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SOLUTIONS FOR THE KIRCHHOFF TYPE
EQUATIONS WITH FRACTIONAL

LAPLACIAN∗

Yanping Jia1, Ying Gao1 and Guang Zhang2,†

Abstract Due to the singularity and nonlocality of the fractional Laplacian,
the classical tools such as Sturm comparison, Wronskians, Picard–Lindelöf
iteration, and shooting arguments (which are all purely local concepts) are
not applicable when analyzing solutions in the setting of the nonlocal opera-
tor (−∆)s. Furthermore, the nonlocal term of the Kirchhoff type equations
will also cause some mathematical difficulties. The present work is motivat-
ed by the method of semi-classical problems which show that the existence
of solutions of the Kirchhoff type equations are equivalent to the correspond-
ing associated fractional differential and algebraic system. In such case, the
existence of the fractional Kirchhoff equation can be obtained by using the
corresponding fractional elliptic equation. Therefore some qualitative proper-
ties of solutions for the associated problems can be inherited. In particular,
the classical uniqueness results can be applied to this equation.
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1. Introduction

In this note, we will consider the Kirchhoff type equation with fractional Laplacian
of the form

M
(

[u]
2
s

)
(−∆)

s
u+ λf (u) = µg (u) in Hs

(
RN
)

(1.1)

and its corresponding associated equation

(−∆)
s
u+ λf (u) = µg (u) in Hs

(
RN
)

(1.2)

where

[u]s =

(∫
RN

∫
RN

|u (x)− u (y)|2

|x− y|N+2s
dxdy

)1/2

(1.3)

is the so-called Gagliardo (semi)norm of u (see Di Nezza, Palatucci and Valdinoci
[26]), s ∈ (0, 1), N > 2s is a positive integer, λ, µ ∈ R, M : R+ → R+ is a continuous
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function whose properties will be introduced later, and the functions f and g are
continuous in R.

Fiscella and Valdinoci in [10] first proposed a stationary Kirchhoff variational
model as follows: (

m0 + 2b [u]
2
s

)
(−∆)

s
u = f in RN , (1.4)

in bounded domains of RN . In model (1.4) the authors took into account the
nonlocal aspect of the tension arising from nonlocal measurements of the fractional
length of the string, see Appendix A in [10] for more details. Recently, the results
of [10] had been extended in [3] to the non-degenerate case. Other related problems
were also considered in [9, 29, 32, 36]. When the fractional Laplacian (−∆)

s
is

replaced by the p-Laplacian, some problems were also established by some authors,
for example, see Caponi and Pucci [4], Pucci, Xiang and Zhang [27].

When s = 1, equation (1.4) is reduced to the standard Kirchhoff type equation
which was first proposed by Kirchhoff in [17] to describe the transversal oscillations
of a stretched string. The boundary problems then attracted several researcher-
s mainly after the work of Lions [22], where a functional analysis approach was
proposed to attack it. For more mathematical and physical background, we refer
readers to [2, 3, 7, 13–15,20–23,26,33–35], and the references therein.

The symbol (−∆)
s

with s ∈ (0, 1) is called the fractional Laplacian which can
be defined by

(−∆)
s
u (x) = C (N, s)P.V.

∫
RN

u (x)− u (y)

|x− y|N+2s
dy (1.5)

= −C (N, s)

2

∫
RN

u (x+ y)− 2u (x) + u (x− y)

|y|N+2s
dy

for x ∈ RN , where C (N, s) is a dimensional constant that depends on N and s,
see Di Nezza, Palatucci and Valdinoci [26]. Due to the singularity and nonlocal-
ity of the kernel, it is evident that the theory of ordinary differential equations
(ODE) itself does not provide any means to establish such results. In particular,
classical tools such as Sturm comparison, Wronskians, Picard–Lindelöf iteration,
and shooting arguments (which are all purely local concepts) are not applicable
when analyzing radial solutions in the setting of the nonlocal operator (−∆)

s
,

see Frank and Lenzmann [11], Frank, Lenzmann and Silvestre [12], Moroz and
Van Schaftingen [25] and Di Nezza, Palatucci and Valdinoci [26]. Furthermore,
the nonlocal term M will also cause some mathematical difficulties, for example,
see [5–9,13–15,19,20,22,23,26,27,29,33–36] and the references therein.

The present work is motivated by the method of semi-classical problems (see
also [19], [14] and [31]). For example, we consider the semi-classical problem of the
form

ε2s (−∆)
s
u+ λf (u) = µg (u) in Hs

(
RN
)
, (1.6)

where ε > 0 is a small parameter, typically related to the Planck constant. If uε
is a solution of (1.6) and a ∈ RN , then the function vε (y) = uε (a+ εy) solves the
related equation

(−∆)svε + λf (vε) = µg (vε) in RN . (1.7)

If v is a solution of (1.7), then the function

uε (x) = v

(
x− a
ε

)
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is a solution of (1.6). See Moroz and Van Schaftingen [25] (see also Van Schaftingen
and Xia [28]).

In this note, we mainly prove the following facts: If Q (x) is a solution of (1.2),
then

u (x) = Q

(
x

c∗
[Q]2s

+ t

)

is a solution of (1.1) for any t ∈ RN when the algebraic equation (2.3) ( be defined
later) has a positive root c∗

[Q]2s
. Notice that u (x) is expressed by Q. Thus, its

qualitative properties are similar with Q. In this case, if Q (x) is a unique solution
of (1.2) then c∗

[Q]2s
is unique which implies that u (x) is also unique. If v (x) is the

second solution of (1.1), in view of Theorem 2.1 (in the next section), we can obtain
the corresponding second solution of (1.2), which is a contradiction. By using this
fact, we can obtain some existence results from the known results of (1.2). On the
other hand, our methods are also valid for the other pseudo-differential operators,

for example, the operator
(
−∆ +m2

)s/2
, see Frank, Lenzmann and Silvestre [12].

2. Main Results

First of all, we assume that u ∈ Hs
(
RN
)

is a nonzero solution of (1.1) and denote

M
(

[u]
2
s

)
= c2s. Then, we have

c2s (−∆)
s
u+ λf (u) = µg (u) . (2.1)

For any a ∈ RN , in view of (1.7), we know that the function vc (y) = uc (a+ cy)
satisfies

(−∆)svc + λf (vc) = µg (vc) in RN . (2.2)

Now, we assume that Q (x) is a solution of (1.2) and denote

u (x) = Q
(x
c

+ t
)
.

Notice that

[Q]
2
s = [u (c (x− t))]2s

= c2s−N
∫
RN

∫
RN

|u (c (x− t))− u (c (y − t))|2

|c (x− t)− c (y − t)|N+2s
d [c (x− t)] d [c (y − t)]

= c2s−N [u]
2
s ,

therefore, we get that

M
(

[u]
2
s

)
= M

(
[Q]

2
s c
N−2s

)
= c2s.

Assume that the algebraic equation

M
(

[Q]
2
s c
N−2s

)
= c2s (2.3)
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admits a positive root c∗
[Q]2s

. Then,

u (x) = Q

(
x

c∗
[Q]2s

+ t

)

for some t ∈ RN .

Theorem 2.1. Let u (x) be a solution of (1.1), then Q (x) := u (c (x− t)) is a

solution of (1.2) for any t ∈ RN , where c = M1/2s
(

[u]
2
s

)
.

Theorem 2.2. Assume that Q (x) is a solution of (1.2) and that the algebraic
equation (2.3) admits a positive root c∗

[Q]2s
, then

u (x) ∈

{
Q

(
x

c∗
[Q]2s

+ t

)
, t ∈ RN

}

is a solution of (1.1).

In view of Theorems 2.1 and 2.2, we have immediately the following result.

Corollary 2.1. The existence of solution for (1.1) is equivalent to the existence
of solution for the pseudo-differential and algebraic system (−∆)

s
u+ λf (u) = µg (u) ,

δ = M
(

[u]
2
s δ

N
2s−1

)
,

in RN × R+.

It is well known that it is very difficult to obtain the uniqueness of the solution
for PDEs. However, the following result is clear.

Corollary 2.2. Assume that Q (x) is the unique solution of (1.2) and that the
algebraic equation (2.3) exists a unique positive root c∗

[Q]2s
, then

u (x) ∈

{
Q

(
x

c∗
[Q]2s

+ t

)
, t ∈ RN

}

is a unique solution of (1.1) up to translations.

Example 2.1. Recently, Frank, Lenzmann and Silvestre [12] considered the non-
degeneracy, regularity estimates and uniqueness results for ground state solutions
of the nonlinear equation

(−∆)
s
u+ u = |u|α u in Hs

(
RN
)

(2.4)

involving the fractional Laplacian (−∆)
s
, N ≥ 1, 0 < α < α∗,

α∗ =


4s

N−2s for 0 < s < N
2 ,

∞ for s ≥ N
2 ,

settled conjecture by Kenig et al. [16] and Weinstein [30] for any dimension N > 1,
and generalized the classical uniqueness result by Amick and Toland [1] on the
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uniqueness of solitary waves for the Benjamin–Ono equation and the case N = 1
dimension in Frank and Lenzmann [11]. In the local case for s = 1, the uniqueness
and nondegeneracy of ground states for problem (2.4) was established in a celebrated
paper by Kwong [18] (see also Coffman [5] and McLeod [24]).

Now, we consider the algebraic equation

m0 + 2b [Q]
2
s δ

N/2s−1 = δ. (2.5)

If 2s < N < 4s, clearly, (2.5) exists a unique positive root.

Corollary 2.3. When m0, b > 0, N/4 < s < N/2(N = 1 or 2) and 1 < α < α∗,
then equation (

m0 + 2b [u]
2
s

)
(−∆)

s
u+ u = |u|α u (2.6)

exists a unique ground state solution up to translations.

Remark 2.1. For equation (2.6), Corollary 2.3 is new.

Example 2.2. In [1], Amick and Toland proved the uniqueness (up to translations)
of the nontrivial solution Q ∈ H1/2 (R) of

(−∆)
1/2

Q+Q−Q2 = 0 in R.

In fact, the unique family of solutions is

Q (x) =
2

1 + (x− x0)
2

with x0 ∈ R. Unfortunately, Corollary 2.3 is not valid because s = 1/2.

Remark 2.2. A very special Kirchhoff function M is given by a+bmtm−1, a, b ≥ 0,
a + b > 0, m ≥ 1 and t ≥ 0, see Pucci, Xiang and Zhang [27]. The similar results
can also be obtained.

Remark 2.3. Our methods are also valid for other pseudo-differential operators,

for example, the operator
(
−∆ +m2

)s/2
, see Frank, Lenzmann and Silvestre [12].
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