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INFLUENZA WITH NONLINEAR RECOVERY
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Abstract In this paper, a SI-SEIR type avian influenza epidemic model with
psychological effect, nonlinear recovery rate and saturation inhibition effect is
formulated to study the transmission and control of avian influenza virus. By
setting the basic reproductive number as the threshold parameter and con-
structing Lyapunov function, Dulac function and using the Li-Muldowney’s
geometry approach, we prove the local and global stability of disease-free equi-
libria and endemic equilibrium. Theoretical analysis are carried out to show
the role of the saturation inhibition effect, psychological effect and effective
medical resources in this model, and numerical simulations are also given to
verify the results.
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1. Introduction
Avian influenza refers to the disease which caused by infection with avian (bird)
influenza (flu) Type A viruses. These viruses occur naturally among wild aquatic
birds worldwide and can infect domestic poultry, other birds and animal species.
Avian flu viruses do not normally infect humans. However, sporadic human infec-
tions with avian flu viruses have occurred [7].

Avian influenza A viruses are designated as highly pathogenic avian influenza
(HPAI) or low pathogenic avian influenza (LPAI). The other three subtypes AH9,
AH5 and AH7 can simultaneously infect humans and birds. Viruses (H1-H9) found
in poultry and wild birds worldwide belong to the same category (LPAI). Rarely,
sporadic cases of human infection with H9N2 leading to mild upper respiratory
disease have been reported. Reports from more than 15 countries indicate that
the H5N1 viruses can infect humans, most of which directly cause severe pneumo-
nia, with a mortality rate close to 60%. The human infected H7 viruses are not
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common, but it has also been documented that direct contact with infected birds
can infect H7 viruses, especially during outbreaks of H7 viruses in poultry. LPAI
(H7N2, H7N3 and H7N7) viruses would result in mild-to-moderate diseases, while
HPAI(H7N3,H7N7) virus infection can result in mild-to-moderate or even lethal
diseases. Human cases of H7N9 virus infection were first detected in 2013, includ-
ing death and severe respiratory illnesses [8].

In recent years, avian influenza has been rampant, and its mutation rate is
very fast, which has a non-negligible impact on human life, health as well as so-
cial economy. In view of this, according to the epidemiological characteristics of
avian influenza, researchers have established a large number of mathematical mod-
els to study, and combined with its dynamical behavior, remarkable achievements
have been made in the prevention and control of avian influenza [1, 19, 23]. Iwami
et al. [18] proposed an Ordinary Differential Equation (ODE) model in 2007 to
describe the dynamics of avian influenza between human and avian populations.
Then, many different mathematical models were designed for the H5N1 avian in-
fluenza virus [2, 12, 30, 33]. A series of analysis has also been carried out on the
epidemiology of influenza A H7N9 influenza in recent years [5,21,27,36]. However,
most of them have not considered the latent state of avian influenza virus in human
body, and it does exist according to reported cases, so it is very necessary to take
it into account in models.

Human behavior and social reaction have great significance to the spread of in-
fectious disease [4,13–15], since it is a key factor in disease control efforts. Wang et
al. [34] found that 70% urban respondents who participated in the survey said that
since the first case of H7N9 were detected in China in March 2013, their visit to
live poultry market have been relatively reduced. In addition, the research of Wu et
al. [35] also suggested that people experience changes in protective behaviors such
as reducing access to live poultry markets and buying live poultry in the context
of continuous H7N9 outbreaks. Although human behavior and social responses
during the transmission of infectious diseases are often reported, few systematic
studies have been conducted on their effects. It must be admitted that it is difficult
to combine social behavioral responses with human behavior and social responses
in mathematical models.

As we know, incidence rate of a disease is one of crucial factors in the trans-
mission of disease. It is worth noting that in almost all models related to avian
influenza, the incidence between susceptible birds and infected birds (susceptible
humans and infected birds) has taken in form of bilinear interaction, which is con-
stantly increasing unbounded, whereas as survey [37] revealed that if the case was
reported by the media, people would go to live poultry market less, incidence of
human will decline. In order to better explain the practical significance of infectious
disease model, the non-monotonic incidence rate is used here which was proposed
by Liu et al. [22] perfectly describes this phenomenon caused by psychological ef-
fects(also see [20, 21, 38]); Similarly, with the increasing number of infected birds,
poultry farmers will be highly vigilant and take the corresponding protective mea-
sures to make the poultry incidence rate reach saturation, which can be described
by the saturation incidence function used in [6, 31].

There is one thing in common in the classical avian influenza model, that is, the
recovery rate is always assumed to be constant, which is equivalent to the default
public medical resources are always sufficient, and it is obviously unreasonable by
the following two points. First of all, hospital resources (such as doctors, medicines,
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beds) are limited for the public; Secondly, according to the cases reported by the
CDC [7], there are some similarities between human infection with avian influenza
virus and common influenza virus in terms of infection time and early clinical man-
ifestations, then some of the available hospital resources have already occupied.
Proportion between the number of beds and the population, ie., the number of hos-
pital beds available per 10,000 people, is widely used by health planners to estimate
public resource availability [17]. Abdelrazec et al. [3] established a dengue prop-
agation dynamics model which considered a recovery rate function restricted by
hospital bed-population proportion and the number of infected. They proved that
the model has oscillations and backward bifurcation due to the limited resources.
At this time, controlling the basic regeneration number R0 < 1 is not enough to
ensure the eradication of the disease. Therefore, the recovery rate function which is
defined by [32] will be introduced in this paper, further learning the impact of the
limited availability of existing medical resources on the spread of avian influenza
virus.

The rest of this paper is outlined as follows: Section 2 constructs an avian
influenza epidemic model based on the above discussion, and gives a general ex-
planation of parameters; In Section 3, the avian-only sub-model and its detailed
mathematical analysis are given; Section 4 presents the whole mathematical anal-
ysis of the model in details; Section 5 carries out the numerical simulation to the
full avian influenza infectious disease model; Finally, conclusions and discussions
are also given in Section 6.

2. Model discription
In this section, we assume that the avian influenza virus does not spread from
person to person and mutate. The avian population is classified into two subclasses:
susceptible Sa(t) and infected Ia(t), respectively. The human population is classified
into four subclasses: susceptible Sh(t), exposed Eh(t), infected Ih(t) and recovered
human Rh(t), respectively. Then we have the model (2.1) as follows:

dSa(t)

dt
= maSa(1−

Sa

Ka
)− βaIaSa

1 + αIa
,

dIa(t)

dt
=

βaIaSa

1 + αIa
− (µa + δa)Ia,

dSh(t)

dt
= Λh − µhSh − βhIaSh

1 + cI2h
,

dEh(t)

dt
=

βhIaSh

1 + cI2h
− (µh + θh)Eh,

dIh(t)

dt
= θhEh − (µh + δh)Ih − (µ0 + b

(µ1 − µ0)

b+ Ih
)Ih,

dRh(t)

dt
= (µ0 + b

(µ1 − µ0)

b+ Ih
)Ih − µhRh,

(2.1)

with the following assumptions:
(1) The net growth rate function of susceptible poultry is subject to Logistic

growth g(Sa) = maSa(1− Sa
Ka

) : R+ → R is continuous, where ma and Ka are the
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intrinsic growth rate and the maximum environmental capacity of poultry, respec-
tively. R = (−∞,∞) and R+ = (0,∞);

(2) All new population (poultry) are subordinate to susceptible populations
(poultry), and new population recruitment rate is represented by Λh;

(3) The avian influenza virus is transmitted only between infected poultry and
susceptible populations;

(4) Infected poultry can’t recover and maintain the disease state until death.
Infected population can recover and gain permanent immunity;

(5) The incidence rate between susceptible poultry (or population) and infected

poultry is βaIaSa
1 + αIa

(
or

βhIaSh

1 + cI2h

)
;

(6) The recovery rate is u(b, Ih) = µ0 + b
(µ1 − µ0)
b+ Ih

, where µ1 is the highest
per capita recovery rate, µ0 is the minimum per capita recovery rate due to lack
of clinical resources, b is the ratio between the number of hospital bed and the
population.

Thus, we obtain the above model, where βa is the transmission rate from infec-
tive avian to susceptible avian, µa is the natural death rate of the avian population,
δa is the disease-related death rate of the infected avian,βh is the transmission rate
from the infective avian to the susceptible human, µh is the natural death rate of
the human population, δh is the disease-related death rate of the infected human.
The parameters α and c are constants measuring the inhibition effect and psycho-
logical effect, respectively.

We consider system (2.1) with initial conditions

Sa(0) ≥ 0, Ia(0) ≥ 0, Sh(0) ≥ 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0. (2.2)

The parameters of system (2.1) are shown in Table 1.

Table 1. List of parameters
parameter implication measured value reference

ma Intrinsic growth rate of poultry 5 ∗ 10−3 [23]
Ka Maximum environmental capacity of poultry 5 ∗ 104 [23]
βa The rate of disease transmission between infected and susceptible birds ∽ ∽
α Inhibitory effect coefficient ∽ ∽
µa Natural mortality in poultry (1/5− 1/10)(year−1) [26]
δa Poultry disease-related mortality 4 ∗ 10−4 [23]
Λh Human recruitment and birth rates 30 [23]
βh The rate of disease transmission between infected poultry and susceptible human 5 ∗ 10−9 ∽
µh The natural mortality of population 1/70(year−1) ∽
δh Human disease-related mortality 0.077 [36]
θh The covert rate of disease from latent to infected state 1/7(day−1) CDC [7]
µ0 The lowest rate of recovery in humans (0.067 ∼ 0.100) [36]
µ1 The highest recovery rate in humans (µ0 ∼ 10) [32]
b Hospital beds-population ratio (0, 20) [32]
c Psychological effect coefficient ∽ ∽

Theorem 2.1. The set D = {(Sa, Ia, Sh, Eh, Ih, Rh) ∈ R6
+ |Sa + Ia ≤ ϕ

µa
, Sh +

Eh + Ih +Rh ≤ Λh
µh

} is a positively invariant and attracting region of system (2.1),

where ϕ =
Ka(µa +ma)

2

4ma
.

Proof. Setting Na = Sa + Ia and adding the first two equations of system (2.1),
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we have
dNa

dt
= maSa(1−

Sa

Ka
)− (µa + δa)Ia

= maSa(1−
Sa

Ka
)− µa(Sa + Ia) + µaSa − δaIa

≤ maSa(1−
Sa

Ka
)− µaNa + µaSa

≤ Ka(µa +ma)
2

4ma
− µaNa.

Then, we obtain

0 ≤ Na(t) ≤
ϕ

µa
(1− e−µat) +Na(0)e

−µat,

where ϕ =
Ka(µa +ma)

2

4ma
. Taking t → +∞, we can get Na(t) → ϕ

µa
.

Similarly, setting Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t), we have

dNh(t)

dt
= Λh − µhNh(t)− δhIh(t) ≤ Λh − µhNh(t),

then it follows
0 ≤ Nh(t) ≤

Λh

µh
(1− e−µht) +Nh(0)e

−µht.

It is clear that Nh → Λh
µh

as t → +∞. Moreover, if Na >
ϕ
µa

, Nh > Λh
µh

, then

dNa

dt
≤ ϕ− µaNa < 0,

and
dNh

dt
≤ Λ− µhNh < 0.

Therefore, D is positively invariant.
Next, we will calculate the basic reproduction number of system (2.1) .
System (2.1) has two disease-free equilibria A(0,0,Λh

µh
,0,0,0) and B(Ka,0,

Λh
µh

,0,0,0).
Using the method of the next generation matrix in [10, 11], system (2.1) can be
rewritten as

dX

dt
= M − N,

where

X =



Ia(t)

Eh(t)

Ih(t)

Sa(t)

Sh(t)

Rh(t)


, M =



βaIaSa
1 + αIa
βhIaSh

1 + cI2h

0

0

0

0


, N =



(µa + δa)Ia

(µh + θh)Eh

−θhEh + (µh + δh)Ih + [µ0 + b
(µ1 − µ0)
b+ Ih

]Ih

−maSa(1− Sa
Ka

) +
βaIaSa
1 + αIa

−Λh + µhSh +
βhIaSh

1 + cI2h

−[µ0 + b
(µ1 − µ0)
b+ Ih

]Ih + µhRh


.
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Let

M1 = (
βaIaSa

1 + αIa
,
βhIaSh

1 + cI2h
, 0)T ,

N1 = ((µa + δa)Ia, (µh + θh)Eh,−θhEh + (µh + δh)Ih + µ(b, Ih)Ih)
T .

Then, we have

F =


βaKa 0 0

βhΛh
µh

0 0

0 0 0

 , V =


µa + δa 0 0

0 µh + θh 0

0 −θh µh + δh + µ1

 , FV −1 =


βaKa
µa + δa

0 0

βaΛh

µh(µa + δa)
0 0

0 0 0

 .

Then the basic reproduction number of system (2.1) is

R0 = ρ(FV −1) =
βaKa

µa + δa
.

3. Analysis of Avian-only sub-model
We first discuss the dynamic behavior of the following avian sub-model:

dSa(t)
dt

= maSa(1− Sa
Ka

)− βaIaSa
1 + αIa

,

dIa(t)
dt

=
βaIaSa
1 + αIa

− (µa + δa)Ia.

(3.1)

Clearly, D1 = {(Sa, Ia) ∈ R2
+ |Sa + Ia ≤ ϕ

µa
} is positively invariant.

3.1. Existence of equilibria in system (3.1)
Obviously, Aa(0, 0) and Ba(Ka, 0) are two disease-free equilibria of system (3.1).

Now we consider the existence of endemic equilibrium Ca(S
∗
a , I

∗
a). Then S∗

a and I∗a
satisfy maSa(1− Sa

Ka
)− βaIaSa

1 + αIa
= 0,

βaIaSa
1 + αIa

− (µa + δa)Ia = 0.
(3.2)

From (3.2), we can derive

S∗
a =

(µa + δa)(1 + αI∗a)

βa
.

Substituting S∗
a into (3.2), we obtain

A(I∗a)
2 +BI∗a + C = 0, (3.3)

where

A = α2ma(µa + δa) > 0,

B = Kaβ
2
a + αma(µa + δa) + αma(µa + δa)(1−R0),

C = ma(µa + δa)(1−R0).
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(1) If R0 = 1, then C = 0 and B > 0. Equation (3.3) is reduced to A(I∗a)
2+BI∗a = 0.

So, we have I∗a = 0 or I∗a = −B
A < 0, i.e., equation (3.3) has no positive root.

(2) If R0 > 1, then C < 0 and ∆ = B2 − 4AC > 0. Thus, equation (3.3) has two
distinct real roots. According to the Vieta theorem, we have

I∗a =
−B +

√
∆

2A
.

(3) If R0 < 1, then A > 0, B > 0 and C > 0. It follows from Descartes’ rule of signs
that equation (3.3) does not have a positive root.

From the above discussions, we know that system (3.1) exists a unique endemic
equilibrium Ca(S

∗
a , I

∗
a) when R0 > 1.

3.2. Local stability of equilibria in system (3.1)
Theorem 3.1. The disease-free equilibrium Aa(0, 0) of system (3.1) is always un-
stable; if R0 ≤ 1, the disease-free equilibrium Ba(Ka, 0) of system (3.1) is locally
asymptotically stable; if R0 > 1, then Ba(Ka, 0) is unstable, and the endemic equi-
librium Ca(S

∗
a , I

∗
a) of system (3.1) is locally asymptotically stable.

Proof. The Jacobian matrix of system (3.1) is

Ja =

ma − 2maSa
Ka

− βaIa
1 + αIa

− βaSa

(1 + αIa)
2

βaIa
1 + αIa

βaSa

(1 + αIa)
2 − (µa + δa)

 .

Then the corresponding characteristic equation is

(λ−ma +
2maSa

Ka
+

βaIa
(1 + αIa)

)(λ− βaSa

(1 + αIa)
2 +µa + δa)+

β2
aSaIa

(1 + αIa)
3 = 0. (3.4)

(1) If (Sa, Ia) = (0, 0), then equation (3.4) becomes

(λ−ma)(λ+ µa + δa) = 0.

Clearly, λ1 = ma > 0 and λ2 = −µa − δa < 0. Hence, the disease-free equilibrium
Aa is unstable.
(2) If (Sa, Ia) = (Ka, 0), then we get

(λ+ma)(λ+ (µa + δa)(1−R0)) = 0.

So, λ1 = −ma < 0 and λ2 = (µa + δa)(R0 − 1).
(2a) If R0 < 1, then Ba(Ka, 0) is locally asymptotically stable. Obviously, Ba is
unstable when R0 > 1.
(2b) If R0 = 1, then Ba(Ka, 0) is a saddle node bifurcation point which is locally
asymptotically stable.

Actually, let Sa = S1 +Ka and Ia = I1. System (3.1) is transformed into
dS1
dt

=
−(Ka + S1)[maS1(1 + αI1) +KaβaI1]

Ka(1 + αI1)
,

dI1
dt

=
βaI1(Ka + S1)− I1(1 + αI1)(µa + δa)

1 + αI1
.
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Using S1 = x− kβy
ma

, I1 = y, t = − τ
ma

, the above system can be rewritten as
dx
dτ

= x+ g1(x, y),

dy
dτ

= g2(x, y),

where

g1(x, y)=
1

m3
a (αyKa+Ka)

[yβaK
2
ama (δa−βaKa+µa−xβa+αy (µa+δa+yβa))

− yβaKam
2
a (αy (Ka + 2x) + x) + y2β3

aK
3
a + x2m3

a(αy + 1)],

g2(x, y)=
y [βaKa (yβa −ma) +ma ((αy + 1) (µa + δa)− xβa)]

(αy + 1)ma
.

Suppose x = ϕ(y) is the solution of x + g1(x, y) = 0. Substituting x into g2(x, y)
and expanding its Taylor series, we get

q2(y) ≜ −Kaβ(αma+βa)
ma

y2 +
−2Kaβa[−m3

aα
2−2m2

aαβ+Kaβ
3
a+maαβa(µa+δa)]

m3
a

y3 + o(y3).

According to [29, p147–p152], we can get that Ba(Ka, 0) is a saddle-node point
when R0 = 1. Further, it is locally asymptotically stable.
(3) If R0 > 1 and (Sa, Ia) = (S∗

a , I
∗
a), then equation (3.4) becomes

λ2 + pλ+ q = 0,

where
p =

2maS
∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma −

βaS
∗
a

(1 + αI∗a)
2
+ µa + δa,

q = (
2maS

∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma)(µa + δa −

βaS
∗
a

(1 + αI∗a)
2 ) +

β2
aS

∗
aI

∗
a

(1 + αI∗a)
3 .

The first equation of (3.2) can be deduced to

ma =
βaI

∗
a

1 + αI∗a
+

maS
∗
a

Ka
.

Since
S∗
a =

(µa + δa)(1 + αI∗a)

βa
,

we have

p =
2maS

∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma −

βaS
∗
a

(1 + αI∗a)
2
+ µa + δa

=
maS

∗
a

Ka
− µa + δa

1 + αI∗a
+ µa + δa > 0,

q = (
2maS

∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma)(µa + δa −

βaS
∗
a

(1 + αI∗a)
2
) +

β2
aS

∗
aI

∗
a

(1 + αI∗a)
3

=
2maS

∗
a(µa+δa)

Ka
− 2maβa(S

∗
a)

2

Ka(1+αI∗a)
2
+
βaI

∗
a(µa+δa)

1+αI∗a
−ma(µa+δa)+

maβaS
∗
a

(1+αI∗a)
2
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=
2maS

∗
a(µa+δa)

Ka
− 2maS

∗
a(µa+δa)

Ka(1+αI∗a)
+
βaI

∗
a(µa+δa)

1+αI∗a
−ma(µa+δa)+

ma(µa+δa)

1+αI∗a

=
1

Ka(1 + αI∗a)
[2αmaS

∗
aI

∗
a(µa + δa) + βaKaI

∗
a(µa + δa)− αKama(µa + δa)I

∗
a ]

=
(µa + δa)I

∗
a

Ka(1 + αI∗a)
(2αmaS

∗
a + βaKa − αKama)

=
(µa + δa)I

∗
a

Ka(1 + αI∗a)
(2αmaS

∗
a + βaKa −

αKaβaI
∗
a

1 + αI∗a
− αmaS

∗
a)

=
(µa + δa)I

∗
a

Ka(1 + αI∗a)
[αmaS

∗
a + βaKa(1−

αI∗a
1 + αI∗a

)] > 0.

Then we conclude that all eigenvalues have strictly negative real parts. Therefore,
the endemic equilibrium Ca is locally asymptotically stable when R0 > 1.

3.3. Global stability of equilibria in system (3.1)
Theorem 3.2. If R0 ≤ 1, then the disease-free equilibrium Ba(Ka, 0) of system
(3.1) is globally asymptotically stable.

Proof. Define
V = f(Sa) + Ia,

where f(Sa) = Ka(
Sa
Ka

− 1− ln Sa
Ka

).
Obviously, f(Sa) ≥ 0 and f(Sa) = 0 if and only if Sa = Ka. Then we get

dV

dt
|(3) = S′

a(t)(1−
Ka

Sa
) + I ′a(t)

= [maSa(1−
Sa

Ka
)− βaIaSa

1 + αIa
](1− Ka

Sa
) +

βaIaSa

1 + αIa
− (µa + δa)Ia

= [ma(1−
Sa

Ka
)− βaIaSa

1 + αIa
](Sa −Ka) +

βaIaSa

1 + αIa
− (µa + δa)Ia

= −ma

Ka
(Sa −Ka)

2 − βaIa
1 + αIa

(Sa −Ka) +
βaIaSa

1 + αIa
− (µa + δa)Ia

= −ma

Ka
(Sa −Ka)

2 +
βaKaIa
1 + αIa

− (µa + δa)Ia

= −ma

Ka
(Sa −Ka)

2 + (µa + δa)(
R0

1 + αIa
− 1)Ia.

So, dV
dt

|(3) ≤ 0 if R0 ≤ 1. Moreover, dV
dt

|(3) = 0 if and only if Sa = Ka, Ia = 0.
We can also get {(Sa, Ia) ∈ intD1)|dVdt |(3) = 0}={(Sa, Ia)|Sa = Ka, Ia = 0}={Ba}.
According to LaSalle’s invariant principle, the disease-free equilibrium Ba = (Ka, 0)
is globally asymptotically stable if R0 ≤ 1.

Theorem 3.3. If R0 > 1, then the endemic equilibrium Ca(S
∗
a , I

∗
a) of system (3.1)

is globally asymptotically stable.

Proof. Define the Dulac function B = 1
SaIa

. By simple calculation, we obtain

BP =
ma

Ia
(1− Sa

Ka
)− βa

1 + αIa
, BQ =

βa

1 + αIa
− µa + δa

Sa
,
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∂(BP )

∂Sa
= − ma

KaIa
,

∂(BQ)

∂Ia
= − αβa

(1 + αIa)2
.

Thus
∂(BP )

∂Sa
+

∂(BQ)

∂Ia
= − ma

KaIa
− αβa

(1 + αIa)2
< 0.

By using Bendixon Dulac criterion, we know that system (3.1) can’t have a closed
orbit in D1, namely, the endemic equilibrium Ca(S

∗
a , I

∗
a) is globally asymptotically

stable.

4. Analysis of full influenza epidemic model
Since the first five equations of system (2.1) are independent of Rh, we only need
to consider the following system:

dSa(t)
dt

= maSa(1−
Sa

Ka
)− βaIaSa

1 + αIa
,

dIa(t)
dt

=
βaIaSa
1 + αIa

− (µa + δa)Ia,

dSh(t)
dt

= Λh − µhSh − βhIaSh

1 + cI2h
,

dEh(t)
dt

=
βhIaSh

1 + cI2h
− (µh + θh)Eh,

dIh(t)
dt

= θhEh − (µh + δh)Ih − (µ0 + b
(µ1 − µ0)
b+ Ih

)Ih.

(4.1)

Obviously, the set D2 = {(Sa, Ia, Sh, Eh, Ih) ∈ R5
+|Sa + Ea ≤ ϕ

µa
, Sh + Eh + Ih ≤

Λh
µh

} is positively invariant.

4.1. Existence of equilibria in system (4.1)

Theorem 4.1. System (4.1) always has two disease-free equilibria Aah(0, 0,
Λh
µh

, 0, 0)

and Bah(Ka, 0,
Λh
µh

, 0, 0). If R0 > 1, then system (4.1) has a unique endemic equi-
librium Cah(S

∗
a , I

∗
a , S

∗
h, E

∗
h, I

∗
h).

Proof. We know that S∗
a , I∗a , S∗

h, E∗
h and I∗h satisfy

maSa(1−
Sa

Ka
)− βaIaSa

1 + αIa
= 0,

βaIaSa
1 + αIa

− (µa + δa)Ia = 0,

Λh − µhSh − βhIaSh

1 + cI2h
= 0,

βhIaSh

1 + cI2h
− (µh + θh)Eh = 0,

θhEh − (µh + δh)Ih − (µ0 + b
(µ1 − µ0)
b+ Ih

)Ih = 0.

(4.2)

Then we have

Sh =
Λh − (µh + θh)Eh

µh
, Eh =

(µh + µ0 + δh)I
2
h + b(µh + δh + µ1)Ih

θh(b+ Ih)
. (4.3)
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Substituting (4.3) into the third equation of (4.2), we obtain

f(Ih) = m4I
4
h +m3I

3
h +m2I

2
h +m1Ih +m0 = 0, (4.4)

where

m4 = −cµh(µh + θh)(µ0 + µh + δh) < 0,

m3 = −bcµh(µh + θh)(µh + δh + µ1) < 0,

m2 = −(µh + θh)(µ0 + µh + δh)(βhI
∗
a + µh) < 0,

m1 = βhθhΛhI
∗
a − b(µh + θh)(µh + δh + µ1)(βhI

∗
a + µh),

m0 = bβhθhΛhI
∗
a > 0.

It is clear that f(0) = m0 > 0 and f(+∞) < 0. Applying the interval-value theorem
of continuous functions, (4.4) has at least one positive root. Suppose that (4.4) has
four real roots Ih1, Ih2, Ih3, Ih4. By the Vieta theorem, we have

Ih1Ih2Ih3Ih4 =
m0

m4
< 0, (4.5)

Ih1 + Ih2 + Ih3 + Ih4 = −m3

m4
< 0, (4.6)

Ih1Ih2 + Ih1Ih3 + Ih1Ih4 + Ih2Ih3 + Ih3Ih4 + Ih2Ih4 =
m2

m4
> 0. (4.7)

From (4.5) and (4.6), we can deduce that there are one negative root and three
positive roots (or one positive root and three negative roots). Assume that (4.4)
has a negative root Ih1 and three positive roots Ih2, Ih3, Ih4. It follows from (4.6)
that

Ih1 + Ih2 < 0, Ih1 + Ih3 < 0, Ih1 + Ih4 < 0.

Then, we have

Ih1Ih2 + Ih1Ih3 + Ih1Ih4 + Ih2Ih3 + Ih3Ih4 + Ih2Ih4

=(Ih1 + Ih3)Ih2 + (Ih1 + Ih4)Ih3 + (Ih1 + Ih2)Ih4 < 0,

which contradicts with (4.7). This yields that (4.4) has a unique positive real root
I∗h. Thus, system (4.1) has a unique endemic equilibrium Cah(S

∗
a , I

∗
a , S

∗
h, E

∗
h, I

∗
h)

when R0 > 1.

4.2. Local stability of equilibria in system (4.1)

Theorem 4.2. The disease-free equilibrium Aah(0, 0,
Λh
µh

, 0, 0) of system (4.1) is

always unstable; If R0 ≤ 1, then the disease-free equilibrium Bah(Ka, 0,
Λh
µh

, 0, 0)

of system (4.1) is locally asymptotically stable; If R0 > 1, then the equilibrium
Bah(Ka, 0,

Λh
µh

, 0, 0) is unstable, and the endemic equilibrium Cah(S
∗
a , I

∗
a , S

∗
h, E

∗
h, I

∗
h)

of system (4.1) is locally asymptotically stable.
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Proof. The Jacobian matrix of system (4.1) is

J =



J1 − βaSa

(1 + αIa)
2 0 0 0

βaIa
1 + αIa

J2 0 0 0

0 − βhSh

1 + cI2h
J3 0 J4

0
βhSh

1 + cI2h

βhIa
1 + cI2h

−(µh + θh) −J4

0 0 0 θh J5


,

where

J1 = ma −
2maSa

Ka
− βaIa

1 + αIa
, J2 =

βaSa

(1 + αIa)
2 − (µa + δa),

J3 = −µh − βhIa

1 + cI2h
, J4 =

2cβhIaIhSh

(1 + cI2h)
2 , J5 = −µh − δh − µ0 −

b2(µ1 − µ0)

(b+ Ih)
2 .

(1) When (Sa, Ia, Sh, Eh, Ih) = (0, 0, Λh
µh

, 0, 0), we know that the characteristic equa-
tion corresponding to J(Aah) always has a positive root λ = ma. Hence, Aah is
always unstable.
(2) When R0 > 1 and (Sa, Ia, Sh, Eh, Ih) = (Ka, 0,

Λh
µh

, 0, 0), we get

(λ+ma)(λ+ (µa + δa)(1−R0))(λ+ µh)(λ+ µh + θh)(λ+ µh + δh + µ1) = 0.

If R0 < 1, then all the eigenvalues are negative. Hence Bah(Ka, 0,
Λh
µh

, 0, 0) is locally

asymptotically stable when R0 < 1. And Bah(Ka, 0,
Λh
µh

, 0, 0) is unstable if R0 > 1.
(3) When R0 > 1 and (Sa, Ia, Sh, Eh, Ih) = (S∗

a , I
∗
a , S

∗
h, E

∗
h, I

∗
h), we obtain

(λ2 + pλ+ q)(λ3 + a1λ
2 + a2λ+ a3) = 0, (4.8)

where

p =
2maS

∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma −

βaS
∗
a

(1 + αI∗a)
2
+ µa + δa > 0,

q =(
2maS

∗
a

Ka
+

βaI
∗
a

1 + αI∗a
−ma)(µa + δa −

βaS
∗
a

(1 + αI∗a)
2 ) +

β2
aS

∗
aI

∗
a

(1 + αI∗a)
3 > 0,

a1 =3µh + θh + δh + µ0 +
b2(µ1 − µ0)

(b+ I∗h)
2

+
βhI

∗
a

1 + c(I∗h)
2
> 0,

a2 =(µh+θh)[µh+δh+µ0+
b2(µ1−µ0)

(b+I∗h)
2

]+
2cβhθhI

∗
aI

∗
hS

∗
h

(1+c(I∗h)
2)2

+(µh+
βhI

∗
a

1+c(I∗h)
2
)∗

[2µh + θh + δh + µ0 +
b2(µ1 − µ0)

(b+ I∗h)
2

] > 0,

a3 =(µh+
βhI

∗
a

1+c(I∗h)
2
)(µh+θh)[µh+δh+µ0+

b2(µ1−µ0)

(b+I∗h)
2

]+µh
2cβhθhI

∗
aI

∗
hS

∗
h

(1+c(I∗h)
2)2

>0.

By some calculations, we can get a2a1 − a3 > 0. Then by using the Routh-Hurwitz
criterion, we obtain that the endemic equilibrium Cah is locally asymptotically
stable.
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Remark 4.1. If R0 = 1, then Bah(Ka, 0,
Λh
µh

, 0, 0) of system (4.1) is a saddle-node
point which is locally asymptotically stable.

4.3. Global stability of equilibria in system (4.1)

We first use the method in [9] to prove the global stability of Bah(Ka, 0,
Λh
µh

, 0, 0).
Rewrite system (4.1) as 

dX
dt

= F (X,Z),

dZ
dt

= G(X,Z).

(4.9)

The disease-free equilibrium of system (4.9) is Q0 = (X0, 0). It is globally asymp-
totically stable if and only if the following conditions are satisfied.
(H1) when dX

dt
= F (X, 0), X0 is globally asymptotically stable.

(H2) G(X,Z) = BZ − Ĝ(X,Z), where B = DZG(X0, 0) is M matrix (the non-
diagonal elements are non-negative); ∀(X,Z) ∈ Γ, Ĝ(X,Z) ≥ 0, where Γ is the
constant attraction region of system (4.9).

Theorem 4.3. If R0 < 1, then Bah(Ka, 0,
Λh
µh

, 0, 0) of system (4.1) is globally
asymptotically stable.

Proof. Let X = (Sa, Sh), Z = (Ia, Eh, Ih). System (4.1) can be rewritten as

dX

dt
= F (X,Z),

dZ

dt
= G(X,Z),

where

F (X,Z) =

maSa(1− Sa
Ka

)− βaIaSa
1 + αIa

Λh − µhSh − βhIaSh

1 + cI2h

 ,

G(X,Z) =


βaIaSa
1 + αIa

− (µa + δa)Ia
βhIaSh

1 + cI2h
− (µh + θh)Eh

θhEh − (µh + δh)Ih − (µ0 +
b(µ1 − µ0)
b+ Ih

)Ih

 .

Clearly, G(X, 0) = 0 and the disease-free equilibrium of system (4.1) is P0(X
0, 0)

with X0 = (Ka,
Λh
µh

). Since

F (X, 0) =

maSa(1− Sa
Ka

)

Λh − µhSh

 ,

we know that
lim
t→∞

Sa(t) = Ka, lim
t→∞

Sh(t) =
Λh

µh
.
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Thus, X0 = (Ka,
Λh
µh

) is globally asymptotically stable. Then condition (H1) is
satisfied.
Let

B =


−µa − δa + βaKa 0 0

βh(1 + Ih)
Λh
µh

−µh − θh 0

0 θh −µh − δh

 .

Then G(X,Z) = BZ − Ĝ(X,Z), where

Ĝ(X,Z) =


βaIa(Ka − Sa

1 + αIa
)

βhIa(1 + Ih)(
Λh
µh

− Sh

(1 + Ih)(1 + cI2h)
)

µ0 +
b(µ1 − µ0)
b+ Ih

 .

Clearly, B is M matrix and Ĝ(X,Z) ≥ 0, ∀(X,Z) ∈ D2. So, condition (H2) is
satisfied. Thus, Bah of system (4.1) is globally asymptotically stable when R0 < 1.

According to the above discussions, we can reduce system (4.1) to

dSh(t)
dt

= Λh − µhSh − βhI
∗
aSh

1 + cI2h
,

dEh(t)
dt

=
βhI

∗
aSh

1 + cI2h
− (µh + θh)Eh,

dIh(t)
dt

= θhEh − (µh + δh)Ih − (µ0 + b
(µ1 − µ0)
b+ Ih

)Ih.

(4.10)

We shall use Li-Muldowney’s geometry method [24] to study the global stability of
C ′

ah(S
∗
h, E

∗
h, I

∗
h) in system (4.10) . Let | · | denote a vector norm in Rn and also

denote the induced matrix norm in Rn×n, the space of all n × n matrices. For
matrix A in Rn×n, the Lozinskǐ measure or the logarithmic norm of A with respect
to | · | (see [25]) is

µ(A) = lim
h→0+

| I + hA | −1

h
.

Let y(t) be a solution of linear differential equation

ẏ(t) = A(t)y(t),

where A(t) is m×m matrix-valued continuous function. Then, we have

|y(t)| ≤ |y(t0)|e
∫ t
t0

µ(A(t))dt
, for t ≥ t0.

Let B be an n×n matrix. The second additive compound matrix of B, denoted by
B[2], is an

(
n
2

)
×
(
n
2

)
matrix. For instance, if B = (bij) is a 3× 3 matrix, then

B[2] =


b11 + b22 b23 −b13

b32 b11 + b33 b12

−b31 b21 b22 + b33

 .
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Consider the following autonomous system

ẋ = f(x), (4.11)

where f : Ω → Rn, Ω ⊂ Rn is an open set and simply connected and f ∈ C1(Ω).
Let x(t, x0) be the solution of system (4.11) such that x(0, x0) = x0. Let x∗ be an
equilibrium of system (4.11), i.e., f(x∗) = 0. A set K is said to be absorbing in
Ω for system (4.11) if x(t,K1) ⊂ K for each compact set K1 ⊂ Ω and sufficiently
large t. Assume the following assumptions hold:
(H3) System (4.11) has a unique equilibrium point x∗ in Ω.
(H4) System (4.11) has a compact absorbing set K ⊂ Ω.
Let Q : Ω 7→ Q(x) be an

(
n
2

)
×
(
n
2

)
matrix-valued functions with its inverse Q−1(x).

Let µ be a Lozinskǐ measure on RN×N , where N =
(
n
2

)
. Define

q̄2 = lim sup
t→∞

sup
x0∈K

1

t

∫ 1

0

µ(X(x(s, x0)))ds,

where
X = QfQ

−1 +QJ [2]Q−1,

and the matrix Qf is obtained by replacing each entry qij of Q by its derivative in
the direction of f , (qij)f , and J [2] is the second additive compound matrix of the
Jacobian matrix J of system (4.11) . The following lemma in Li and Muldowney [24]
will be used here.

Lemma 4.1 ( [24]). Assume that Ω is simply connected and assumptions (H3) and
(H4) hold. Then, the unique equilibrium x∗ of system (4.11) is globally asymptot-
ically stable in Ω if there exist a function Q and a Lozinskǐ measure µ such that
q̄2 < 0.

From the above statement, we now state our main result.

Theorem 4.4. If R0 > 1 and (4.13) hold, then the unique endemic equilibrium of
system (4.10) is globally asymptotically stable in D2.

Proof. The Jacobian matrix of system (4.10) is

Jp =


JP1 0

2cβhI
∗
aIhSh

(1 + cI2h)
2

βhI
∗
a

1 + cI2h
JP2 −2cβhI

∗
aIhSh

(1 + cI2h)
2

0 θh JP3

 , (4.12)

where JP1 = −µh − βhI
∗
a

1 + cI2h
, JP2 = −(µh + θh), JP3 = −d − b2(µ1 − µ0)

(b+ Ih)
2 , d =

µh + δh + µ0.
By Theorems 4 and 5, we have
(1) If R0 > 1, then system (4.1) has a unique endemic equilibrium which is

locally asymptotically stable in D2. Assumption (H3) holds.
(2) If R0 > 1, then Aah and Bah are unstable. The instability of Aah ∈ ∂D2 and

Bah ∈ ∂D2 imply the uniform persistence [16], i.e., there exists a constant m > 0
such that

lim inf
t→∞

x(t) ≥ m, where x = Sa, Ia, Sh, Eh, Ih.
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Due to D2 is bounded, there must exist a compact set in the interior of D2 which
is absorbing for system (4.10). So, (H3) is verified.
From system (4.10), we get

J [2] =


JP1 + JP2 −2cβhI

∗
aIhSh

(1 + cI2h)
2 −2cβhI

∗
aIhSh

(1 + cI2h)
2

θh JP1 + JP3 0

0
βhI

∗
a

1 + cI2h
JP2 + JP3

 .

Let P (Sh, Eh, Ih)=diag(1, Eh
Ih

, Eh
Ih

). Then, PfP
−1 = diag(0, Ėh

Eh
− İh

Ih
, Ėh
Eh

− İh
Ih

)

and B = PfP
−1 + PJ [2]P−1, where

B =

B11 B12

B21 B21

 ,

B11 = −µh − βhI
∗
a

1 + cI2h
− (µh + θh), B21 = (

Eh

Ih
θh, 0)

T,

B12 = (− Ih
Eh

2cβhI
∗
aIhSh

(1 + cI2h)
2 ,− Ih

Eh

2cβhI
∗
aIhSh

(1 + cI2h)
2 ),

B22 =

−µh − βhI
∗
a

1 + cI2h
− d− b2(µ1 − µ0)

(b+ Ih)
2 + Ėh

Eh
− İh

Ih
0

βhI
∗
a

1 + cI2h
−d− b2(µ1 − µ0)

(b+ Ih)
2 − (µh + θh) +

Ėh
Eh

− İh
Ih

 .

Take any vector (Sh, Eh, Ih) ∈ R3 ' R(n2). We choose a norm |(Sh, Eh, Ih)| =
max{|Sh|, |Eh| + |Ih|} in R3. Let µ(·) be the Lozinskǐ measure with this vector
norm, which can be obtained according to [28], then

µB ≤ sup{g1, g2} = sup{µ1(B11) + |B12|, µ1(B22) + |B21|},

where |B12|,|B21| are the matrix norms with respect to l1 vector form

B11 = −2µh − βhI
∗
a

1 + cI2h
− θh, B12 = − Ih

Eh

2cβhI
∗
aIhSh

(1 + cI2h)
2 .

Then we have

g1 = − βhI
∗
a

1 + cI2h
− (2µh + θh)−

Ih
Eh

2cβhI
∗
aIhSh

(1 + cI2h)
2 .

Calculations show that B21 = Eh
Ih

θh and

B22 =max{−µh−d− b2(µ1−µ0)

(b+Ih)
2 +

Ėh

Eh
− İh
Ih

,−µh−θh−d− b2(µ1−µ0)

(b+Ih)
2 +

Ėh

Eh
− İh
Ih

}

= −µh − d− b2(µ1 − µ0)

(b+ Ih)
2 +

Ėh

Eh
− İh

Ih
.
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Hence, we have

g2 = −µh − d− b2(µ1 − µ0)

(b+ Ih)
2 +

Ėh

Eh
− İh

Ih
+

Eh

Ih
θh.

From the second and third equations of system (4.10), we obtain

Ėh

Eh
=

βhI
∗
a

1 + cI2h

Sh

Eh
− µh − θh,

İh
Ih

= θh
Eh

Ih
− d− b(µ1 − µ0)

b+ Ih
.

Then

g1 =
Ėh

Eh
− µh − βhI

∗
a

1 + cI2h
− βhI

∗
a

1 + cI2h

Sh

Eh
− Ih

Eh

2cβhI
∗
aIhSh

(1 + cI2h)
2 ,

g2 =
Ėh

Eh
− µh +

b(µ1 − µ0)Ih
(b+ Ih)2

≤ Ėh

Eh
− µh +

(µ1 − µ0)Ih
b+ Ih

,

µB ≤ Ėh

Eh
− µh +

(µ1 − µ0)Ih
b+ Ih

.

Since Ih ≤ Λh
µh

, it is easy to see that if

b >
(µ1 − µ0 − µh)Λh

µ2
h

(4.13)

holds, then

µB ≤ Ėh

Eh
− σ,

where
σ = µh − (µ1 − µ0)Λh

bµh + Λh
.

Along each solution (Sh, Eh, Ih) of system (4.10), we have

1

t

∫ t

0

µ(B)ds =
1

t

∫ t1

0

µ(B)ds+
1

t

∫ t

t1

µ(B)ds

≤ 1

t

∫ t1

0

µ(B)ds+
1

t
ln

Eh(t)

Eh(t1)
− σ(t− t1)

t
.

This means that

q̄2 = lim sup
t→∞

sup
x∈D2

1

t

∫ t

0

µ(B(x(s, x0)))ds ≤ −σ

2
< 0.

According to the analysis above-mentioned, if R0 > 1 and (4.13) hold, C ′
ah(S

∗
h, E

∗
h, I

∗
h)

of system (4.10) is globally asymptotically stable.
Based on the above-mentioned analysis, then we can obtain the following theorem.
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Theorem 4.5. The disease-free equilibrium A(0, 0, Λh

µh
, 0, 0, 0) of system (2.1) is

always unstable; the disease-free equilibrium B(Ka, 0,
Λh

µh
, 0, 0, 0) of system (2.1)

is globally asymptotically stable if R0 < 1; the equilibrium B(Ka, 0,
Λh

µh
, 0, 0, 0) is

unstable if R0 > 1; the endemic equilibrium C(S∗
a , I

∗
a , S

∗
h, E

∗
h, I

∗
h,R∗

h) of system (2.1)
is globally asymptotically stable if R0 > 1 and (4.13) holds.

Remark 4.2. Note that, the global stability of the endemic equilibrium C(S∗
a ,I

∗
a ,S

∗
h,

E∗
h, I

∗
h, R

∗
h) of system (2.1) is obtained under the particular condition (4.13) which

may be limited by the analytical method. Numerical simulation shows that the
equilibrium C(S∗

a , I
∗
a , S

∗
h, E

∗
h, I

∗
h, R

∗
h) of system (2.1) is globally asymptotically sta-

ble when condition (4.13) is not satisfied (see Figure 1(b)).
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Figure 1. (a): Ih(t) converges to the disease-free equilibrium when βa = 8× 10−9(R0 < 1), (b): Ih(t)

is asymptotically stable and converges to the endemic equilibrium when βa = 3.5 × 10−8(R0 > 1).

5. Numerical simulations
In this section, we give some numerical simulations to illustrate the effect of the
basic reproduction number R0, inhibitory effect coefficient α, the psychological effect
coefficient c, and hospital beds-population ratio b during disease transmission. We
fixed the following parameter values in [23]: ma = 5 × 10−3,Ka = 5 × 104, µa =

3.4246 × 10−4, δa = 4 × 10−4,Λh = 30, µh = 3.91 × 10−5, θh = 1
7 , δh = 0.077, µ0 =

0.067, βh = 8× 10−7. Let R0 = 1, we have β∗
a = 1.48× 10−8.

Example 5.1. Choose α = 0.001, c = 0.01, b = 0.05, µ1 = 0.1 and vary β∗
a =

{8 × 10−9, 3.5 × 10−8}. In Figure 1(a), we keep β∗
a = 8 × 10−9 and change

{Sa(0), Ia(0), Sh(0), Eh(0), Ih(0), Rh(0)} = {[100000, 200, 10000, 30, 5, 0], [80000,
150, 10000, 30, 3, 0], and [60000, 100, 10000, 20, 1, 0]}, respectively. In Figure
1(b), we take β∗

a = 3.5× 10−8 and vary {Sa(0), Ia(0), Sh(0), Eh(0), Ih(0), Rh(0)} =
{[200000, 1000, 10000, 150, 10, 0], [150000, 300, 10000, 150, 6, 0], and [80000, 100,
10000, 100, 2, 0]}, respectively. When βa < β∗

a, i.e., R0 < 1, Ih(t) converges to
the disease-free equilibrium which is locally asymptotically stable (see Figure 1(a)).
When βa > β∗

a, i.e., R0 > 1, Ih(t) converges to the endemic equilibrium which is
locally asymptotically stable (see Figure 1(b)). The figures illustrate that the in-
creasing of the rate of disease transmission will cause the number of infected human
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to increase.

Example 5.2. Set µ1 = 0.1, βh = 8 × 10−7 and vary βa = {8 × 10−9, 3.5 ×
10−8}, {α, c, b} = {(0, 0, 0), (0.001, 0.001, 0.001)}. In Figure 2(a), the initial value
is [100000, 200, 1000, 30, 5, 0] and βa = 8 × 10−9 < β∗

a, i.e., R0 < 1. In Figure
2(b), {Sa(0), Ia(0), Sh(0), Eh(0), Ih(0), Rh(0)} = [80000, 100, 10000, 100, 2, 0] and
βa = 3.5 × 10−8 > β∗

a, i.e., R0 > 1. When the inhibitory effect α, psychological
effect c, the ratio of hospital-beds population b are increased together, it will cause
the number of infected people to decrease. (see Figure 2).
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Figure 2. The change curve of Ih. (a): Initial value is [100000, 200, 1000, 30, 5, 0], βa = 8×10−9(R0 <

1); (b): Initial value is [80000, 100, 10000, 100, 2, 0], βa = 3.5 × 10−9(R0 > 1).

Example 5.3. Let βh = 8 × 10−7, α = 0.001, c = 0.01 and vary b = {1, 5, 10}. In
Figure 3(a), µ1 = 0.1, βa = 8 × 10−9 < β∗

a, R0 < 1.In Figure 3(b), µ1 = 0.25, βa =
1.6× 10−8 > β∗

a, R0 > 1. Figure 3 shows that the number of infected individuals Ih
decreases when the ratio of hospital beds-population b increases.
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Figure 3. The change curve of Ih. (a): Initial value is [100000, 200, 10000, 30, 5, 0], µ1 = 0.1,
βa = 8 × 10−9(R0 < 1); (b): Initial value is [200000, 1000, 10000, 150, 10, 0], µ1 = 0.25, βa =

1.6 × 10−8(R0 > 1).
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Example 5.4. Set βh = 8 × 10−7, α = 0.001, b = 0.05, µ1 = 0.1 and vary c =
{0.001, 0.005, 0.015}. In Figure 4(a), βa = 8 × 10−9 < β∗

a, R0 < 1. In Figure 4(b),
βa = 3.5 × 10−8 > β∗

a, R0 > 1. Figure 4 shows that the number of infected people
Ih decreases when the coefficient of psychological effect c increases.
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Figure 4. The change curve of Ih. (a): Initial value is [100000, 200, 10000, 30, 5, 0],βa = 8 ×
10−9(R0 < 1); (b): Initial value is [80000, 100, 10000, 100, 2, 0], βa = 3.5 × 10−8(R0 > 1).

Example 5.5. Choose βh = 8 × 10−7, c = 0.001, b = 0.05, µ1 = 0.1 and vary
α = {0.001, 0.005, 0.01}. In Figure 5(a), βa = 8 × 10−9 < β∗

a, R0 < 1. In Figure
5(b), βa = 3.5× 10−8 > β∗

a, R0 > 1. Figure 5 indicates that the infected people Ih
decreases when the inhibitory effect α increases.
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Figure 5. The change curve of Ih. (a): Initial value is [100000, 200, 10000, 30, 5, 0], βa = 8 ×
10−9(R0 < 1); (b): Initial value is [80000, 100, 10000, 100, 2, 0], βa = 3.5 × 10−8 > β∗

a(R0 > 1).
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6. Discussions and conclusions
In order to investigate the influence of saturation inhibition, psychological effect and
medical resources on the spread of avian influenza, we proposed an SI-SEIR avian
influenza epidemic model with nonlinear incidence rate and nonlinear recovery rate
functions and presented the detailed analysis.

Firstly, the result of the avian sub-model (3.1) is given. It shows that the
disease-free equilibrium Aa is always unstable. Moreover, when the basic repro-
duction number R0 < 1 (R0 > 1), the disease-free equilibrium Ba (the endemic
equilibrium Ca) is globally asymptotically stable in D1;

Secondly, the dynamic behavior of the whole avian influenza model is analyzed.
From the theoretical analysis, the disease-free equilibrium Aah is unstable; when
the basic reproduction number R0 < 1, the disease-free equilibrium Bah is globally
asymptotically stable in D2 (see Figure 1(a)), i.e., the disease will be eradicted;
when R0 > 1 and (4.13) holds, the endemic equilibrium C is globally asymptoti-
cally stable in D2 (see Figure 1(b)), that is to say, the avia inluenza will persist for
a long time;

Finally, numerical simulations (Figures 1-5) are also given and some conclusions
can be drawn as follows.

(1) The saturation effect inhibition coefficient α, the psychological effect coef-
ficient c, and the bed-to-population ratio b do not change the stability of system
(2.1).

(2) When the inhibitory effect α, the ratio of hospital beds-population b and
the psychological effect c increase together or seperately, the peak value of infected
human will drop, and then the final size of the number of infected individual is
relatively reduced (see Figures 2-5).

In order to better embody the epidemiology of avian flu, it will be very inter-
esting to induce the periodic incidence rate and the periodic recovery rate in avian
influenza epidemic model, we leave it in the future work.
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