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POSITIVE PERIODIC SOLUTIONS FOR A
NONLINEAR DIFFERENTIAL SYSTEM WITH

TWO PARAMETERS∗
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Abstract In this article, we investigate a nonlinear system of differential
equations with two parametersx′(t) = a(t)x(t)− λf(t, x(t), y(t)),

y′(t) = −b(t)y(t) + µg(t, x(t), y(t)),

where a, b ∈ C(R,R+) are ω−periodic for some period ω > 0, a, b 6≡ 0,
f, g ∈ C(R×R+×R+,R+) are ω−periodic functions in t, λ and µ are positive
parameters. Based upon a new fixed point theorem, we establish sufficient
conditions for the existence and uniqueness of positive periodic solutions to
this system for any fixed λ, µ > 0. Finally, we give a simple example to
illustrate our main result.

Keywords Positive periodic solutions, differential system, existence and u-
niqueness.
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1. Introduction

During the past decades, there are many people paying much attention on the study
of periodic solutions for differential equations, see the papers [1–4,7,8,12,13] and the
references therein. In [12], the authors discussed a logistic system with impulsive
perturbations

∂
∂tx(t, y) = A(y, t,D)x(t, y) + f(t, y), y ∈ Ω, t > 0, t 6= τk, k ∈ Z+

0 ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

∆x(t, y) = Bkx(t, y) + ck, y ∈ Ω, t = πk, k ∈ Z+
0 ,

where Ω is an open-bounded domain in R2 and ∂Ω is smooth enough, x(t, y) is the
population number of isolated species at time t and location y, f(t, y) = f(t+T, y)
for t ≥ 0. A(y, t,D) is a operator with A(y, t,D) = A(y, t + T,D). By discussing
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the exponential stability of the impulsive evolution operator Φ(t, θ), t ≥ θ ≥ 0, the
authors gave the existence of periodic mild solution for the T−periodic logistic
system and T0−periodic impulsive perturbations in a special Banach PC([0, qT ], X)
with X is a Banach space. In [7], by using Schauder’s fixed point theorem, Ma et al.
established the existence of positive periodic solutions for the following second-order
differential equation

u′′ + a(t)u = f(t, u) + c(t),

where a ∈ L1(R/TZ; R+), c ∈ L1(R/TZ; R) with L1(R/TZ) is composed by
the integrable T−periodic functions, f is a Carathéodory function which may be
singular at u = 0. Also, in [13], in order to obtain the uniqueness of positive periodic
solutions, the authors employed some fixed point theorems for mixed monotone
operators to investigate positive periodic solutions for the first-order functional
equation

y′(t) = −δ(t)y(t) + f(t, y(t− τ(t)), y(t− τ(t))) + g(t, y(t− τ(t))),

where T > 0, δ, τ : R → R are continuous T−periodic functions and δ(t) > 0 for
t ∈ R, f : R3 → R and g : R2 → R. Likewise, in [2], Kang employed the similar
method to study the following integral equation

φ(x) =

∫
[x,x+ω]∩G

K(x, y)[f1(y, φ(y − τ(y))) + f2(y, φ(y − τ(y)))]dy, x ∈ G,

where G is a closed subset in RN and has periodic structure. The existence and
uniqueness of positive periodic solutions for this integral equation was given.

Recently, there are several articles reported on the existence of periodic solutions
for some systems of differential equations, see [5,6,9–11] for example. In [11], Radu
Precup gave the existence of multiple positive periodic solutions for the following
differential system u′1(t) = −a1(t)u1(t) + ε1f1(t, u1(t), u2(t)),

u′2(t) = −a2(t)u2(t) + ε2f2(t, u1(t), u2(t)),

where for i ∈ {1, 2} : ai ∈ C(R,R),
∫ ω
0
aidt 6= 0, εi = sign

∫ ω
0
ai(t)dt, fi ∈ C(R ×

R2
+,R+), and ai, fi(·, u1, u2) are ω−periodic functions for some ω > 0. The method

is a different version of Krasnosel’skii’s fixed point theorem in cones.
Very recently, in [9], the authors discussed the following system of differential

equations u′i(t) = ui(t)[ai(t)− fi(t, u(t), v(t))], i = 1, 2, . . . , n,

v′j(t) = vj(t)[−bj(t) + gj(t, u(t), v(t))], j = 1, 2, . . . ,m,

where u(t) = (u1(t), u2(t), . . . , un(t))T , v(t) = (v1(t), v2(t), . . . , vm(t))T , and fi, gj
for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, are ω−periodic functions in t. By using a fixed
point theorem, they gave the existence of positive periodic solutions.

As we know, there are not so many papers reporting on the uniqueness of positive
periodic solutions. Motivated by some articles [14,15], we will study the uniqueness



A nonlinear differential system with . . . 2661

of positive periodic solutions for the following differential systemx′(t) = a(t)x(t)− λf(t, x(t), y(t)),

y′(t) = −b(t)y(t) + µg(t, x(t), y(t)),
(1.1)

where a, b ∈ C(R,R+) are ω−periodic for the same period ω > 0, a, b 6≡ 0, f, g ∈
C([0, ω]×R+×R+,R+) are ω−periodic functions in their first variable with ω > 0,
λ and µ are two positive parameters. A pair of functions (x, y) is called a positive
ω−periodic solution of system (1.1) if x(t), y(t) are ω−periodic functions and they
satisfy (1.1). In this article, by using a fixed point theorem, we intend to give
the existence and uniqueness of positive periodic solutions for system (1.1) for any
fixed positive constants λ and µ. Our results show that the unique positive periodic
solution exists in a product set and can be approximated by constructing an iterative
sequence for any initial point in the product set. Moreover, our result is an extension
and improvement of the previous works. In the last, a simple example is presented
to illustrate the feasibility of our proposed theoretical result.

2. Preliminaries

Let a, b ∈ C(R,R+) with not identically zero, and f1, f2 ∈ C(R,R) be ω−periodic
functions. From [11], the following differential systemx′(t) = a(t)x(t)− f1(t),

y′(t) = −b(t)y(t) + f2(t),
(2.1)

has a unique ω−periodic solution (x, y) given byx(t) =
∫ t+ω
t

H1(t, s)f1(s)ds,

y(t) =
∫ t+ω
t

H2(t, s)f2(s)ds,
(2.2)

where

H1(t, s) =
e−

∫ s
t
a(ξ)dξ

1− e−
∫ ω
0
a(ξ)dξ

, H2(t, s) =
e
∫ s
t
b(ξ)dξ

e
∫ ω
0
b(ξ)dξ − 1

, (t, s) ∈ (R,R). (2.3)

Denote

l1 = min
t∈[0,ω]

∫ t+ω

t

H1(t, s)ds, l2 = min
t∈[0,ω]

∫ t+ω

t

H2(t, s)ds,

L1 = max
t∈[0,ω]

∫ t+ω

t

H1(t, s)ds, L2 = max
t∈[0,ω]

∫ t+ω

t

H2(t, s)ds.

If a(t) ≥ 0, b(t) ≥ 0 for t ∈ R, then L1 ≥ l1 ≥ 0, L2 ≥ l2 ≥ 0. Therefore, (x, y) is a
periodic solution of system (1.1) if and only if (x, y) is a solution of the following
integral equation systemx(t) = λ

∫ t+ω
t

H1(t, s)f(s, x(s), y(s))ds,

y(t) = µ
∫ t+ω
t

H2(t, s)g(s, x(s), y(s))ds,
(2.4)
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which can be considered as an operator equation.
In the following, we state some notations, concepts and lemmas, see [14,15] and

references therein.
Let (E, ‖ · ‖) be a real Banach space with a partial order induced by a cone

P ∈ E. For x, y ∈ E, the notation x ∼ y means that exist α > 0 and β > 0
such that αx ≤ y ≤ βx. For fixed h > 0 (i.e., h ≥ θ and h 6= θ), we define a
set Ph = {x ∈ E | x ∼ h} and thus Ph ⊂ P . For h1, h2 ∈ P with h1, h2 6= θ,
let h = (h1, h2), then h ∈ P := P × P . If P is normal, then P = (P, P ) is
normal(See [15]).

Let Φ denote the class of those functions ϕ : (0, 1) → (0, 1) which satisfies the
condition ϕ(r) > r for r ∈ (0, 1).

Lemma 2.1 (see [14,15]). Ph = {(x, y) : x ∈ Ph1 , y ∈ Ph2} = Ph1 × Ph2 .

Lemma 2.2 (see [15]). Let P be a normal cone in a Banach space E and h =
(h1, h2) ∈ P ×P with h1, h2 6= θ. Let the operators A,B : P ×P → P be increasing
and satisfy the following conditions:

(C1) there exist ϕ1, ϕ2 ∈ Φ such that

A(rx, ry) ≥ ϕ1(r)A(x, y), B(rx, ry) ≥ ϕ2(r)B(x, y), r ∈ (0, 1), x, y ∈ P ;

(C2) there exist (e1, e2) ∈ Ph such that A(e1, e2) ∈ Ph1 , B(e1, e2) ∈ Ph2 .

Then:

(a) A : Ph1
× Ph2

→ Ph1
, B : Ph1

× Ph2
→ Ph2

, and exist x1, y1 ∈ Ph1
, x2, y2 ∈

Ph2 , γ ∈ (0, 1) such that γ(y1, y2) ≤ (x1, x2) ≤ (y1, y2) and

x1 ≤ A(x1, x2) ≤ y1, x2 ≤ B(x1, x2) ≤ y2;

(b) for any fixed λ, µ > 0, the operator equation (x, y) = (λA(x, y), µB(x, y))
has a unique solution (x∗λ,µ, y

∗
λ,µ) in Ph. In addition, for any initial point

(x0, y0) ∈ Ph, the sequence

(xn, yn) = (λA(xn−1, yn−1), µB(xn−1, yn−1)), n = 1, 2, . . . ,

satisfies ‖xn − x∗λ,µ‖ → 0, ‖yn − y∗λ,µ‖ → 0, as n→∞.

3. Main results

In this section, let E = {x ∈ C(R,R) : x(t) = (t + ω) for every t ∈ R}, then E
is a Banach space equipped with the norm ‖x‖∞ = maxt∈[0,ω] |x(t)|. We consider
the system (1.1) in product space E × E. For (x, y) ∈ E × E, define ‖(x, y)‖ =
‖x‖∞ + ‖y‖∞. Then (E × E, ‖(·, ·)‖) is also a Banach space. Let

P = {(x, y) ∈ E × E : x(t) ≥ 0, y(t) ≥ 0, t ∈ R}, P = {x ∈ E : x(t) ≥ 0, t ∈ R},

then P ⊂ E × E and P = P × P is normal, and thus E × E has a partial order:
(x1, y1) ≤ (x2, y2) if and only if x1(t) ≤ x2(t), y1(t) ≤ y2(t), t ∈ R. Let

h1(t) =

∫ t+ω

t

H1(t, s)ds, h2(t) =

∫ t+ω

t

H2(t, s)ds, t ∈ R. (3.1)
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Remark 3.1. From (2.3), we have that h1(t) and h2(t) are ω−periodic functions.
Further, it is clear that h1, h2 ∈ P.

Theorem 3.1. Let h1, h2 be given by (3.1). Assume that:

(M1) f, g ∈ C(R×R+ ×R+,R+) and f(t, l1, l2) > 0, g(t, l1, l2) > 0 for t ∈ [0, ω];

(M2) f, g are increasing with respect to the second and the third variables, i.e.,
f(t, x1, y1) ≤ f(t, x2, y2), g(t, x1, y1) ≤ g(t, x2, y2) for any t ∈ [0, ω], 0 ≤ x1 ≤
x2, 0 ≤ y1 ≤ y2;

(M3) there exist ϕ1, ϕ2 ∈ Φ such that

f(t, rx, ry) ≥ ϕ1(r)f(t, x, y), g(t, rx, ry) ≥ ϕ2(r)g(t, x, y)

for t ∈ R, x, y ∈ R+, where r ∈ (0, 1).

Then:

(a) there exist x1, y1 ∈ Ph1
, x2, y2 ∈ Ph2

, γ ∈ (0, 1) such that γ(y1, y2) ≤
(x1, x2) ≤ (y1, y2) and

x1(t) ≤
∫ t+ω

t

H1(t, s)f(s, x(s), y(s))ds ≤ y1(t), t ∈ [0, ω],

x2(t) ≤
∫ t+ω

t

H2(t, s)g(s, x(s), y(s))ds ≤ y2(t), t ∈ [0, ω],

where Hi(t, s), i = 1, 2, are given by (2.3);

(b) for any fixed λ, µ > 0, the system (1.1) has a unique positive periodic solution
(x∗λ,µ, y

∗
λ,µ) in Ph, where h(t) = (h1(t), h2(t)), t ∈ [0, ω];

(c) for any initial point (x0, y0) ∈ Ph, if

xn+1 = λ

∫ t+ω

t

H1(t, s)f(s, xn(s), yn(s))ds, n = 1, 2, . . . ,

yn+1 = µ

∫ t+ω

t

H2(t, s)g(s, xn(s), yn(s))ds, n = 1, 2, . . . ,

then xn(t)→ x∗λ,µ(t), yn(t)→ y∗λ,µ(t) as n→∞.

Proof. We define three operators A,B : P × P → E and N : P × P → E ×E by

A(x, y) =

∫ t+ω

t

H1(t, s)f(s, x(s), y(s))ds,

B(x, y) =

∫ t+ω

t

H2(t, s)g(s, x(s), y(s))ds,

N(x, y)(t) = (λA(x, y), µB(x, y)),

where H1(t, s), H2(t, s) are given by (2.3). From the condition (M1), we can easily
obtain A,B : P → P and N : P → P . By the above discussion, we know that
(x, y) ∈ P is a solution of the system (1.1) if and only if (x, y) ∈ P is a fixed
point of operator N . By Lemma 2.1, we only need to show that A,B satisfy all
assumptions of Lemma 2.2.
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First we prove that A,B are increasing. In fact, for xi, yi ∈ P , i = 1, 2, with
x1 ≤ x2, y1 ≤ y2, we know that x1(t) ≤ x2(t), y1(t) ≤ y2(t), by employing (M2),

A(x1, y1)(t) =

∫ t+ω

t

H1(t, s)f(s, x1(s), y1(s))ds

≤
∫ t+ω

t

H1(t, s)f(s, x2(s), y2(s))ds

= A(x2, y2)(t),

B(x1, y1)(t) =

∫ t+ω

t

H2(t, s)g(s, x1(s), y1(s))ds

≤
∫ t+ω

t

H2(t, s)g(s, x2(s), y2(s))ds

= B(x2, y2)(t).

So we have A(x1, y1) ≤ A(x2, y2), B(x1, y1) ≤ B(x2, y2).
In the sequel, for any r ∈ (0, 1) and x, y ∈ P , by (M3) we get

A(rx, ry)(t) =

∫ t+ω

t

H1(t, s)f(s, rx(s), ry(s))ds

≥ ϕ1(r)

∫ t+ω

t

H1(t, s)f(s, x(s), y(s))ds

= ϕ1(r)A(x, y)(t),

B(rx, ry)(t) =

∫ t+ω

t

H2(t, s)g(s, rx(s), ry(s))ds

≥ ϕ2(r)

∫ t+ω

t

H2(t, s)g(s, x(s), y(s))ds

= ϕ2(r)B(x, y)(t).

That is, A(rx, ry) ≥ ϕ1(r)A(x, y), B(rx, ry) ≥ ϕ2(r)B(x, y) for any r ∈ (0, 1),
x, y ∈ P .

Now we prove that A(h1, h2) ∈ Ph1
,B(h1, h2) ∈ Ph2

. Let

r1 = min
t∈[0,ω]

{f(t, l1, l2)}, R1 = max
t∈[0,ω]

{f(t, L1, L2)},

r2 = min
t∈[0,ω]

{g(t, l1, l2)}, R2 = max
t∈[0,ω]

{g(t, L1, L2)}.

From (M1) and (M2), we have R1 ≥ r1 > 0, R2 ≥ r2 > 0. Noting that l1 ≤ h1(t) ≤
L1 and l2 ≤ h2(t) ≤ L2, from (M2), we have

A(h1, h2)(t) =

∫ t+ω

t

H1(t, s)f(s, h1(s), h2(s))ds

≥
∫ t+ω

t

H1(t, s)f(s, l1, l2)ds

= r1

∫ t+ω

t

H1(t, s)ds = r1h1,
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A(h1, h2)(t) =

∫ t+ω

t

H1(t, s)f(s, h1(s), h2(s))ds

≤
∫ t+ω

t

H1(t, s)f(s, L1, L2)ds

= R1

∫ t+ω

t

H1(t, s)ds = R1h1.

That is, r1h1 ≤ A(h1, h2) ≤ R1h1 and thus A(h1, h2) ∈ Ph1
. Similarly, we can

prove B(h1, h2) ∈ Ph2
.

Finally, by Lemma 2.2, we have the following conclusions:

(1) there exist x1, y1 ∈ Ph1
, x2, y2 ∈ Ph2

, γ ∈ (0, 1) such that γ(y1, y2) ≤
(x1, x2) ≤ (y1, y2) and

x1 ≤ A(x1, y1) ≤ y1, x2 ≤ B(x1, y1) ≤ y2,

that is,

x1(t) ≤
∫ t+ω

t

H1(t, s)f(s, x(s), y(s))ds ≤ y1(t), t ∈ [0, ω],

x2(t) ≤
∫ t+ω

t

H2(t, s)g(s, x(s), y(s))ds ≤ y2(t), t ∈ [0, ω];

(2) for any fixed λ, µ > 0, the operator equation (x, y) = (λA(x, y), µB(x, y)) has
a unique solution (x∗λ,µ, y

∗
λ,µ) in Ph. That is (x∗λ,µ, y

∗
λ,µ) = N(x∗λ,µ, y

∗
λ,µ). So

the system (1.1) has a unique positive periodic solution (x∗λ,µ, y
∗
λ,µ) in Ph;

(3) for any given point (x0, y0) ∈ Ph, defining

xn+1 = λA(xn, yn)(t) = λ

∫ t+ω

t

H1(t, s)f(s, xn(s), yn(s))ds, n = 1, 2, . . . ,

yn+1 = µB((xn, yn)(t) = µ

∫ t+ω

t

H2(t, s)g(s, xn(s), yn(s))ds, n = 1, 2, . . . ,

one has xn(t)→ x∗λ,µ(t), yn(t)→ y∗λ,µ(t) as n→∞.

Remark 3.2. The study of positive periodic solutions for differential systems is
still few and the unique results are also not so many. The method is new to inves-
tigate nonlinear systems of differential equations, which presents the existence and
uniqueness of positive periodic solutions. Moreover, the unique periodic solution
can be approximated by an iteration.

Remark 3.3. By applying the same discussion with Theorem 3.1, we can study
the following differential equation

x′(t) = a(t)x(t)− λf(t, x(t)),

where a ∈ C(R,R+) is ω−periodic for some ω > 0, f(t, x) ∈ C(R×R+,R+) is an
ω−periodic function in t. Also, for any fixed λ > 0, we can get the existence and
uniqueness of positive periodic solutions and the unique periodic solution can be
also approximated by giving an iterative sequence.
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4. An example

Example 4.1. We consider the following differential system:x′(t) = 4 cos2 t · x(t)− sin2 t · [x 1
2 (t) + y

1
3 (t)]− 1,

y′(t) = −4 sin2 t · y(t) + cos2 t · [x 1
4 (t) + y

1
5 (t)] + 2,

(4.1)

where a(t) = 4 cos2 t, b(t) = 4 sin2 t ≥ 0 and a(t), b(t) are π-periodic in t. In this
example, we let

f(t, x, y) = sin2 t[x
1
2 + y

1
3 ] + 1, g(t, x, y) = cos2 t[x

1
4 + y

1
5 ] + 2

and they are π-periodic functions in t. Obviously, f, g ∈ C(R × R+ × R+,R+)
are increasing with respect to second and third variables for any t ∈ R. Also, let
ϕ1(r) = r

1
2 , ϕ2(r) = r

1
4 for r ∈ (0, 1). We can see that ϕ1(r), ϕ2(r) ∈ (0, 1) and

ϕ1(r) = r
1
2 > r, ϕ2(r) = r

1
4 > r, and thus ϕ1, ϕ2 ∈ Φ. Further, for r ∈ (0, 1), t ∈

R, x, y ∈ R+,

f(t, rx, ry) = sin2 t[(rx)
1
2 + (ry)

1
3 ] + 1

≥ r 1
2 [sin2 t(x

1
2 + y

1
3 ) + 1]

= ϕ1(r)f(t, x, y),

g(t, rx, ry) = cos2 t[(rx)
1
4 + (ry)

1
5 ] + 2

≥ r 1
4 [cos2 t(x

1
4 + y

1
5 ) + 2]

= ϕ2(r)g(t, x, y).

In addition,

H1(t, s) =
e−

∫ s
t
4 cos2 ξdξ

1− e−
∫ π
0

4 cos2 ξdξ
=
e−[2(s−t)+sin 2s−sin 2t]

1− e−2π
,

H2(t, s) =
e
∫ s
t
4 sin2 ξdξ

e
∫ π
0

4 sin2 ξdξ − 1
=
e[2(s−t)−sin 2s+sin 2t]

e2π − 1

and l1, l2 are given as in Section 2. Hence,

f(t, l1, l2) ≥ f(t, 0, 0) = 1 > 0, g(t, l1, l2) ≥ g(t, 0, 0) = 2 > 0.

Hence, all the conditions of Theorem 3.1 are satisfied. Then, by employing Theorem
3.1, the system (4.1) has a unique positive periodic solution (x∗, y∗) in Ph, where

h(t) = (h1(t), h2(t)), h1(t) =
∫ t+π
t

H1(t, s)ds, h2(t) =
∫ t+π
t

H2(t, s)ds, and for any

given point (x0, y0) ∈ Ph, defining

xn+1(t) =

∫ t+π

t

e−[2(s−t)+sin 2s−sin 2t]

1− e−2π
{sin2 s[x

1
2
n (s) + y

1
3
n (s)] + 1}ds, n = 1, 2, . . . ,

yn+1(t) =

∫ t+π

t

e[2(s−t)−sin 2s+sin 2t]

e2π − 1
{cos2 s[x

1
4
n (s) + y

1
5
n (s)] + 2}ds, n = 1, 2, . . .

we have xn(t)→ x∗(t), yn(t)→ y∗(t) as n→∞.
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5. Conclusion

Periodic differential systems are increasingly being used to describe many prob-
lems in economical, population dynamics, control, ecology and epidemiology. Due
to its deep realistic background and important role, people are paying more and
more attention. For nonlinear systems of differential equations, there are still few
results reported on positive periodic solutions and the uniqueness of positive pe-
riodic solutions is seldom seen in literature. In this paper, we study the system
(1.1) for any fixed positive parameters λ and µ. By using a fixed point theorem,
we give some new existence and uniqueness of positive periodic solutions for (1.1).
Our results show that the unique positive periodic solution exists in a product set
P̄h = Ph1 ×Ph2 and can be approximated by constructing an iterative sequence for
any initial point in the product set P̄h. In the last, a simple example is presented
to illustrate the feasibility of our proposed theoretical result.
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