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Abstract In this paper, nonlocal symmetries of variable coefficient Ablowitz-
Kaup-Newell-Segur(AKNS) system are studied for the first time. In order to
construct some new analytic solutions, a new variable is introduced, which can
transform nonlocal symmetries into Lie point symmetries. Furthermore, using
the Lie point symmetries of closed system, we give out two types of symmetry
reductions and some analytic solutions. For some interesting solutions, such
as interaction solutions among solitons and other complicated waves, we give
corresponding images to describe their dynamic behavior.
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1. Introduction

Lie group [20] was proposed by Norwegian mathematician Sophus Lie in the 19th
century. With the development of nonlinear equations [4, 11, 12, 18, 28, 37] and
integrable system [5,8,13,26,27,34] theory, finding solutions to nonlinear equations
has become an important research problem in the mathematical physics field. In the
20th century, the Lie group theory developed rapidly, it was not only used to solve
differential equations, but also established the relationships with many disciplines,
such as, mathematics [1, 24], physics [7, 17], fractional derivative problem [25, 35],
bifurcation theory [9], etc.

With the development of symmetry theory, a lot of studies have been devoted
to seeking the generalized Lie point symmetry. P.J.Olver [23] has construct a new
type of symmetry by using recursion operator which was called nonlocal symmetry.
Compared with the local symmetry, nonlocal symmetry was not easy to construc-
t the solutions of differential equations [6, 15], because the nonlocal symmetries
contain some auxiliary variables. G.W. Bluman et al. [2, 3] have presented many
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methods to find nonlocal symmetries of the partial differential equations (PDEs)by
using potential systems. F. Galas [10]obtained the nonlocal symmetries by using
the pseudo-potentials of PDEs, and construct exact solutions by the obtained non-
local symmetries. Recently, Lou et al. [14, 21, 29–33] found that Painlevé analysis
can also be used to construct the nonlocal symmetries which was called residual
symmetries.

In this paper, we consider the variable coefficient AKNS system. With the help of
lax pair, the nonlocal symmetries of this system are obtained which be transformed
into local symmetries by introducing new variables variables, and analytic solutions
are constructed by using the Lie group theory. In [36], the Lie group method is
used to study the AKNS system with constant coefficients and it can be found
that the results in this paper are special cases of our article. In [19], the constant
coefficients AKNS system is studied by using the residue symmetry method, because
the nonlocal symmetries obtained in this article are different from our article, so
the results are also very different. By comparing with the conclusions of the two
articles, we can see that our results are new.

This paper is arranged as follows: In Sec.2, the nonlocal symmetries were con-
structed by using the Lax pair of variable coefficient AKNS system. In Sec.3, the
process of transforming from nonlocal symmetries to local symmetries was intro-
duced in detail. In Sec.4 some symmetry reductions and analytic solutions were
obtained by using the Lie point symmetry of closed system. Finally, some conclu-
sions and discussions are given in Sec.6.

2. Nonlocal symmetries of variable coefficient AKN-
S system

The time-dependent coefficient AKNS system [16] readsut + δ(2αvu2 − αuxx) = 0,

vt − δ(2αv2u− αvxx) = 0,
(2.1)

where u = u(x, t) and v = v(x, t) are the real functions, δ = δ(t) is a real function
of t. The system(2.1) was obtained via the variable transformation from time-
dependent Whitham-Broer-Kaup equations, which is used for the shallow water
under the Boussinesq approximation. Lax pair,infinitely-many conservation laws
and soliton solutions are given in [16]. When δ = 1, α = i/2 Eq.(2.1) reduces
to the well-known AKNS system, where i2 = −1, nonlocal symmetries and exact
solutions for the constant coefficient AKNS system have been obtained [22]. To our
knowledge, nonlocal symmetries for Eq.(2.1) have not been obtained and discussed,
which will be the goal of this paper.

The corresponding Lax pair has been obtained in [16],

ϕx = Uϕ,

ϕt = V ϕ,
(2.2)

where
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ϕ =

φ1

φ2

 , U =

λ v

u −λ

 , V =

A B

C −A

 ,

and A = αδuv − 2λ2αδ,B = −αδvx − 2λαδv,C = αδux − 2λαδu.
To seek the nonlocal symmetries of variable coefficient AKNS system(2.1), one

must solve the following linearized equations,

σ1
t + 2αvu2σ3 − αuxxσ3 + 2αδu2σ2 + 4αuvδσ1 − αδσ1

xx = 0,

σ2
t − 2αv2uσ3 + αvxxσ

3 − 2αδv2σ1 − 4αuvδσ2 + αδσ2
xx = 0,

(2.3)

σ1, σ2, σ3 are symmetries of u, v, δ, which means Eqs.(2.1) is form invariant under
the transformations

u→ u+ εσ1,

v → v + εσ2,

δ → δ + εσ3,

(2.4)

with the infinitesimal parameter ε.
Be different from Lie point symmetries, we assume nonlocal symmetries of the

system(2.1)have the following form,

σ1 = X̄(x, t, u, v, δ, φ1, φ2)ux + T̄ (x, t, u, v, δ, φ1, φ2)ut − Ū(x, t, u, v, δ, φ1, φ2),

σ2 = X̄(x, t, u, v, δ, φ1, φ2)vx + T̄ (x, t, u, v, δ, φ1, φ2)vt − V̄ (x, t, u, v, δ, φ1, φ2),

σ3 = T̄ (x, t, u, v, δ, φ1, φ2)δt − ∆̄(x, t, u, v, δ, φ1, φ2).

(2.5)
Then, one can using Lie group method to find their solutions of σ1, σ2, σ3. By

substituting Eq.(2.5) into Eq.(2.3) and eliminating ut, vt, φ1x, φ1t, φ2x, φ2t in terms
of the lax pair(2.3), it yields a system of determining equations for the functions
X̄, T̄ , Ū , V̄ , ∆̄ , solving these determining equations can obtain,

X̄(x, t, u, v, δ, φ1, φ2) = c1x+ c2,

T̄ (x, t, u, v, δ, φ1, φ2) = F1(t),

Ū(x, t, u, v, δ, φ1, φ2) = (−2c1 − c3)u+ c4φ
2
2,

V̄ (x, t, u, v, δ, φ1, φ2) = c3v + c4φ
2
1,

∆̄(x, t, u, v, δ, φ1, φ2) = δ(2c1 − dF1(t)
dt ),

(2.6)

where ci(i = 1, ..., 4) are four arbitrary constants and F1(t) is arbitrary function of
t.

Remark 2.1. It is show that the results(2.6) are local symmetries of variable coef-
ficient AKNS system when c4 = 0, and they are nonlocal symmetries when c4 6= 0.

Nonlocal symmetries need to be transformed into local ones [14,21] before con-
struct analytic solutions, so we construct a closed system whose Lie symmetries
contain above nonlocal symmetries.
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3. Localization of the nonlocal symmetry

For simplicity, let c1 = c2 = c3 = 0, c4 = 1, F1(t) = 0 in formula (2.6) i.e.,

σ1 = −φ2
2,

σ2 = −φ2
1,

σ3 = 0.

(3.1)

To localize the nonlocal symmetry (3.1), we have to solve the following linearized
equations,

σ4
x − σ2φ2 − vσ5 − λσ4 = 0,

σ5
x − σ1φ1 − uσ4 + λσ5 = 0,

σ4
t − αuvφ1σ

3 − αδvφ1σ
1 − αδuφ1σ

2 − αδuvσ4 + 2λαvφ2σ
3 + 2λαδφ2σ

2

+2λαδvσ5 + 2λ2αφ1σ
3 + 2λ2αδσ4 + ασ3φ2vx + αδφ2σ

2
x + αδσ5vx = 0,

σ5
t + αδuφ2σ

2 + αδuvσ5 + αuvφ2σ
3 + αδvσ1φ2 + 2λαuφ1σ

3 + 2λαδφ1σ
1

+2λαδuσ4 − 2λ2αφ2σ
3 − 2λ2αδσ5 − ασ3φ1ux − αδφ1σ

1
x − αδσ4ux = 0,

(3.2)

which is form invariant under the following transformation,

φ1 → φ1 + εσ4,

φ2 → φ2 + εσ5,

f → f + εσ6,

(3.3)

with the infinitesimal parameter ε, and σ1, σ2, σ3 given by (3.1). It is not difficult
to verify that the solutions of (3.2) have the following forms,

σ4 = φ1f, σ5 = φ2f, (3.4)

where f satisfies the following equations,

fx = −φ1φ2,

ft = αδ(vφ2
2 + 4λφ1φ2 − uφ2

1),
(3.5)

it is easy to obtain the following result,

σ6 = f2. (3.6)

One can see that the nonlocal symmetry (3.1) in the original space {x, t, u, v, δ}
has been successfully localized to a Lie point symmetry in the enlarged space
{x, t, u, v, δ, φ1, φ2, f}. It is not difficult to verify that the auxiliary dependent
variable f just satisfies the Schwartzian form of the variable coefficient AKNS system

δ
∂C

∂t
− α2δ3 ∂S

∂x
− (8λαδ2 + 3δC)

∂C

∂x
− C ∂δ

∂t
= 0, (3.7)
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where C =
∂φ
∂t
∂φ
∂x

,and S =
∂3φ

∂x3
∂φ
∂x

−
3
(
∂2φ

∂x2

)2

2( ∂φ∂x )
2 is the Schwartzian derivative.

After we successfully transform the nonlocal symmetries(3.1) into local symme-
tries. New analytic solutions can be constructed naturally by Lie group theory.
With the Lie point symmetry(3.1),(3.4),(3.6), by solving the following initial value
problem,

dū(ε)
dε = −φ2

2, ū |ε=0 = u,

dv̄(ε)
dε = −φ2

1, v̄ |ε=0 = v,

dδ̄(ε)
dε = 0, δ̄ |ε=0 = δ,

dφ̄1(ε)
dε = φ1f, φ̄1 |ε=0 = φ1,

dφ̄2(ε)
dε = φ2f, φ̄2 |ε=0 = φ2,

df̄(ε)
dε = f2, f̄ |ε=0 = f,

(3.8)

where ε is the group parameter, we arrive at the symmetry group theorem as follows:

Theorem 3.1. If {u, v, δ, φ1, φ2, f} is the solution of the prolonged system
(2.1)(2.2)and (3.5),with λ = 0, so is

{
ū, v̄, δ̄, φ̄1, φ̄2, f̄

}
ū = u+

εφ2
2

1+εf , v̄ = v +
εφ2

1

1+εf , δ̄ = δ,

φ̄1 = εφ1

1+εf , φ̄2 = εφ2

1+εf , f̄ = εf
1+εf ,

(3.9)

with ε is an arbitrary group parameter.

Here we give a simple example, starting from a soliton solution of (2.1)

u = − tanh(2αt− x)− 1, v = − tanh(2αt− x) + 1, δ = 1, (3.10)

it’s not difficult to derive the special solutions for the variables φ1, φ2, f from(2.2)and
(3.5),

φ1 = 1− tanh(2αt− x), φ2 = 1 + tanh(2αt− x), f = − 2

1 + e4αt−2x
. (3.11)

Using theorem 1, it’s not hard to verify

u = 2(2ε−1)e4αt−2x

1−2ε+e4αt−2x , v = 2
1−2ε+e4αt−2x , φ1 = 2e2x

(2ε−1)e2x−e4αt ,

φ2 = − 2e4tα

(2ε−1)e2x−e4αt , f = − 2
1−2ε+e4αt−2x , δ = 1,

are still the solutions to the system(2.1),(2.2)and (3.5).

Remark 3.1. One can see from the results, the form of the solutions of u, v from
the soliton solutions become non-soliton solutions. We can get more solutions by
repeating the theorem 3.1. These solutions can not be obtained by traditional Lie
group methods, so they are new analytic solutions of system(2.1).

To search for more similarity reductions and analytic solutions of Eq.(2.1), we
use classical Lie group method. Assume the symmetries of whole prolonged system
have the vector form,

V = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v
+ ∆

∂

∂δ
+ P

∂

∂p
+Q

∂

∂q
+ F

∂

∂f
, (3.12)
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where X,T, U,∆, P,Q, F are the functions with respect to x, t, u, δ, φ1, φ2, f , which
means that the closed system is invariant under the transformations

(x, t, u, v, δ, φ1, φ2, f)→ (x+εX, t+εT, u+εU, v+εV, δ+ε∆, φ1+εP, φ2+εQ, f+εF ),
(3.13)

with a small parameter ε. Symmetries in the vector form (3.12) can be assumed as

σ1 = Xux + Tut − U,

σ2 = Xvx + Tvt − V,

σ3 = Tδt −∆,

σ4 = Xφ1x + Tφ1t − P,

σ5 = Xφ2x + Tφ2t −Q,

σ6 = Xfx + Tft − F,

(3.14)

where X,T, U,∆, P,Q, F are the functions with respect to {x, t, u, δ, φ1, φ2, f}. And
σi, (i = 1, ..., 6) satisfy the linearized equations of the prolonged system,
i.e., (2.3),(3.2),and

σ6
x + σ4φ2 + σ5φ1 = 0,

σ6
t − 4αλσ3φ1φ2 − 4αλδσ4φ2 + 2αδσ4ϕ1u− 4αλδσ5φ1

−2αδσ5φ2v + ασ3φ2
1u− ασ3φ2

2v + αδσ1φ2
1 − αδσ2φ2

2 = 0.

(3.15)

Substituting Eqs.(3.14) into Eqs.(2.3),(3.2),(3.15) and eliminating ut, vt, φ1x, φ1t,
φ2x, φ2t, fx, ft in terms of the closed system, determining equations for the functions
X,T, U, V,∆, P,Q, F can be obtained, by solving these equations, one can get

X = c1, T = F2(t), U = c2u+ c3φ
2
2, V = −c2v + c3φ

2
1,

∆ = −δ dF (t)
dt , P = −φ1

2 (c2 − c4 + 2c3f),

Q = φ2

2 (c2 + c4 − 2c3f), F = −c3f2 + c4f + c5,

(3.16)

where ci, (i = 1, 2, ..., 5) are arbitrary constants, F2(t) is arbitrary function of t.

Remark 3.2. When c1 = c2 = c4 = c5 = F2(t) = 0, c3 = −1, the nonlocal
symmetry is just the one expressed by (2.6), and when c3 = c4 = c5 = 0 the related
symmetries only Lie point symmetry of variable coefficient AKNS system.

4. Symmetry reduction and analytic solutions of
variable coefficient AKNS system

In this section, we will give two nontrivial similarity reductions and group invariant
solutions of variable coefficient AKNS system(2.1)under consideration c3 6= 0.

case 1: c5 6= 0.
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Without loss of generality, let c2 = c4 = 0, c1 = c3 = 1, c5 = k1, F2(t) = k2, with
k1, k2 are two arbitrary constants. By solving the following characteristic equations,

dx

1
=
dt

k2
=
du

φ2
2

=
dv

φ2
1

=
dδ

0
=

dφ1

−φ1f
=

dφ2

−φ2f
=

df

−f2 + k1
, (4.1)

one can obtain

u =

√
k1F4(ξ)− F 2

3 (ξ) tanh(Θ)√
k1

, v =

√
k1F5(ξ)− F 2

2 (ξ) tanh(Θ)√
k1

φ1 = F2(ξ)

√
tanh2(Θ)− 1, φ2 = F3(ξ)

√
tanh2(Θ)− 1,

f =
√
k1 tanh(Θ), δ = k3,

(4.2)

where Θ =
√
k1(F1(ξ) + x), ξ = t− k2x.

Substituting Eqs.(4.2)into the prolonged system yields,

F2 = Ce
∫ k3αk

2
2F1ξξ+2k3αλk2F1ξ−F1ξ−2k3αλ

2k3αk2(k2F1ξ−1)
dξ
, F3 =

k1 − k1k2F1ξ

F2
,

F4 = −−k
2
2k3αF1ξξ + 4k1k2λk3αF1ξ − k1F1ξ − 4k1λk3α

2k3αF 2
2

,

F5 =
k2

2k3αF
2
2F1ξξ + 4k1λk3αF

2
2F1ξ − 4λk3αF

2
2 + F 2

2F1ξ

2k3αk2
2F

2
1ξ − 4k3αk1k2F1ξ + 2k3αk1

,

(4.3)

where C is arbitrary constant. One can see that through the Eqs.(4.2)and (4.3),
if we know the form of F1(ξ), then u, v can be obtained directly. We known that
auxiliary dependent variable f satisfies the Schwartzian form, by substituting f =√
k1 tanh(Θ) into (3.7), one can get,

α2k2
3k

4
2(2k2F − k2

2F
2 − 1)Fξξξ − 3k2

3α
2k6

2F
3
ξ + [4α2k2

3k
5
2(k2F − 1)Fξξ

+4k1k
2
3α

2k4
2F

2(k2
2F

2 − 4k2F + 6) + (2k2 − 16k1k
3
2k

2
3α

2 − 4k3αλk
2
2)F

+4k1k
2
3α

2 + 4k3λαk2 + 1]Fξ = 0,

(4.4)

where F = F (ξ) = F1ξ.
It is not difficult to verify that the above equation is equivalent to the following

elliptic equation,

Fξ =
1

k3αk3
2

√
A0 +A1F +A2F 2 +A3F 3 +A4F 4 (4.5)

where

A0 = 2k3C1α
2k5

2 + 2k2
3C2α

2k5
2 + 4Cαλk2 − 1,

A1 = −(4k2
3C1α

2k6
2 + 6k2

3C2α
2k6

2 + 4k3αλk
2
2 − 2k2),

A2 = 2k2
3C1α

2k7
2 + 6k2

3C2α
2k7

2 + 4k2
3α

2k1k
4
2,

A3 = −2k2
3C2α

2k8
2 − 8k2

3α
2k1k

5
2,

A4 = 4k2
3α

2k1k
6
2.
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C1, C2 are arbitrary constants.

It is know that the general solution of Eq.(4.5) can be written in terms of Jacobi
elliptic functions. Hence, expression of solution (4.2) reflects the wave interaction
between the soliton and the Elliptic function periodic wave. A simple solution of
Eq.(4.5) is given as,

F = b0 + b1sn(ξ, n), (4.6)

substituting Eq.(4.6) into Eq.(4.5) yields

b0 = 2αλk3, b1 = 8k2
3α

2λ3, k1 =
n2

256k4
3α

4λ6
, k2 =

1

2λαk3
, (4.7)

with k3, λ, α ∈ R, 0 ≤ n ≤ 1.

Substituting Eqs.(4.7),(4.6) and F1ξ = F into Eq.(4.3), one can obtain the
solutions of u, v. Because the expression is too prolix, it is omitted here. In order
to study the properties of these solutions of AKNS system, we give some pictures
of u, v as following,

In Fig.1, we plot the interaction solutions between solitary waves and elliptic
function waves expressed by (4.2) with parameters C = 5, C1 = 2, k1 = 0.18, k2 =
10, λ = 0.1, α = 1, n = 0.1.

We can see that the component u exhibits a soliton propagates on a Jacobi
elliptic sine function wave background. In Fig.1, the first picture(a) shows that the
height of the soliton is approximately 0.03 at t = −10. With the development of
time, soliton produces elastic collisions with other waves, and the height increases
continuously. Picture(e) shows that soliton is roughly in line with its adjacent wave
at t = 14. After the collision, the soliton reverts to the original height and continues
to collide with the adjacent waves see the pictures(f → i). The corresponding 3d
image is given below, exhibits a soliton propagating on period waves background.
As one can see from the expression(4.2), u, v possess similar form, so there is no
more detailed discussion here.

In order to study the properties of the solutions, we draw the corresponding 3-D
images using Maple software,(see Fig.2) and the parameters used in the figures are
selected same as Fig.1.

In fact, it is of interest to study these types of solutions, for example, in describ-
ing localized states in optically refractive index gratings. In the ocean, there are
some typical nonlinear waves such as the solitary waves and the cnoidal periodic
waves.

case 2: c5 = 0.

We let c1 = k1, c2 = 2k2, c3 = k3, c4 = c5 = 0, F1(t) = 1, with k1, k2, k3 are
arbitrary constants. By solving the following characteristic equation,

dx

k1
=
dt

1
=

du

k3φ2
2 + 2k2u

=
dv

k3φ2
1 + 2k2v

=
dδ

0

=
dφ1

−φ1(k3f + k2)
=

dφ2

−φ2(k3f − k2)
=

df

−k3f2
,

(4.8)

one can obtain the following results,
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Figure 1. Interaction solutions to the variable coefficient AKNS system
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(a) u(x, t) (b) v(x, t)

Figure 2. 3-D Interaction solutions to the variable coefficient AKNS system

u = e2k2t(F̃4(ς)− F̃ 2
3 (ς)

F̃1(ς) + k3t
), v = e−2k2t(F̃5(ς)− F̃ 2

2 (ς)

F̃1(ς) + k3t
),

φ1 =
e−k2tF̃2(ς)

F̃1(ς) + k3t
, φ2 =

ek2tF̃3(ς)

F̃1(ς) + k3t
, f =

1

F̃1(ς) + k3t
, δ = C̃.

(4.9)

where ς = x− k1t, C̃ is a arbitrary constant.
Substituting Eqs.(4.9)into the prolonged system yields,

F̃2 = C̃1e
∫
−λ+

F̃1ςς
F̃1ς

+
k1

2C̃α
− k3

2C̃α2F̃1ς
dς
, F̃3 =

F̃1ς

F̃2

,

F̃4 = −−C̃αF̃1ςς − 4λC̃αF̃1ς + k1F̃1ς − k3

2CαF̃ 2
2

,

F̃5 =
C̃αF̃ 2

2F1ςς − 4λC̃αF̃ 2
2 F̃1ς + k1F̃

2
2 F̃1ς − k3F̃

2
2

2C̃αF̃ 2
1ς

,

(4.10)

where C̃1 is a arbitrary constant and F = F (ς) = F1ς satisfies the following equation

C̃2α2(F̃ 2F̃ςςς + 3F̃ 3
ς )− (4C̃2α2F̃ F̃ςς + 4C̃αλk3F̃ − 2k1k3F̃ + 3k2

3)F̃ς = 0, (4.11)

the equation(4.11) is equivalent to the following elliptic equation,

F̃ς =

√
−2C̃2α2C̃2F̃ 3 + 2C̃2α2C̃1F̃ 2 + (4C̃k3αλ− 2k1k3)F̃ + k2

3

C̃α
. (4.12)

To solve the equation(4.12), we assume a solution with the following form,

F̃ =
1

l0 + l1sn(ς,m)
, (4.13)
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substituting Eq.(4.13) into Eq.(4.11) yields the following eight sets of solutions,

{k1 = ±2C̃mα+ 2C̃αλ, k3 = C̃mα
l1

, l0 = l1},

{k1 = 2C̃αλ± 2C̃α, k3 = ± C̃αl0 , l1 = ±l0m},

{k1 = ±2C̃mα+ 2C̃αλ, k3 = − C̃mαl1 , l0 = ∓l1},

{k1 = 2C̃αλ± 2C̃α, k3 = ± C̃αl0 , l1 = ∓l0m},

(4.14)

Remark 4.1. Substituting Eqs.(4.14), (4.13) and (4.10) into Eq.(4.9) yields the
analytic solutions of variable coefficient AKNS system(2.1). It can be known from
the expression (4.9) that u, v are rational function form solutions. If take k2 = 0,
then solutions are transformed into elliptic function solutions.

5. Summary and Discussion

In this paper, we have studied nonlocal symmetries and analytic solutions of the
variable coefficient AKNS system for the first time. First of all, starting from the
known Lax pairs of the variable coefficient AKNS system, nonlocal symmetries are
derived directly through a particular assumption. To take advantage of nonlocal
symmetries, an auxiliary variable is introduced. Then, the primary nonlocal sym-
metries are equivalent to a Lie point symmetries of a prolonged system. Applying
the Lie group theorem to these local symmetries, the corresponding group invariant
solutions are derived.

Secondly, several classes of analytic solutions are provided in this paper, in-
cluding some special forms of analytic solutions. For example, analytic interaction
solutions among solitons and other complicated waves, exponential solution, etc.,
These forms of solutions display solitons fission and fusions which can be easily ap-
plicable to the analysis of physically interesting processes for example the generation
process of Rogue waves of variable coefficient AKNS system.

It is very meaningful to study the nonlocal symmetries and analytic solutions
of variable coefficient integrable models. However, there is still a lot of work to be
done. For example, in a large number of nonlocal symmetries of an integrable model
Which one can be localized. Is it possible to apply the nonlocal symmetry theory
of constant coefficient differential equation to the variable coefficient differential
equation? Above topics will be discussed in the future series research works.
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