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EFFECT OF TEMPERATURE ON ADAPTIVE
EVOLUTION OF PHYTOPLANKTON CELL

SIZE∗
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Abstract We present a simple nutrient–phytoplankton model that incorpo-
rates adaptive evolution and allometric relations. This model allows us to
examine the patterns and consequences of adaptive changes in the cell size
of phytoplankton under the effect of changes in water temperature. A the-
oretical study reveals that the ecological reproductive index can be used to
characterize the evolutionary dynamics of the nutrient–phytoplankton mod-
el. Numerical analysis suggests that phytoplankton should evolve toward the
small sizes typical of picophytoplankton as the water temperature increases.
This study provides a framework for studying the adaptive evolution of phy-
toplankton cell size in water ecosystem.
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1. Introduction

Phytoplankton is a polyphyletic group of single-celled primary producers that are
ubiquitous in aquatic ecosystems. A diverse phytoplankton assemblage composed of
species of different sizes, has existed for hundreds of millions of years, the result of
long-term evolution [16]. The cell size of phytoplankton ranges over several different
orders of magnitude. Body size is one of the most fundamental traits of organisms,
affecting almost all aspects of their physiology and ecology. Phytoplankton cell
size affects not only physiological rates but also community structure and ecological
function [11, 23]. Thus, it is thought to be a promising ecophysiological trait for
modeling and tracking population dynamics in response to biotic and abiotic factors
[16].

Water temperature is a key environmental factor for the aquatic ecosystem, and
has essential impacts on the nutrient uptake, growth, and death of phytoplankton.
Therefore, water temperature can alter the productivity and composition of phy-
toplankton communities, thereby affecting global biogeochemical cycles [21,28,29].
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Recent studies [22] show that temperature alone is able to explain 73% of the
variance in the relative contribution of small cells to total phytoplankton biomass,
regardless of differences in trophic status or inorganic nutrient loading. There also
exists an interesting phenomenon whereby small phytoplankton species dominate
the equatorial and subtropical oceans while larger species are more abundant in
subpolar regions [30]. This phenomenon is the result of long-term evolution related
to water temperature. This evidence demonstrates that water temperature plays an
important role in phytoplankton evolution. Hence, it is important and reasonable to
incorporate all possible direct temperature effects on phytoplankton evolution into
any mathematical modeling approach. Nevertheless, most mathematical modeling
studies on the evolution of phytoplankton have ignored the impact of water tem-
perature [15, 16]. Continued and increasing global warming raises two interesting
questions: how do the phytoplankton communities respond to global warming, and
how does the cell size of phytoplankton evolve under the impact of global warming
over the long term?

There have been many conceptual, experimental, and theoretical attempts to
predict the evolution of phytoplankton cell size [2, 14, 15, 19]. Adaptive dynam-
ics provide a useful framework for modeling the evolution of quantitative traits.
This approach assumes that evolutionary and ecological dynamics occur on differ-
ent time-scales, separates the two dynamical processes analytically, and draws on
the feedback between ecological and evolutionary processes [12, 15]. In the adap-
tive dynamics approach to modeling evolutionary changes in dynamical models of
ecological communities, the evolutionary processes are usually governed by two im-
portant indexes, i.e., invasion fitness and fitness gradient. Species always evolve
to maximize their fecundity in a specific environment. In [5], an ecological repro-
ductive index is defined to measure the fecundity and characterize the growth of
phytoplankton, which also allows a comprehensive analysis of the role of temper-
ature on phytoplankton’s growth and reproductive characteristics. This suggests
another question to be addressed: what role does the ecological reproductive index
play in the adaptive dynamics of phytoplankton?

Motivated by the above considerations, the principal aims of this study are t-
wofold. The first is to develop a new reproductive index that characterizes the
evolutionary dynamics of phytoplankton cell size. The second is to explore the
patterns and consequences of the evolutionary trait (i.e., cell size) and investigate
the impacts of water temperature on the evolutionary dynamics. In Section 2, we
establish a nutrient–phytoplankton model that consider the effect of water temper-
ature on the adaptive evolution of phytoplankton cell size, and then explore the
global dynamics of the model with the help of a newly defined ecological repro-
ductive index, R0. Section 3 formulates an evolutionary model and theoretically
studies the evolutionary behavior of phytoplankton cell size with the help of R0 and
pairwise invisibility plots. Section 4 is devoted to investigating the effects of water
temperature on the evolution dynamics of phytoplankton. Finally, Section 5 ends
this paper with a discussion of the main results.

2. Ecological model

In this section, we focus on the dynamical ecological interaction between the phyto-
plankton and the nutrient (say phosphorus). Phytoplankton cells take a wide variety
of different forms, including filamentous shapes and the presence of spines. Without



2646 M. Chen, M. Fan & X. Wang

any loss of generality, the volume of differently shaped cells (Vcell) can be converted
into the estimated spherical diameter (ESD) via the equation ESD=2(3Vcell/4π)1/3

[24]. To facilitate the following discussion, we use the ESD defined in [24] and
applied in [16] to represent the phytoplankton cell size.

2.1. Model formulation

Let N(t) be the density of soluble mineral nutrient in units of milligrams of nutrient
per stere and let P (t) be the density of phytoplankton at time t in units of cell
number per stere. The dynamical interaction between the limiting nutrient and the
phytoplankton is described by

dN

dt
= D(Nin −N)−Q(x)µopt(x)h(T )f(N)P,

dP

dt
= µopt(x)h(T )f(N)P −mP − s(x)k(T )P,

(2.1)

where D(Nin − N) models the nutrient exchange with an external source; µopt(x)
is the maximum specific growth rate (day−1) of phytoplankton, s(x) is the loss rate
(day−1), Q(x) is the amount of nutrient in an individual cell (mg · cell−1), which
are all size dependent (i.e., function of ESD x); m is the specific mortality rate
(day−1) of phytoplankton, which is size–independent; f(N) represents the nutrient
limitation experienced by phytoplankton; h(T ) and k(T ) represent the temperature
limitations on the growth rate and loss rate of phytoplankton, respectively.

In (2.1), the comprehensive impact of the cell size and water temperature on
the growth and loss of phytoplankton is assumed to be of multiplicative type. The
maximum specific growth rate of phytoplankton, µopt(x), does not bear a simple
relationship with size over the possible range of phytoplankton cells [16]. Many fac-
tors related to cell size impact the loss rate s(x) of phytoplankton, as do the natural
mortality, sinking, intraspecific competition, and predation by higher trophic levels
(such as zooplankton and fish) [31, 32]. Therefore, in different cases, µopt(x) and
s(x) can take different forms.

To characterize the effect of temperature on the adaptive evolution of phyto-
plankton, we first define an ecological reproductive index of phytoplankton as

R0 =
µopt(x)h(T )f(Nin)

m+ s(x)k(T )
, (2.2)

which is a function of cell size x. R0 is a key indicator of phytoplankton fecundity,
measuring the average newborn phytoplankton produced by one unit of phytoplank-
ton during the phytoplankton life span [5].

2.2. Global dynamics

In this study, we assume that f(N) in system (2.1) is a bounded and smooth function
satisfying [20]

f(0) = 0, f ′(N) > 0, f ′(0) <∞ and f ′′(N) < 0 for N > 0.

Theorem 2.1. If R0 > 1, then (2.1) has a unique positive equilibrium E∗(N∗, P ∗)
and is globally asymptotically stable.
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Proof. For the positive equilibrium E∗(N∗, P ∗), N∗ and P ∗ can be determined
from the following system of algebraic equations

D(Nin −N)−Q(x)µopt(x)h(T )f(N)P = 0,

µopt(x)h(T )f(N)−m− s(x)k(T ) = 0.
(2.3)

Then, by (2.3), it is easy to show that, if R0 > 1,

N∗(x) = f−1(
m+ s(x)k(T )

µopt(x)h(T )
) > 0, P ∗(x) =

D(Nin −N∗(x))

(m+ s(x)k(T ))Q(x)
> 0, (2.4)

where the ecological equilibrium E∗(N∗(x), P ∗(x)) is determined by the cell size x
and temperature T . Because f ′(N) > 0, such an N∗(x) is unique. Thus, there is a
unique positive equilibrium E∗(N∗(x), P ∗(x)) of (2.1).

Consider the Lyapunov function defined by

V (N,P ) =

∫ N

N∗
q(ξ)dξ +

∫ P

P∗

ξ − P ∗

ξ
dξ,

where

q(N) : =
P ∗(µopt(x)h(T )f(N)−m− s(x)k(T ))

D(Nin −N)

=
(Nin −N∗)(µopt(x)h(T )f(N)−m− s(x)k(T ))

(Nin −N)(m+ s(x)k(T ))Q(x)
.

Differentiating V (N,P ) along the solutions of (2.1) and using (2.3), we obtain

dV

dt
= q(N)

dN

dt
+
P − P ∗

P

dP

dt
= q(N)[D(Nin −N)−Q(x)µopt(x)h(T )f(N)P ]

+ (P − P ∗)[µopt(x)h(T )f(N)−m− s(x)k(T )]

= [q(N)D(Nin −N)− P ∗(µopt(x)h(T )f(N)−m− s(x)k(T ))]

+ P [(µopt(x)h(T )f(N)−m− s(x)k(T ))− q(N)Q(x)µopt(x)h(T )f(N)]

= P · (µopt(x)h(T )f(N)−m−s(x)k(T )) ·
(

1−µopt(x)h(T )f(N)(Nin−N∗)
(m+ s(x)k(T ))(Nin−N)

)
≤ 0.

Obviously, dV/dt = 0 if and only if (N,P ) = (N∗, P ∗). This implies that, when
R0 > 1, the largest compact invariant set of model (2.1) in {(N,P ) | dV/dt = 0}
is the singleton {(N∗, P ∗)}. By LaSalle’s invariant principle [18], E∗(N∗, P ∗) is
globally asymptotically stable when R0 > 1.

3. Evolutionary model

In this section, we establish a resident–mutant model to explore the effect of tem-
perature on the adaptive evolution of phytoplankton. Consider the body or cell size
as the evolutionary trait of phytoplankton, and assume that the rate of change of
this trait is slower than the ecological dynamics.
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3.1. Model formulation

When a mutant phytoplankton population with a slightly different cell size y ap-
pears, it is reasonable and realistic to ask which population will become dominant in
the system. To derive the invasion fitness for mutant phytoplankton and model the
dynamics of the resident-mutant population, we modify the resident phytoplankton
model (2.1) to

dN

dt
= D(Nin −N)− µopt(x)h(T )f(N)PQ(x)− µopt(y)h(T )f(N)PmQ(y),

dP

dt
= µopt(x)h(T )f(N)P −mP − s(x)k(T )P,

dPm

dt
= µopt(y)h(T )f(N)Pm −mPm − s(y)k(T )Pm,

(3.1)

where Pm denotes the population density of mutant phytoplankton. Before the oc-
currence of the mutation, the resident population density is stable at (N∗(x), P ∗(x))
under system (2.1). Just after the occurrence of a rare mutation, however, the resi-
dent and mutant populations are close to the ecological equilibrium (N∗(x), P ∗(x), 0)
of (3.1). That is, the stability of (N∗(x), P ∗(x), 0) is crucial in determining whether
the mutant phytoplankton can invade. The stability of this ecological equilibrium
is now analyzed.

The Jacobian matrix of (3.1) at (N∗(x), P ∗(x), 0) takes the form

J(N∗(x), P ∗(x), 0) =

Jsub J0

0 µopt(y)h(T )f(N∗(x))−m− s(y)k(T )

 ,

where

Jsub =

−D −Q(x)µopt(x)h(T )f ′(N∗(x))P ∗(x) −µopt(x)h(T )f(N∗(x))Q(x)

µopt(x)h(T )f ′(N∗(x))P ∗(x) µopt(x)h(T )f(N∗(x))−m− s(x)k(T )


and

J0 =

−µopt(y)h(T )f(N∗(x))Q(y)

0

 .

Note that Jsub is the Jacobian matrix of model (2.1) at E∗(N∗(x), P ∗(x)). All the
eigenvalues of Jsub have negative real parts when R0 > 1.

Note that the third eigenvalue of J(N∗(x), P ∗(x), 0) is

µopt(y)h(T )f(N∗(x))−m− s(y)k(T ), (3.2)

which denotes the per capita growth rate of a very scarce mutant phytoplankton
with cell size y. To facilitate the following discussion, we define this quantity as
F (y, x). If F (y, x) < 0, then (N∗(x), P ∗(x), 0) is asymptotically stable, which mean-
s that the mutant phytoplankton population fails to invade and tends to become
extinct; if F (y, x) > 0, then (N∗(x), P ∗(x), 0) is unstable, which means that the
abundance of the mutant phytoplankton will initially increase, that is, the mutant
phytoplankton population can invade. Because of its important role in determin-
ing the fate of the mutant phytoplankton, F (y, x) is called the invasion eigenvalue
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or invasion fitness. This measures the initial exponential growth rate of the mu-
tant phytoplankton population in an environmental set dominated by the resident
population [33].

If the mutants are rare and have a relatively small effect, then the cell size of
the phytoplankton will evolve through both successive invasions and replacements
along the direction predicted by the sign of the local selection gradient g(x), which
can be obtained by taking the derivative of F (y, x) with respect to the mutant cell
size y and evaluating it at the resident phytoplankton cell size x [33]. Then,

g(x) =
∂F (y, x)

∂y
|y=x= µ′opt(x)h(T )f(N∗(x))− s′(x)k(T ). (3.3)

The continuity of the selection gradient g(x) with respect to x and the small d-
ifference between cell sizes x and y in the early stage of mutation mean that the
mutant’s fitness can be linearly approximated by

F (y, x) = g(x)(y − x). (3.4)

According to (3.4), a positive selection gradient g(x) allows the invasion of mutant
phytoplankton with bigger cell sizes, whereas a negative g(x) is conducive to the
successful invasion of mutant phytoplankton with smaller cell sizes.

When mutants with higher fitness values appear, evolution occurs. Following the
results of [1, 9], if the mutation processes are homogeneous and the mutations are
rare and have a relatively small effect, it can be assumed that the rate of change in
the mean cell size of the phytoplankton will be proportional to the fitness gradient
g(x), i.e.,

dx

dt
=

1

2
rσ2P ∗(x)g(x), (3.5)

where r is the birth probability of mutant phytoplankton, σ2 is the variance of
the mutation distribution, and P ∗(x) is the equilibrium population density of phy-
toplankton satisfying (2.3). The factor (1/2)rσ2 is called the mutation rate. To-
gether with the population density P ∗(x), this determines the rate of evolutionary
change [8]. Equation (3.5) governs the variation of the cell size.

3.2. Evolutionary analysis

One of the central issues of evolutionary dynamics is to characterize the evolutionary
process at community levels, such as whether it is a continuously stable strategy,
an evolutionary repeller, or some other process.

Definition 3.1 ( [12]). A trait x∗ is said to be an evolutionarily singular strategy
if the selection gradient (3.3) vanishes at x∗.

According to Definition 3.1, the evolutionarily singular strategy x∗ satisfies
g(x∗) = 0. In addition to the invasion fitness (3.2) and fitness gradient (3.3),
we now study the evolutionarily singular strategy in terms of the basic reproductive
index defined in (2.2).

Theorem 3.1. The evolutionarily singular strategy x∗ of system (3.5) occurs when
∂R0

∂x
|x=x∗ = 0.
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Proof. The evolutionarily singular strategy x∗ occurs when g(x∗) = 0. From
(2.3), it follows that

µopt(x
∗)h(T )f(N∗(x∗)) = m+ s(x∗)k(T ).

A direct calculation then leads to

∂R0

∂x
|x=x∗ =

µ′opt(x
∗)h(T )f(Nin)[m+ s(x∗)k(T )]− s′(x∗)k(T )µopt(x

∗)h(T )f(Nin)

(m+ s(x∗)k(T ))2

=
[µ′opt(x

∗)h(T )f(N∗(x∗))− s′(x∗)k(T )] · µopt(x
∗)h(T )f(Nin)

(m+ s(x∗)k(T ))2

=
g(x∗) · µopt(x

∗)h(T )f(Nin)

(m+ s(x∗)k(T ))2
= 0.

This completes the proof.
Theorem 3.1 tells us that the evolutionarily singular strategy x∗ appears at the

extreme point of the function R0(x).

Definition 3.2 ( [33]). An evolutionarily singular strategy x∗ is said to be con-
vergence stable if the repeated invasion of nearby mutant strategies into nearby
resident strategies will lead to the convergence of resident strategies x∗.

The condition for convergence stability is given by [10,12,13]

dg(x)

dx
|x=x∗ < 0,

where g(x) is the selection gradient defined by (3.3).

Definition 3.3 ( [33]). An evolutionarily singular strategy x∗ is said to be evo-
lutionary stable if x∗ is a maximum fitness point with respect to the mutant trait
value y.

The evolutionarily singular strategy x∗ is stable against the invasion of neigh-
boring strategies. We consider the second derivative of the invasion fitness with
respect to the mutant trait value y, and evaluate it at the singular point x∗. The
condition for evolutionary stability is then given by [7,12,27]

∂2F (y, x)

∂y2
|y=x=x∗ < 0.

Definition 3.4 ( [33]). An evolutionarily singular strategy x∗ is said to be a con-
tinuously stable strategy if x∗ is both evolutionary stable and convergence stable.

Definition 3.5 ( [12]). An evolutionarily singular strategy x∗ is said to be an
evolutionary repeller if x∗ is neither convergence stable nor evolutionary stable.

Convergence stability and evolutionary stability identify the dynamical behavior
of evolutionarily singular strategy x∗. We next analyze the convergence stability
and evolutionary stability of the evolutionarily singular strategy x∗ with the help
of the ecological reproductive index.
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Theorem 3.2. Let x∗ be an evolutionarily singular strategy of (3.5).

• If
∂2R0

∂x2
|x=x∗ < 0, then x∗ is a continuously stable strategy.

• If
∂2R0

∂x2
|x=x∗ > 0, then x∗ is an evolutionary repeller.

Proof. For system (3.5), we have

∂2F (y, x)

∂y2
|y=x=x∗ = µ′′opt(x

∗)h(T )f(N∗(x∗))− s′′(x∗)k(T ). (3.6)

Note that

µopt(x
∗)h(T )f(N∗(x∗))−m− s(x∗)k(T ) = 0,

µ′opt(x
∗)h(T )f(N∗(x∗))− s′(x∗)k(T ) = 0.

(3.7)

From (2.4) and (3.7), it follows that

∂f(N∗)

∂x
|x=x∗

=
s′(x∗)k(T ) · µopt(x

∗)h(T )− (m+ s(x∗)k(T )) · µ′opt(x∗)h(T )

(µopt(x∗)h(T ))2

=
µ′opt(x

∗)h(T )f(N∗(x∗)) · µopt(x
∗)h(T )− µopt(x)h(T )f(N∗(x∗)) · µ′opt(x∗)h(T )

(µopt(x∗)h(T ))2

= 0.
(3.8)

Then

dg(x)

dx
|x=x∗ = µ′′opt(x

∗)h(T )f(N∗(x∗)) + µ′opt(x
∗)h(T )

∂f(N∗)

∂x
|x=x∗ − s′′(x∗)k(T )

= µ′′opt(x
∗)h(T )f(N∗(x∗))− s′′(x∗)k(T ).

(3.9)
From (3.8), we have

∂2R0

∂x2
|x=x∗ =

[µ′′opt(x
∗)h(T )f(N∗(x∗))− s′′(x∗)k(T )]µopt(x

∗)h(T )f(Nin)

(m+ s(x)k(T ))2
. (3.10)

By (3.6), (3.9) and (3.10), if ∂2R0/∂x
2|x=x∗ < 0, then

∂2F (y, x)

∂y2
|y=x=x∗ < 0,

dg(x)

dx
|x=x∗ < 0,

and so x∗ is a continuously stable strategy. If ∂2R0/∂x
2|x=x∗ > 0, then

∂2F (y, x)

∂y2
|y=x=x∗ > 0,

dg(x)

dx
|x=x∗ > 0,

and x∗ is an evolutionary repeller.
In general, for the given trade-off functions, on the curve defined by the ecological

reproductive index with respect to the cell size, the evolutionarily singular points
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x∗ of system (3.5) at the local “peaks” of the curve denote the continuously stable
strategies. The evolutionarily singular points x∗ of system (3.5) at the local“valleys”
of the curve denote the evolutionary repellers. Theorems 3.1 and 3.2 reveal that the
phytoplankton cell size will always evolve to maximize its fecundity for the current
environment.

The evolutionary dynamics of system (3.5), characterized by Theorems 3.1 and
3.2, can be intuitively represented with the help of the basic reproductive index and
pairwise invisibility plots. Figure 1 illustrates such a scenario, where the parameter
values and trade-off functions are deliberately specified such that the curve defined
by R0(x) admits both “peaks” and “valleys”. In Figure 1-(a), Theorem 3.1 implies
that the two solid points and one hollow point satisfy ∂R0/∂x|x=x∗ = 0, and thus
denote evolutionarily singular strategies. By Theorem 3.2, the two solid points at
the local “peaks” of the curve satisfying ∂2R0/∂x

2|x=x∗ < 0 are continuously stable
strategies, whereas the hollow point at the local “valley” of the curve satisfying
∂2R0/∂x

2|x=x∗ > 0 is an evolutionary repeller. The pairwise invisibility plot (Fig.
1-(b)) shows that, in the dark (+) region, the mutants have positive fitness values,
which implies that the mutant population can invade; in the white (−) region, the
mutant have negative fitness, which means the mutant population can not survive.
In particular, in the dark (+) region on the left side of the vertical line through x∗2,
x∗1 is convergence stable and the local fitness gradient points toward the singular
strategy x∗1; in the dark (+) region on the right side of the vertical line through x∗2,
x∗3 is convergence stable and the local fitness gradient points toward the singular
strategy x∗3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

2

4

6
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10

12

R
0

(a)

Figure 1. (a) Plot of basic reproductive index with respect to cell size (x), where the solid points at
the “peaks” represent the continuously stable strategies, the hollow point at the “valley” represents the
evolutionary repeller, and the arrows denote the directions as x evolves. (b) Pairwise invisibility plot,
where the dark region with ‘+’ corresponds to resident–mutant pairs (x, y) that allow the mutant to
invade (i.e., F (y, x) > 0) and the white region with ‘−’ denotes the region in which the mutant can not
invade (i.e., F (y, x) < 0).

4. Impact of temperature on evolution of cell size

In this section, we analytically investigate how the evolutionary model responds
to variations in water temperature.

Theorem 4.1. Assume that

k′(T ) · [µ′′opt(x∗)s′(x∗)− µ′opt(x∗)s′′(x∗)] < 0. (4.1)
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Then, the evolutionarily singular point x∗ of (3.5) is decreasing with respect to water
temperature T .

Proof. From Theorem 3.1 and (3.3), it follows that

µ′opt(x
∗)h(T )f(N∗(x∗))− s′(x∗)k(T ) = 0. (4.2)

By (2.4), we have

µ′opt(x
∗)h(T ) · m+ s(x∗)k(T )

µopt(x∗)h(T )
− s′(x∗)k(T ) = 0.

Then,

k(T ) =
mµ′opt(x

∗)

µopt(x∗)s′(x∗)− µ′opt(x∗)s(x∗)
:= H(x∗), (4.3)

which implies that the effect of temperature on the evolutionarily singular point x∗

is related to the temperature-dependent loss rate. A direct calculation produces

H ′(x∗) =
m[µ′′opt(x

∗)s′(x∗)− µ′opt(x∗)s′′(x∗)]
[µopt(x∗)s′(x∗)− µ′opt(x∗)s(x∗)]2

.

Hence, (4.1) implies that k(T ) andH(x∗) have opposite monotonic trends. Equation
(4.3) indicates that x∗ is decreasing with respect to T when (4.1) holds.

We next discuss the biological significance of (4.1). It is assumed that phy-
toplankton cells are spherical. Therefore, the loss rate of a cell with a ESD of
x increases in proportion to the square of its diameter [16, 17]. This fact implies
that s′(x∗) > 0 and s′′(x∗) > 0. For species with a relatively large cell size, as
the cell size increases, the maximum specific growth rate tends to decline with a
decelerating rate [16], presumably because it is more efficient for smaller cells to
acquire resources [25]. An examination of picophytoplankton shows that the maxi-
mum specific growth rate tends to increase with size, mainly for the limited supply
of cellular catalysts in extremely small cells [25]. These patterns require µopt(x) to
satisfy µ′opt(x) > 0 and µ′′opt(x) < 0 for small x, and µ′opt(x) < 0 and µ′′opt(x) > 0
for relatively large x. Equation (4.2) together with positive s′(x∗) results in

µ′opt(x
∗) =

h(T )f(N∗(x∗))

s′(x∗)k(T )
> 0,

which implies that the evolutionarily singular point x∗ should fall in the range where
µ′opt(x

∗) > 0 and µ′′opt(x
∗) < 0. The monotonicity of s(x∗) and µopt(x

∗) leads to

H ′(x∗) < 0. (4.4)

The loss rate is temperature-dependent and various candidates have been suggested
to account for this dependence [17]. The temperature-dependent loss rate k(T ) is
chosen to be a monotonic increasing function [17]. Then we have

k′(T ) > 0. (4.5)

Equations (4.4) and (4.5), deduced by empirical patterns, ensure that (4.1) holds.
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To clarify the effect of temperature on the evolution of phytoplankton cell size,
(2.1) should be specified using some empirical models. Table 1 illustrates some
typical examples of the functions in (2.1) satisfying (4.1) of Theorem 4.1. In Table
1, the effect of temperature on the growth of phytoplankton is described by the
so-called cardinal temperature model with inflexion (CTMI) [26], which has been
validated for a large range of phytoplankton species [6]. In addition, the nutrient
quota of a cell is assumed to be directly proportional to its volume, i.e., the cube of
its ESD [16]. The parameter values are listed in Table 2.

Table 1. Empirical models for system (2.1) used for numerical studies

Func. Description Concrete form Ref.
Q(x) cell size dependent nutrient

quota of a cell
Q(x) = βx3 [16]

µopt(x) cell size dependent growth rate µopt(x) =
x

a1x2 + a2x+ a3
[16]

s(x) cell size dependent loss rate s(x) = αx2 [16]

h(T ) temperature dependent growth
rate

h(T ) =


0 for T < Tmin,

φ(T ) for Tmin < T < Tmax,

0 for T > Tmax,

[3]

k(T ) temperature dependent loss
rate

k(T ) =

√
T

Tref
[17]

f(N) functional response f(N) =
N

H +N
[4]

Notes: φ(T ) =
(T − Tmax)(T − Tmin)2

(Topt − Tmin)[(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T )]
.

Table 2. Parameters of system (2.1) with default values used for numerical studies

Par. Description Value Unit Ref.
Topt optimal water temperature 20 ◦C [3]
Tmin minimum water temperature −5 ◦C [3]
Tmax maximum water temperature 30 ◦C [3]
Tref reference water temperature 25 ◦C [17]

α constant affected by the density of the
water

0.1 (µm)−2 · day−1 [16]

β quota for x = 1 10 (µm)−3 [16]

a1 constant for cell size 0.02 (µm)−1 · day [16]
a2 constant for cell size 0.02 day [16]
a3 constant for cell size 0.08 µm · day [16]
m natural mortality rate of phytoplank-

ton
0.15 day−1 [5]

H half-saturation constant for nutrient
uptake

0.05 mg · L−1 [5]

Nin density of total input soluble phospho-
rus

0.5 mg · L−1 Defaulted

D dilution rate 0.5 day−1 Defaulted

Figure 2 shows the results of numerical simulations of the ecological reproductive
index with respect to cell size along the gradient of water temperature T , from low
temperature (e.g., 4 ◦C) to high temperature (e.g., 28 ◦C). From Theorems 3.1 and
3.2, we know that the red solid points at the peaks of the curves defined by R0(x)
represent the continuously stable strategies x∗ at different temperatures.
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Let R̂0 be the basic reproductive value at the given temperature T and the corre-
sponding continuously stable strategy x∗, i.e., R̂0 = R0(T, x∗), which measures the
evolutionarily stable fecundity of phytoplankton at different temperatures. When
the water temperature is below the optimal level (e.g., 20 ◦C), the evolutionarily
stable fecundity of phytoplankton R̂0 increases, but the cell size x∗ decreases with
an increase in water temperature (Fig. 2-(a)). When the water temperature is
above the optimal level, both R̂0 and x∗ decrease as the temperature increases (Fig.
2-(b)). Moving the temperature away from the optimal level has a negative effect
on the fecundity of phytoplankton.
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Figure 2. Basic reproductive index with respect to cell size x with varying temperature. The solid
point at the local “peak” of the curve represents the continuously stable strategy. (a) Water temperature
below the optimal level. (b) Water temperature above the optimal level. The horizontal arrows represent
the directions as x∗ evolves with increasing temperature. The vertical arrows represent the directions as
the evolutionarily stable fecundity of phytoplankton R̂0 varies with increasing temperature.

Figure 3 gives a full picture of the effect of water temperature on the evolution-
arily stable fecundity of phytoplankton R̂0 and evolutionarily stable phytoplankton
cell size x∗. Figure 3-(a) shows that the evolutionarily stable fecundity of phy-
toplankton first increases and then decreases as the water temperature rises. The
evolutionarily stable fecundity of phytoplankton achieves a maximum value at some
optimal temperature. Figure 3-(b) elaborates the relationship between cell size and
water temperature. It shows that the phytoplankton cell size decreases as the tem-
perature rises, and is always above a positive minimum level.
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Figure 3. (a) Effect of increasing temperature on the evolutionarily stable fecundity of phytoplankton

R̂0. (b) Effect of increasing temperature on the cell size x∗ under the continuously stable strategy. The
dashed line denotes the minimum phytoplankton cell size.

5. Conclusions

Adaptive dynamics are an effective approach for studying the evolutionary phe-
notypic changes in evolving populations when the fitness is density- or frequency-
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dependent [12]. This study has investigated the evolutionary dynamics of a single
population of phytoplankton with varying water temperature.

A nutrient–phytoplankton model incorporating the effect of temperature and
cell size was first formulated and then fully analyzed. Based on the globally asymp-
totically stable internal equilibrium, we proposed an evolutionary model of cell size
and examined its evolutionary dynamics by investigating both the convergence sta-
bility and evolutionary stability. Equation (3.5) is much more general and flexible
in terms of admitting different concrete functional forms of cell size and temper-
ature. The criteria established to characterize the evolutionary dynamics of (3.5)
(i.e.,Theorem 3.1 and 3.2) are independent of the functional forms of the cell size
and temperature. It is the limiting factors, not their concrete functional forms,
which assert a significant impact on the phytoplankton dynamics.

The ecological reproductive index R0 measures the fecundity of phytoplankton
and plays an important role in characterizing their evolutionary dynamics. Theo-
retical analysis has revealed that the evolutionarily singular strategy x∗ of system
(3.5) occurs at the points where the derivative of R0 is equal to zero. Moreover, the
evolutionarily singular strategy x∗ of (3.5) at the local “peaks” of the curve defined
by R0(x) is a continuously stable strategy, and the evolutionarily singular strategy
at the local “valleys” is an evolutionary repeller. Numerical simulations have been
conducted to confirm the theoretical analysis.

The important insights obtained from accurate computations indicate that the
continuously stable strategy is affected by the temperature dependent loss rate
rather than the growth rate. To adapt to increasing temperatures, the cell size
of phytoplankton evolves to decrease and maximize its fecundity, but never falls
below a minimum value. The continuous stable fecundity depicted by the ecological
reproductive index first increases and then decreases as the water temperature rises.

In summary, our analytical and numerical analysis suggests the following con-
clusions:

• In mathematical terms, unlike the traditional analysis of evolutionary dy-
namics using the invasion fitness and fitness gradient, this paper has proved
that the ecological reproductive index is important in determining the type of
singular points attained by the phytoplankton evolutionary model and char-
acterizing the evolutionary dynamics.

• In ecological terms, it has been revealed that the evolution of the phytoplank-
ton cell size is affected by the temperature-dependent loss rate. When the
temperature increases within a reasonable range, the cell size of phytoplank-
ton evolves to decrease. Thus, global warming will cause phytoplankton to
evolve into picophytoplankton.

As phytoplankton is an assembly of organisms that arose from different evo-
lutionary processes and present different characteristics (e.g., physiological, mor-
phological), the extension of our evolutionary framework to include several other
traits and abiotic factors should enable a more comprehensive understanding of the
dynamics of aquatic ecosystems. A key challenge for future research is to inves-
tigate not only the impact of temperature on the evolution of primary producers
(i.e., phytoplankton), but also the influence of comprehensive climate changes on
the networks of evolutionary changes throughout the food web.
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