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EXISTENCE OF SOLUTIONS FOR DUAL
SINGULAR INTEGRAL EQUATIONS WITH
CONVOLUTION KERNELS IN CASE OF
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Abstract This paper is devoted to the study of dual singular integral equa-
tions with convolution kernels in the case of non-normal type. Via using the
Fourier transforms, we transform such equations into Riemann boundary value
problems. To solve the equation, we establish the regularity theory of solv-
ability. The general solutions and the solvable conditions of the equation are
obtained. Especially, we investigate the asymptotic property of solutions at
nodes. This paper will have a significant meaning for the study of improving
and developing complex analysis, integral equations and Riemann boundary
value problems.
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1. Introduction

It is well known that there are rather complete investigations on the method of
solution for equations of Cauchy type as well as integral equations of convolution
type. Singular integral equations and Riemann boundary value problems have a
lot of applications, e.g. in elasticity theory, fluid dynamics, quantum mechanics.
In recent years, many mathematicians have studied singular integral equations and
formed a relatively systematic theoretical system (see [1, 4, 6, 7, 10, 29, 30] and ref-
erences therein). [5] first began to study singular integral equation of Wiener-Hopf
type with continuous coefficients. [11] discussed the Noether theory of singular inte-
gral equations of convolution type. [14, 16, 18, 19, 25–27] dealt with the invertibility
of singular integral operators with discontinuous coefficients, and then considered
the solvability theory and the general solutions for some classes of singular integral
equations with convolution kernels on the whole real axis (or, on the unit circle)
in the case of normal-type. For operators containing both Cauchy principal val-
ue integral and convolution, the conditions of their Noethericity were discussed
in [8, 23, 28, 33] in more general cases. For applications, the problems to find their
solutions is very important. Therefore, singular integral equations of convolution
type, mathematically, belong to an interesting subject in the theory of integral
equations.

†The corresponding author. Email address:lipingrun@163.com(P. Li)
1School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Chi-
na

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200192


Dual singular integral equations 2757

Motivated by the above works, we investigate the existence of solutions for one
class of dual singular integral equations with convolution kernels in the cases of
non-normal type. In the process of studying equations, we find that the methods
used in [5,10,29] are no longer suitable for the case of non-normal type, that is, it is
difficult to use only the Fourier transform technique to study the case of non-normal
type. Hence, we shall introduce a new method to complete our research. In this
paper we apply Fourier analysis theory and boundary value method in the theory
of analytic functions to deal with the solvability of the equations. Our approach
is novel and effective, different from the ones in classical cases. Therefore, this
paper generalizes and improves the theories of integral equations and the classical
Riemann boundary value problems.

2. Some classes of functions and Fourier transforms

In this section, we present some definitions and lemmas, and we mainly introduce
the concepts of classes {{0}} ( ((0)), � 0�) and {0} ( (0), < 0 >).

Definition 2.1. The Fourier transform F and the inverse transform F−1 are de-
fined as follows

(Ff)(s) =
1√
2π

∫ +∞

−∞
f(t)eistdt; (F−1F )(t) =

1√
2π

∫ +∞

−∞
F (s)e−istds. (2.1)

For simplification, in (2.1), we denote them as F (s) = (Ff)(s), f(t) = (F−1F )(t),
respectively.

Definition 2.2. We say that F (s) ∈ {{0}}, if (1)F (s) ∈ Ĥ, i.e., it satisfies the
Hölder condition on the whole real domain Ṙ = R ∪ {∞}; (2) F (s) ∈ L2(R).

Definition 2.3. A function f(t) ∈ {0}, if its Fourier transform F (s) belongs to
{{0}}.

Definition 2.4. Let F (s) be continuous on R, if the following conditions are ful-
filled: (1) F (s) ∈ Ĥ; (2) F (s) = O(|s|−σ), σ > 1

2 , where |s| is sufficiently large, then
we call F (s) ∈ ((0))σ or ((0)).

If F (s) ∈ ((0))σ or ((0)), we call that f(t) ∈ (0)σ or (0).

Definition 2.5. If (1) F (s) ∈ Ĥ; (2) F (s) ∈ Hσ(N∞), σ > 1
2 , i.e., it belongs to

H in the neighborhood N∞ of ∞, and F (∞) = 0, then we call F (s) ∈� 0 �σ or
� 0�, and f(t) ∈< 0 >σ or < 0 >.

Definition 2.6. For two functions k(t) and f(t), their convolution is defined by

1√
2π

∫ +∞

−∞
k(t− τ)f(τ)dτ, −∞ < t < +∞, (2.2)

we denote it as k ∗ f . It is well known that [5, 29]

F(k ∗ f(t)) = Fk(t) · Ff(t) = K(s)F (s). (2.3)

Definition 2.7. We also introduce the operator ε of Cauchy principal value integral

εf(t) = P.V.
1

πi

∫ +∞

−∞

f(τ)

τ − t
dτ = lim%→0

1

πi

∫
|τ−t|>%

f(τ)

τ − t
dτ, −∞ < t < +∞.

(2.4)
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It follows from [8,16,33] that ε maps {0} and < 0 > into themselves respectively
and ε2 = I (identity).

Definition 2.8. We define operators N and S as follows

Nf(t) = f(−t), Sf(t) = f(t)sgnt, −∞ < t < +∞. (2.5)

Lemmas 2.1 and 2.2 are obvious facts and we omit their proof here.

Lemma 2.1. (1) If k, f ∈ {0} ( < 0 >), then k ∗ f ∈ {0} ( < 0 >); (2) If f ∈ {0}
and k ∈ (0) ( < 0 >), then k ∗ f ∈ (0) ( < 0 >).

Lemma 2.2 (see [8, 33]). The operators F ,F−1, ε,N, S are as the before, then we
have

(1)N2 = S2 = I; (2)F2 = N ; (3)FS = εF ; (4)SN = −NS; (5)F−1 = NF = FN.
(2.6)

The following lemma 2.3 plays an important role and it is used to get our some
results in this paper.

Lemma 2.3. Let f(t) ∈ {0}, F (s) = Ff(t), then we have

F [εf(t)] = −SF (s), i.e., Fε = −SF . (2.7)

Proof. By Lemma 2.3, we have ε = FSF−1, but F−1 = NF = FN , F2 = N ,
thus we obtain Fε = −SF .

Lemma 2.4. If f ∈ {0}, (0) or < 0 > and Ff(0) = 0, then εf belongs to the same
class.

Proof. By Lemma 2.3 and assumptions, and note that

Ff(∞) = Ff(0) = 0, (2.8)

thus Lemma 2.4 can be proved.
In Lemma 2.4, note that F (0) = 0 is a necessary condition, otherwise the lemma

is invalid.
In the following section, we shall focus on the theory of Noether solvability and

the methods of solution for dual singular integral equations with convolution kernels
in the non-normal type case.

3. Singular integral equations of dual type

Consider the equationa1ω(t) + b1
πi

∫ +∞
−∞

ω(τ)
τ−t dτ + 1√

2π

∫ +∞
−∞ k1(t− τ)ω(τ)dτ = g(t), 0 < t < +∞;

a2ω(t) + b2
πi

∫ +∞
−∞

ω(τ)
τ−t dτ + 1√

2π

∫ +∞
−∞ k2(t− τ)ω(τ)dτ = g(t), −∞ < t < 0.

(3.1)
where aj , bj(j = 1, 2) are constants and b1, b2 are not equal to zero simultaneously.
k1, k2, g ∈< 0 >β ( or (0)β , 0 < β < 1) and the unknown function ω(t) is requred
to be in {0}. After simplification, (3.1) may be written as{

a1ω(t) + b1εω(t) + k1 ∗ ω(t) = g(t), 0 < t < +∞;

a2ω(t) + b2εω(t) + k2 ∗ ω(t) = g(t), −∞ < t < 0.
(3.2)
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Extending t in the first equation of (3.2) to −∞ < t < 0, and in the second one
of (3.2) to 0 < t < +∞, i.e., we add −φ−(t) and +φ+(t) to (3.2), then (3.2) can be
rewritten as{

a1ω(t) + b1εω(t) + k1 ∗ ω(t) = g(t)− φ−(t);

a2ω(t) + b2εω(t) + k2 ∗ ω(t) = g(t) + φ+(t),
−∞ < t < +∞, (3.3)

where

φ+(t) =

{
φ(t), t ≥ 0,

0, t < 0,
φ−(t) =

{
0, t ≥ 0,

−φ(t), t < 0,

and φ ∈ {0} is an undetermined function, obviously φ(t) = φ+(t)− φ−(t).
We firstly use the Fourier transform to convert Eq.(3.3) into a Riemann bound-

ary value problem. By Lemmas 2.2 and 2.3, we get{
Ψ+(s) +G(s) = E2(s)Ω(s);

Ψ−(s) +G(s) = E1(s)Ω(s),
−∞ < s < +∞, (3.4)

where

Ω = Fω, G = Fg, Kj = Fkj , Ψ± = Fφ±, Ej(s) = aj − bjsgns+Kj(s), j = 1, 2.

Note that, from equation (3.3) to equation (3.4), by taking the Fourier transform
to −φ−(t) we have

1√
2π

∫ +∞

−∞
(−φ−(t))eistdt=

1√
2π

∫ 0

−∞
(−φ−(t))eistdt+

1√
2π

∫ +∞

0

(−φ−(t))eistdt

=
1√
2π

∫ 0

−∞
φ(t)eistdt =

1√
2π

∫ +∞

−∞
φ−(t)eistdt = Ψ−(s).

From (3.4) we have

Ψ+(s) +G(s)

E2(s)
=

Ψ−(s) +G(s)

E1(s)
= Ω(s). (3.5)

Thus, we should only solve the following Riemann boundary value problem (3.6)
in place of (3.1).

Ψ+(s) = E(s)Ψ−(s) +W (s), −∞ < s < +∞, (3.6)

in which

E(s) =
E2(s)

E1(s)
, W (s) = (E(s)− 1)G(s). (3.7)

Now we assume that E1(s) has some zero-points e1, e2, · · · , en with the orders
ξ1, ξ2, · · · , ξn respectively; E2(s) has some zero-points c1, c2, · · · , cq with the orders
η1, η2, · · · , ηq respectively, where ξj , ηj are the non-negative integers. In this case,
we say that (3.6) is a Riemann boundary value problem of non-normal type.

Put

n∑
j=1

ξj = n1,

q∑
j=1

ηj = n2, V1(s) = Πn
j=1(s− ej)ξj , V2(s) = Πq

j=1(s− cj)ηj ,
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then we can rewrite (3.6) in the form

Ψ+(s) =
V2(s)

V1(s)
D(s)Ψ−(s) +W (s), −∞ < s < +∞, (3.8)

where E(s) = V2(s)
V1(s)D(s) and D(s) 6= 0. In view of the values of aj ± bj , we have

the following several cases.
(1) If a1 ± b1 6= 0, and a2 ± b2 are not equal to zero simultaneously, then (3.6)

is a Riemann boundary value problem with nodes s = 0,∞.
(2) If aj − bj = 0, aj + bj 6= 0 (j = 1, 2), then (3.6) is a Riemann boundary value

problem with node s = 0.
(3) If a1± b1 6= 0, a2± b2 = 0, then (3.6) is a Riemann boundary value problem

with node s =∞.
Without loss of generality, we only consider the case (1). Other cases can be

discussed similarly. Since ω(t) ∈ {0}, thus Ω(s) = Fω(t) ∈ {{0}}, and by [10] we
must have Fω(0) = 0.

Thus the solution Ψ(s) of (3.6) should be at least continuous along the whole
real axis and

Ψ±(0) = −G(0). (3.9)

We denote

γ0 = α0 + iβ0 =
1

2πi
lnD(s)|+0

−0. (3.10)

Define by κ = [α0] the index of the problem (3.6), then we have 0 ≤ α = α0−κ < 1.
Set

γ = γ0 − κ = α+ iβ0. (3.11)

Next we discuss the solvability of (3.8). We first define a sectionally holomorphic
function X(z):

X(z) =

{
eΓ(z), z ∈ C+;
(z+i)n1

(z−i)n2
eΓ(z), z ∈ C−.

(3.12)

in which we have put

Γ(z) =
1

2πi

∫ +∞

−∞

lnD0(t)dt

t− z
, z ∈ C+ ∪ C− (3.13)

and

D0(t) = (
t+ i

t− i
)κD(t),

here we have taken the definite branch of

lnD0(t) = κln
t+ i

t− i
+ lnD(t),

provided we have chosen ln t+i
t−i |t=±0= ±iπ. It is easy to verify that X(z) is a

canonical function and its boundary values satisfy

X+(s)

X−(s)
=

(s− i)n2

(s+ i)n1
D0(s). (3.14)
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Thus, (3.8) could also be rewrite as

Ψ+(s) =
V2(s)(s+ i)n1X+(s)

V1(s)(s− i)n2X−(s)
Ψ−(s) +W (s), −∞ < s < +∞. (3.15)

We again put

γ∞ = α∞ + iβ∞ =
1

2πi
lnD(s)|+∞−∞, (3.16)

where lnD(s) is taken to be continuous branch for s > 0 and s < 0 respectively
such that it is continuous at s = ∞, and 0 ≤ α∞ < 1. Without loss of generality,
we assume a1b2 6= a2b1, then γ∞ 6= 0. If a1b2 = a2b1, the only difference lies in that
γ∞ and γ may be zero, then in which cases the analysis will be even simpler, here
we do not discuss it. We first consider the homogeneous problem of (3.15) given by

Ψ+(s) =
V2(s)(s+ i)n1X+(s)

V1(s)(s− i)n2X−(s)
Ψ−(s). (3.17)

Via using the principle of analytic continuation [16, 27], we obtain an analytic
solution of (3.17):

Y1(z) =


X(z)V2(z)(z+i)n1Pϑ(z)

(z+i)κ , z ∈ C+,

X(z)V1(z)(z−i)n2Pϑ(z)
(z+i)κ , z ∈ C−,

(3.18)

in (3.18), when ϑ ≥ 0, Pϑ(z) is a polynomial of degree ϑ with arbitrary complex
coefficients; when ϑ < 0, Pϑ(z) ≡ 0, where ϑ = κ− n1 − n2.

Now we solve the non-homogeneous problem (3.15) in class {0}. To do this, we
consider the following function

η(z) =
1

2πi

∫ +∞

−∞

V1(s)W (s)

(s+ i)n1X+(s)(s− z)
ds, ∀z ∈ C+ ∪ C−. (3.19)

We will apply SokhotskiPlemelj formula and generalized Liouville theorem [16,33] to
the boundary value problem (3.15), which has a singularity at ej and ck. Therefore,
we need to construct a Hermite interpolation polynomial Hρ(z) with the degree ρ,
and we can assume that

Hρ(z) =

ρ∑
j=0

Ajz
ρ−j , ρ = n1 + n2 − 1

which has some zero-points of the orders ξj , ηk (1 ≤ j ≤ n, 1 ≤ k ≤ q) at ej , ck,
respectively, where Al (0 ≤ l ≤ ρ) are constants.

Making use of (3.19) and Hρ(z), we can define the following function:

Y2(z) =


X(z)(z+i)n1 [η(z)(z+i)κ−Hρ(z)]

(z+i)κV1(z) , z ∈ C+;

X(z)(z−i)n2 [η(z)(z+i)κ−Hρ(z)]
(z+i)κV2(z) , z ∈ C−.

(3.20)

By means of the classical Riemann boundary value problem, we can verify that
(3.20) is the particular solution of (3.15). In view of the solvability of linear equa-
tions, we obtain a general solution of (3.15):

Ψ(z) =

2∑
j=1

Yj(z). (3.21)
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From (3.18) and (3.20), Ψ(z) can also be written as the explicit solution:

Ψ(z) =


X(z)(z+i)n1

(z+i)κV1(z) [η(z)(z + i)κ −Hρ(z) + V1(z)V2(z)Pϑ(z)], z ∈ C+;

X(z)(z−i)n2

(z+i)κV2(z) [η(z)(z + i)κ −Hρ(z) + V1(z)V2(z)Pϑ(z)], z ∈ C−.
(3.22)

In the following, we discuss the conditions of solvability and the properties of
solution for Eq. (3.15).

First, we consider the behaviors of solution near s = 0. Similar to the discussion
in [2, 14], by using SokhotskiPlemelj formula to X(z) in (3.12), we can obtain

X+(s) =
√
D0(s)eΓ(s), X−(s) =

eΓ(s)√
D0(s)

, (3.23)

where
√
D0(s) = exp{ 1

2 logD0(s)} has a definite value.
If s = 0 is an ordinary node, then 0 < α < 1 and γ 6= 0. It is easy to verify that,

in the neighborhood of s = 0,

Ψ+(+0) =
e3γπiW (+0)−W (−0)

2i sin γπ
e−2γπi;

Ψ+(−0) =
e3γπiW (+0)−W (−0)

2i sin γπ
e−γπi.

(3.24)

By using (3.9) and eγπi 6= 1, from (3.24) we can obtain

W (+0)

W (−0)
= e−3γπi. (3.25)

If s = 0 is a special node, since Ψ(s) is continuous at s = 0, we should have the
following conditions of solvability

u0 =
1

V1(0)V2(0)
[v0 −

iκ−1

2π

∫ +∞

−∞

V1(s)W (s)

X+(s)(s+ i)n1s
ds] (3.26)

as well as
Fg(0) = 0, i.e., G(0) = 0, (3.27)

where u0, v0 are the constant terms of Pϑ(z), Hρ(z), respectively.
Second, we consider the property of solution at s = ∞. Note that, it follows

from [10,26,28] that, near s =∞,

X(s) =
χ(s)

|s|α∞
(3.28)

and χ(s) ∈ H(N∞), i.e., χ(s) satisfies the Hölder condition in the neighbourhood
N∞ of ∞.

If s = ∞ is an ordinary node, i.e., 0 ≤ α∞ < 1, γ∞ 6= 0. Due to (3.27)
and W (s) ∈ Ĥ, we have η(s) ∈ Ĥ, so, when 1

2 < α∞ < β < 1, we have
lims→∞X(s)η(s)sα∞ = 0. This implies

X(s)η(s) = o(
1

|s|α∞
) (s→∞). (3.29)
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When 1
2 < β ≤ α∞ < 1, by [8, 19] we know that X(s)η(s)s−ε+α∞ is bounded at

s =∞, thus we have

X(s)η(s) = O(
1

|s|−ε+α∞
) (s→∞), (3.30)

where ε > 0 is arbitrarily small such that −ε+ α∞ > 1
2 . Again set

B(s) =
X+(s)(s+ i)n1−κ

V1(s)
[V1(s)V2(s)Pϑ(s)−Hρ(s)]. (3.31)

We now discuss the asymptotic property of B(s) at s =∞, and when ϑ ≥ 0, we
know that κ ≥ n1 + n2, and κ > ρ = n1 + n2 − 1, so we obtain that the following
formula

(s+ i)n1−κ

V1(s)
[V1(s)V2(s)Pϑ(s)−Hρ(s)]

is bounded at s = ∞. From (3.12), (3.23), (3.28), and again by [11, 29], we have
|X+(s)| ≤ A

|s|α∞ , where A ∈ R+. Therefore, we get |B(s)X+(s)| ≤ A, that is,

B(s) = O(
1

|s|α∞
) (s→∞). (3.32)

Similar to the previous discussion, we have the following results:
when ϑ < 0, since Ψ(z) is bounded at z =∞, one must have

Aj = 0, ∀j ∈ {0, 1, . . . ,−ϑ− 1}, (3.33)

moreover, when κ > 0, we get

B(s) = o(
1

|s|α∞
) (s→∞); (3.34)

when κ < 0, we require that (3.26) holds, and to eliminate the singularity of Ψ(z)
at ck, dj , we also have∫ +∞

−∞

V1(s)W (s)ds

X+(s)(s+ i)n1(s− ck)r
= 0, r = 1, 2, . . . , ηk, k = 1, 2, . . . q,∫ +∞

−∞

V1(s)W (s)ds

X+(s)(s+ i)n1(s− ej)p
= 0, p = 1, 2, . . . , ξj , j = 1, 2, . . . , n;

(3.35)

when κ = 0, we require that (3.35) and the following (3.36) are fulfilled

η(ck) =
u0

ck + i
, ∀ k = 1, 2, . . . q;

η(ej) =
v0

dj + i
, ∀ j = 1, 2, . . . , n.

(3.36)

Thus, when α∞ > 1
2 , we have

Ψ(s) = o(
1

|s|v
) (s→∞), (3.37)
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where v > min{β,−ε+ α∞}; when α∞ ≤ 1
2 , discussions may be made fully analo-

gous to those in [2, 9, 19,33].
If s = ∞ is a special node, then α∞ = 0, γ∞ 6= 0, one can translate it into the

case that α∞ < 1
2 . Similar arguments can be used [14, 31, 33, 34]. Note that when

κ < 0, in order to eliminate a singularity of Ψ(z) at z = −i, one must have∫ +∞

−∞
(
E2(s)

E1(s)
− 1)

V1(s)

X+(s)

G(s)

(s+ i)n1+r
ds = 0, r = 1, 2, . . . ,−κ. (3.38)

In conclusion, we can formulate the main results about solutions of Eq. (3.1) in
the following form.

Theorem 3.1. Under suppositions a1±b1 6= 0, in the case of non-normal type, the
necessary condition of solvability to Eq. (3.1) is (3.27) in class {0}. Assume that
this is fulfilled.

(1) If s = 0 is an ordinary node, then (3.25) holds; if s = 0 is a special node,
then (3.26) and (3.27) hold.

(2) Let s =∞ be an ordinary node, if α∞ > 1
2 , one require that (3.29), (3.30),

and (3.37) hold, then Eq. (3.1) has a solution; if α∞ ≤ 1
2 , when ϑ > 0, we rewrite

Pϑ−1(s) instead of Pϑ(s) in (3.22), then Eq. (3.1) has ϑ − 1 linearly independent
solutions; when ϑ ≤ 0, (3.33) holds. Moreover, when κ > 0, (3.34) holds; when
κ < 0, (3.26) and (3.35) hold; when κ = 0, (3.36) holds, then Eq. (3.1) has the
unique solution.

Let s = ∞ be a special node, if κ > 0, then A−ϑ−1 = 0; if κ < 0, then (3.35)
and (3.38) hold; if κ = 0, the discuss is similar to the case that α∞ > 1

2 , then Eq.
(3.1) has a unique solution.

(3) If ϑ > 0, Eq. (3.1) has ϑ linearly independent solutions; if ϑ ≤ 0, Eq. (3.1)
has a unique solution.

Thus (3.1) has the general solution

ω(t) = F−1Ω(s), (3.39)

where Ω(s) is given by (3.5).

Finally, we give the following two remarks.

Remark 3.1. In Eq.(3.1), if k1, k2, g ∈< 0 >, then ω ∈< 0 >. Similarly, if
k1, k2, g ∈< 0 >σ, then ω ∈< 0 >σ, where 0 < σ < 1.

Remark 3.2. Indeed, we can also investigate the solvability of Eq. (3.1) in Clifford
analysis, and the stability of solution for Eq. (3.1) (see [3,12,13,15,17,20–22,24,32]).
Further discussion is omitted here.

Acknowledgment

The authors are very grateful to the anonymous referees for their valuable sugges-
tions and comments, which helped to improve the quality of the paper.

References

[1] H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc
and half ring, Functions et Approximation, 2009, 40(2), 251–282.



Dual singular integral equations 2765

[2] I. Belmoulouda and A. Memoub, On the solvability of a class of nonlinear sin-
gular parabolic equation with integral boundary condition, Appl. Math. Comput.,
2020, 373, 124999.

[3] Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent.
Math., 2013, 193, 149–158.

[4] L. Chuan, N. V. Mau and N. Tuan, On a class of singular integral equations
with the linear fractional Carleman shift and the degenerate kernel, Complex
Var. Elliptic Equ., 2008, 53(2), 117–137.

[5] R. V. Duduchava, Integral equations of convolution type with discontinuous co-
efficients, Math. Nachr., 1977, 79, 75–78.

[6] M. C. De-Bonis and C. Laurita, Numerical solution of systems of Cauchy sin-
gular integral equations with constant coefficients, Appl. Math. Comput., 2012,
219, 1391–1410.

[7] H. Du and J. Shen, Reproducing kernel method of solving singular integral equa-
tion with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308–314.

[8] C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts
for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420, 1–19.

[9] K. Kant and G. Nelakanti, Approximation methods for second kind weakly sin-
gular Volterra integral equations, J. Comput. Appl. Math., 2020, 368, 112531.

[10] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular
Integral Equations with Shift, London: Kluwer Academic Publishers, 2004.

[11] J. Lu, Boundary Value Problems for Analytic Functions, Singapore: World
Scientific, 2004.

[12] P. Li, One class of generalized boundary value problem for analytic functions,
Bound. Value Probl., 2015, 2015, 40.

[13] P. Li, Generalized boundary value problems for analytic functions with convo-
lutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631–2645.

[14] P. Li and G. Ren, Some classes of equations of discrete type with harmonic
singular operator and convolution, Appl. Math. Comput., 2016, 284, 185–194.

[15] P. Li, Some classes of singular integral equations of convolution type in the
class of exponentially increasing functions, J. Inequal. Appl., 2017, 2017, 307.

[16] P. Li, Generalized convolution-type singular integral equations, Appl. Math.
Comput., 2017, 311, 314–323.

[17] P. Li, Two classes of linear equations of discrete convolution type with harmonic
singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67–75.

[18] P. Li and G. Ren, Solvability of singular integro-differential equations via
Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455–5471.

[19] P. Li, Singular integral equations of convolution type with Cauchy kernel in the
class of exponentially increasing functions, Appl. Math. Comput., 2019, 344–
345, 116–127.

[20] P. Li, Singular integral equations of convolution type with Hilbert kernel and a
discrete jump problem, Adv. Difference Equ., 2017, 2017, 360.

[21] P. Li, Solvability of some classes of singular integral equations of convolution
type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 2019, 22.



2766 P. Li

[22] P. Li, Singular integral equations of convolution type with cosecan-
t kernels and periodic coefficients, Math. Probl. Eng., 2017, http-
s://doi.org/10.1155/2017/6148393.

[23] P. Li, Singular integral equations of convolution type with reflection and trans-
lation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023–1038.

[24] P. Li, Linear BVPs and SIEs for generalized regular functions in Clifford anal-
ysis, J. Funct. Spaces, 2018, https://doi.org/10.1155/2018/6967149.

[25] P. Li, Non-normal type singular integral-differential equations by Riemann-
Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643.

[26] P. Li, Solvability theory of convolution singular integral equations via Riemann-
Hilbert approach, J. Comput. Appl. Math., 2020, 370(2), 112601.

[27] P. Li, On solvability of singular integral-differential equations with convolution,
J. Appl. Anal. Comput., 2019, 9(3), 1071–1082.

[28] P. Li, The solvability and explicit solutions of singular integral-differential e-
quations of non-normal type via Riemann-Hilbert problem, J. Comput. Appl.
Math., 2020, 374(2), 112759.

[29] N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

[30] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy
kernel, Integral Equations Operator Theory, 2014, 78, 233–248.

[31] E. Najafi, Nyström-quasilinearization method and smoothing transformation
for the numerical solution of nonlinear weakly singular Fredholm integral equa-
tions, J. Comput. Appl. Math., 2020, 368, 112538.

[32] G. Ren, U. Kaehler, J. Shi and C. Liu, Hardy-Littlewood inequalities for frac-
tional derivatives of invariant harmonic functions, Complex Anal. Oper. Theo-
ry., 2012, 6(2), 373–396.

[33] N. Tuan and N. T. Thu-Huyen, The solvability and explicit solutions of two
integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369,
712–718.

[34] Q. Wen and Q. Du, An approximate numerical method for solving Cauchy
singular integral equations composed of multiple implicit parameter functions
with unknown integral limits in contact mechanics, J. Math. Anal. Appl., 2020,
482, 123530.


	Introduction
	Some classes of functions and Fourier transforms
	Singular integral equations of dual type

