, ∥f0t∥L2(R;H1), ∥Wτ∥E0)}.

By Theorem 4.1, B0 is a bounded absorbing set of the process Uσ=Y0 .
By Definition 2.6, we know that ∥Y ∥L2

c(R;
∑

0)
≤ ∥Y0∥L2

c(R;
∑

0)
for ∀Y ∈

∑
, hold.

So the solution of(1.1)-(1.4) satisfies

∥W∥2E0
≤C(α, β, γ, ∥Y ∥L2

c(R;
∑

0)
, ∥f0t∥L2(R;H1), ∥Wτ∥E0)

≤C(α, β, γ, ∥Y0∥L2
c(R;

∑
0)
, ∥f0t∥L2(RR;H1), ∥Wτ∥E0

). (5.1)

Then we get the set B0 is a bounded uniformly absorbing set of {Uσ∈
∑(t, τ)}.

Step 2. We show the weak compact uniform attractor A∑ in E0.
We need to show that {Uσ∈

∑(t, τ)} is (E0 ×
∑
, E0)-continuous by Lemma 2.1,

Theorem 4.1, and Step 1, i.e. for any fixed t1 ≥ τ ∈ R, let

(Wτk, σk)⇀ (Wτ , σ) in E0 ×
∑

. (5.2)

We need to get

Wσk
(t1)⇀Wσ(t1) in E0, (5.3)

where Wσk
(t1) = (uk(t1), vk(t1)) = Uσk

(t1, τ)Wτk and Wσ(t1) = (u(t1), v(t1)) =
Uσ(t1, τ)Wτ . By Lemma 2.3, Theorem 4.1 and (5.2), we have

∥Wτk∥E0
≤ C, (5.4)

sup
t∈[τ,T ]

∥Wσk
∥E0

≤ C. (5.5)

Then by Lemmas 3.1-3.3, we can see that

∥Wσk
(t)∥∞ ≤ C, ∀0 ≤ t ≤ T. (5.6)

Note that

iukt =(−∆)uk + ukvk − |uk|β−1uk − iγuk + fk(x, t), (5.7)
vkt =− αvk − γ|uk|2x + gk(x, t), (5.8)

and σk = (fk(x, t), gk(x, t)) ∈
∑

. According to (5.5) and (5.6), we can see that
∂tWσk

(t) ∈ L∞(τ, T ;L2(Ω)×H1(Ω)) and

∥∂tWσk
(t)∥L∞(τ,T ;L2(Ω)×H1(Ω)) ≤ C. (5.9)

Because of Theorem 4.1 and (5.9), we can see that there exist a subsequence
{Wσkl

(t)} of {Wσk
(t)} and W̃ (t) ≜ (ũ(t), ṽ(t)) ∈ L∞(τ, T ;E0), such that

Wσkl
(t)

∗
⇀ W̃ (t) in L∞(τ, T ;E0), (5.10)

∂tWσkl
(t)

∗
⇀ ∂tW̃ (t) in L∞(τ, T ;L2(Ω)×H1(Ω)). (5.11)
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Besides, by (5.5), there exists W 0 ≜ (u0(t1), v
0(t1)) ∈ E0 for any t1 ∈ [τ, T ], such

that

Wσk
(t1)⇀W 0 in E0. (5.12)

By (5.10) and compactness embedding theorem, we get

ukl
(t)⇀ ũ(t) in L2(τ, T ;H1). (5.13)

Next, we will to prove W̃ (t) is a solution of problem (1.1)-(1.4). For all ν ∈
L2(Ω), ∀ψ ∈ C∞

0 (τ, T ), by (5.10) we have that∫ T

τ

(iuklt, ψ(t)ν)dt+

∫ T

τ

(∆ukl
, ψ(t)ν)dt

−
∫ T

τ

(vkl
ukl

, ψ(t)ν)dt+

∫ T

τ

(|ukl
|β−1ukl

, ψ(t)ν)dt

+

∫ T

τ

(iγukl
, ψ(t)ν)dt−

∫ T

τ

(f(x, t), ψ(t)ν)dt = 0. (5.14)

Since ∫ T

τ

(vkl
ukl

, ψ(t)ν)dt−
∫ T

τ

(ũṽ, ψ(t)ν)dt

=

∫ T

τ

((ukl
− ũ)vkl

, ψ(t)ν)dt+

∫ T

τ

(ũ(vkl
− ṽ), ψ(t)ν)dt, (5.15)

by (5.6), (5.10) and (5.13),∫ T

τ

((ukl
− ũ)vkl

, ψ(t)ν)dt ≤ sup
0≤t≤T

∥vkl
∥L∞∥ψ(t)ν∥L2(0,T ;L2(Ω))

× ∥ukl
− ũ∥L2(0,T ;L2(Ω)) → 0,∫ T

τ

(ũ(vkl
− ṽ), ψ(t)ν)dt =

∫ T

τ

((vkl
− ṽ), ψ(t)νũ)dt→ 0.

Then we have ∫ T

τ

(vkl
ukl

, ψ(t)ν)dt →
∫ T

τ

(ũṽ, ψ(t)ν)dt. (5.16)

And by (5.10), we get∫ T

τ

(∆ukl
, ψ(t)ν)dt−

∫ T

τ

(∆ũ, ψ(t)ν)dt

≤∥(∆)(ukl
− ũ)∥L2(0,T ;L2(Ω)) × ∥ψ(t)ν∥L2(0,T ;L2(Ω)) → 0.

By using the similar methods to the other terms of (5.14), we have∫ T

τ

(iũt, ν)ψ(t)dt+

∫ T

τ

(∆ũ, ν)ψ(t)dt

−
∫ T

τ

(ũṽ, ν)ψ(t)dt+

∫ T

τ

(|ũ|β−1ũ, ν)ψ(t)dt

+

∫ T

τ

(iγũ, ν)ψ(t)dt−
∫ T

τ

(f(x, t), ν)ψ(t)dt = 0. (5.17)
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So, we can get that

iũt + ũxx − ũṽ + |ũ|β−1ũ+ iγũ = f(x, t), (5.18)

which shows that (ũ, ṽ) satisfies (1.1).
For any ν ∈ L2(Ω), ∀ψ ∈ C∞

0 (τ, T ) with ψ(T ) = 0, ψ(τ) = 1, by (5.7) we find
that

−
∫ T

τ

(iukl
, ν)ψ′(t)dt−

∫ T

τ

((−∆)ukl
, ν)ψ(t)dt

−
∫ T

τ

(ukl
vkl
, ν)ψ(t)dt+

∫ T

τ

(|ukl
|β−1ukl

, ν)ψ(t)dt

+

∫ T

τ

(iγukl
, ν)ψ(t)dt−

∫ T

τ

(f(x, t), ν)ψ(t)dt = i(ukl
(τ), ν). (5.19)

We know that (5.2) implies that

ukl
(τ) = uτkl

⇀ uτ in H2. (5.20)

Then from (5.19) and (5.20), we have

−
∫ T

τ

(iũ, ν)ψ′(t)dt−
∫ T

τ

((−∆)ũ, ν)ψ(t)dt

−
∫ T

τ

(ũṽ, ν)ψ(t)dt+

∫ T

τ

(|ũ|β−1ũ, ν)ψ(t)dt

+

∫ T

τ

(iγũ, ν)ψ(t)dt−
∫ T

τ

(f(x, t), ν)ψ(t)dt = i(uτ , ν), (5.21)

while by (5.18) we have that

−
∫ T

τ

(iũ, ν)ψ′(t)dt−
∫ T

τ

((−∆)ũ, ν)ψ(t)dt

−
∫ T

τ

(ũṽ, ν)ψ(t)dt+

∫ T

τ

(|ũ|β−1ũ, ν)ψ(t)dt

+

∫ T

τ

(iγũ, ν)ψ(t)dt−
∫ T

τ

(f(x, t), ν)ψ(t)dt = i(ũ(τ), ν). (5.22)

So by (5.21) and (5.22), we have that

(uτ , ν) = (ũ(τ), ν), ∀ν ∈ L2(Ω), (5.23)
uτ = ũ(τ). (5.24)

By (5.18) and (5.23), we get

ũ(t) = u(t). (5.25)

For any ν ∈ L2(Ω), ∀ψ ∈ C∞
0 (τ, t1), with ψ(τ) = 0, ψ(t1) = 1, then repeating the

procedure of proofs of (5.19)-(5.22) by (5.12) we have

u0(t1) = ũ(t1). (5.26)
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From (5.12), (5.25) and (5.26), we have that

uk(t1)⇀ u(t1) in H2(Ω). (5.27)

Similarly, we can also derive that

vk(t1)⇀ v(t1) in H1(Ω). (5.28)

From (5.27) and (5.28), we deduce (5.3). We complete the proof of the step.
Step 3. We show the weakly compact uniform attractor A∑ is actually the strong
one. From the proof of Lemma 3.3 , we know each solution for problem (1.1)-(1.4)
satisfies

d

dt
(∥uxx∥2 + F (u, v)) + 2α(∥uxx∥2 + F (u, v)) = G(u, v), (5.29)

d

dt
(∥vx∥2 + F1(u, v)) + 2α(∥vx∥2 + F1(u, v)) = G1(u, v), (5.30)

where

F (u, v) =∥uxx∥2 − 2Re

∫
Ω

uvuxxdx+ 2Re

∫
Ω

|u|β−1uuxxdx− 2Re

∫
Ω

fuxxdx,

G(u, v) =2γRe

∫
Ω

uvuxxdx+ 2γRe

∫
Ω

u|u|2xuxxdx− 2Re

∫
Ω

guuxxdx

− 2Im

∫
Ω

fvuxxdx− 2Im

∫
Ω

uv2uxxdx+ 2Im

∫
Ω

|u|β−1uvuxxdx

− 2αRe

∫
Ω

|u|β−1uuxxdx+ 2αRe

∫
Ω

fuxxdx,

F1(u, v) =− 2γIm

∫
Ω

uxuxxdx,

G1(u, v) =4αRe

∫
Ω

uxvuxxdx+ 4αRe

∫
Ω

fxuxxdx− 4αβRe

∫
Ω

|u|β−1uxuxxdx

− 4γ

∫
Ω

|ux|2vxdx+ 2

∫
Ω

gxvxdx.

By the uniform boundedness and the compactness embedding, we have that F , G,
and F1, G1 are all weakly continuous in E0 ×

∑
.

From step 2, we know that the point (ω,m) ∈ A if and only if there exist
two sequences {ω0

k,m
0
k}k∈N and {tk}k∈N such that for all σ(t) ∈

∑
, it uniformly

satisfies that
Uσ(tk, τ)(ω

0
k,m

0
k)⇀ (ω,m) in E0, k → ∞, (5.31)

where tk → ∞ as k → ∞. If the weak convergence implies strong one, we obtain A∑
is the strong compact attractor. For each fixed h > τ , because of tk → ∞, we con-
sider it as h < tk, k ∈ N+. By Lemma 3.3 and Theorem 4.1, Uσ(tk −h, τ)(ω0

kl
,m0

kl
)

is bounded in E0. Then there exists a subsequence Uσ(tkl
− h, τ)(ω0

kl
,m0

kl
) of

Uσ(tk − h, τ)(ω0
kl
,m0

kl
) and a point (n, p) ∈ E0, such that

Uσ(tkl
− h, τ)(ω0

kl
,m0

kl
)⇀ (n, p) in E0. (5.32)
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Let

(ωkl
(t),mkl

(t))

=UT (tkl
−h−τ)σ(t+ τ, τ)Uσ(tkl

− h, τ)(ω0
kl
,m0

kl
)

=Uσ(t+ tkl
− h, tkl

− h)Uσ(tkl
− h, τ)(ω0

kl
,m0

kl
)

=Uσ(t+ tkl
− h, τ)(ω0

kl
,m0

kl
), (5.33)

where T (·) is the translation operator on
∑

. Since σ(t) is translation compact
symbol, there exists a symbol σ∗ ∈

∑
such that

T (tkl
− h− τ)σ → σ∗ in

∑
. (5.34)

Then by (5.31) and(5.32), and the weak (E ×
∑

)-continuity of Uσ∈
∑(t, τ), we can

get that

(ωkl
(t),mkl

(t))⇀ Uσ∗(t, τ)(n, p) = (ω,m) in E0, ∀t > τ. (5.35)

From (5.32), we can know that the solution trajectory (ωkl
(t),mkl

(t)) is created by
UT (tkl

−h−τ)σ (t+ τ, τ) starting at Uσ(tkl
−h, τ)(ω0

kl
,m0

kl
). By (5.29), (5.32), (5.34),

we have that

∥ωkl
(t)∥2H2 + F (ωkl

(t),mkl
(t))

=e−2α(t−τ)(∥Uσ(tkl
− h, τ)ω0

kl
∥2H2

+ F (Uσ(tkl
− h, τ)ω0

kl
, Uσ(tkl

− h, τ)m0
kl
))

+

∫ t

τ

e−2α(t−τ)G(ω0
kl
(s),m0

kl
(s))ds

=e−2α(t−τ)(∥Uσ(tkl
− h, τ)ω0

kl
∥2H2 + F (n, p))

+

∫ t

τ

e−2α(t−τ)G(Uσ∗(s+ τ, τ)(n, p))ds. (5.36)

Let t = h in (5.35). Since F and G are weakly continuous in E0, ∥Uσ(tkl
−h, τ)(ω0

kl
,

m0
kl
)∥2H2 ≤ C, and the Lebesgue dominated convergence theorem, we can obtain

that

lim sup
kl→∞

∥Uσ(tkl
− h, τ)ω0

kl
∥2H2 + F (Uσ∗(h+ τ, τ)(n, p))

≤e−2α(h−τ)(C + F (n, p)) +

∫ h

τ

e−2α(h−τ)G(Uσ∗(s+ τ, τ)(n, p))ds. (5.37)

Since (ω,m) = Uσ∗(S + τ, τ)(n, p), we can see the solution (ω,m) about h
corresponding to the initial data (n, p) and the symbol σ∗. Similarly to (5.35), we
get

∥ω∥2H2 + F (ω,m) =e−2α(h−τ)(∥n∥2H2 + F (n, p))

+

∫ h

τ

e−2α(h−τ)G(Uσ∗(s+ τ, τ)(n, p))ds. (5.38)
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Combining (5.37) and (5.38), we have

lim sup
kl→∞

∥Uσ(tkl
, τ)ω0

kl
∥2H2

≤∥ω∥2H2 + Ce−2α(h−t) − e−2α(h−t)∥n∥2H2

≤∥ω∥2H2 + Ce−2α(h−t). (5.39)

As h→ ∞, we get

lim sup
kl→∞

∥Uσ(tkl
− h, τ)ω0

kl
∥2H2 ≤ ∥ω∥2H2 . (5.40)

Similarly, the weak convergence Uσ(tk − h, τ)ω0
k ⇀ ω implies that

lim inf
kl→∞

∥Uσ(tkl
− h, τ)ω0

kl
∥2H2 ≥ ∥ω∥2H2 . (5.41)

From the above two inequalities, we get that

lim
kl→∞

∥Uσ(tk − h, τ)ω0
k∥2H2 = ∥ω∥2H2 . (5.42)

Similar to the proof above, we can also derive that

lim
kl→∞

∥Uσ(tk − h, τ)m0
k∥2H2 = ∥m∥2H2 . (5.43)

Then, we get that Uσ(tk, τ)(ω
0
k,m

0
k) → (ω,m) in E0. The proof of Theorem 5.1 is

completed.
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