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Abstract In this paper, the nonlinear conformable time-fractional (3 + 1)-
dimensional modified KdV-Zakharov-Kuznetsov equation is being explored
using three well-established integration schemes named as: the expζ func-
tion method, the hyperbolic function and modified Kudryashov schemes. In
returns, many new exact solitary wave solutions, including rational, dark, sin-
gular and combined dark-singular solitons, are obtained and have been com-
pared with those given in the literature. Moreover, the obtained solutions are
demonstrated by 2D and 3D graphs for suitable values of the parameters to
observe the dynamical behavior of the secured solutions.
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1. Introduction

Fractional derivative is becoming a hot spot of international research these days; it
can describe the nonlinear phenomena more precisely. Through fractional deriva-
tive, we can adapt the nonlinear partial differential equation into an ordinary differ-
ential equation and secure the exact solutions. In recent years, many developments
in fractional order derivatives, Like Caputo, Hilfer, Riemann-Liouville, form and so
on, have been made in the literature but the well known product, quotient and the
chain rules were the setbacks of one definition or another [11, 12, 21, 39]. Therefore
the most fascinating definition of the fractional derivative with some of its properties
are given in [19,23].

The theory of solitons has become a dynamical subject that study the nonlinear
physical models in vast area of applied fields. The most studied solitons are optical
solitons [18, 26, 32, 35]. The adynamic of shallow water waves in various places like
sea beaches are governed by the Korteweg-deVries (KdV) and Boussinesq Equation-
s [24, 34, 48]. The Korteweg-deVries (KdV), Boussinesq, Kadomtsev-Petviashvili,
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and Whitham-Broer-Kaup (WBK) equations are the well-known completely inte-
grable models that describe the propagation of shallow water [1, 30, 33, 37, 42, 45].
The KdV equation has an impact in modeling blood pressure pulses [7, 40, 46].
Wazwaz [44] introduced the nonlinear modified KdV (3 + 1)-dimensional equations
and investigate their exact soliton and kink solutions. The Zakharov-Kuznetsov
(ZK) equation is one of the well-studied canonical two dimensional extension of
the KdV equation [22, 36]. Our main objective in this article is to construct exact
solitary wave solutions of conformable time-fractional (3 + 1)-dimensional modified
KdV-Zakharov-Kuznetsov (mKdV-ZK)equation [13]:

Dζ
t v + dv2vx + evxxx + fvxyy + gvxzz = 0, t > 0, 0 < ζ ≤ 1, (1.1)

where d, e, f , g are non-zero constants. When d = e 6= 0, f = g = 0, Eq. (1.1)
becomes fractional order mKdV equation and when α = 1, Eq. (1.1) is known as the
modified KdV-ZK equation [17,29]. The existence of the solutions for the modified
KdV-ZK equation has been considered in several papers [9, 10, 20]. By means of a
traveling wave transformation and the conformable derivative, the aforementioned
model is investigated via three integration schemes.

There are various mathematical approaches to solve important physical models
with nonlinear characteristics or fractional derivatives. See for example, [3,8,16,25,
28,38,51]. In particular [5,6,15,27,31,43], the unified approach, the auxiliary equa-

tion, the improved tan(φ(η)2 )-expansion, and the extended tanh-function methods
have been explored for discrete and fractional order PDEs as well. In particular,
the exp a function method [2,49] and the hyperbolic function approach [4,47] both
have been utilized to procure the exact solutions of nonlinear partial differential
equations.
The conformable derivative The conformable fractional derivative definition is
given as [19,23]:

Dζ(u(t)) = lim
h→0

u(t+ ht1−ζ)− u(t)

h
,

where ζ ∈ (0; 1] and u : [0; 1)→ R in the half space t > 0. This fractional derivative
supports plenty of properties given below under the assumptions that the order is
ζ ∈ (0; 1] and that u = u(t) and v = v(t) are sufficiently ζ-differentiable for all
t > 0. Then,

Dζ(a1u+ a2v) = a1D
ζ(u) + a2D

ζ(v),

Dζ(tk) = ktk−ζ , ∀ kεR,
Dζ(λ) = 0, ∀ constant λ,

Dζ(uv) = uDζ(v) + vDζ(u),

Dζ(
u

v
) =

vDζ(u) + uDζ(v)

v2
,

Dζ(u)(t) = t1−ζ
du

dt
,

for ∀a1, a2 ∈ R. The conformable derivative gives support to Laplace transforma-
tions, exponential function properties, chain rule, Taylor Series expansion etc. [19].
Probably the most useful property indicates the relation between the conformable
derivative and common derivative.
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Theorem 1.1. Let u be an ζ-conformable differentiable function, and v is also
differentiable function defined in the range of u. Then,

Dζ(u ◦ v)(t) = t1−ζv
′
(t)u

′
(v(t)).

The rest of the paper is arranged as follows: In Sec. 2, we sketch the main frame
of proposed methods that are known as the expζ , the hyperbolic function method
and the modified Kudryashov method. In Sec. 3, as an application, many new
exact solitary wave solutions, including dark, singular and combined dark-singular
solitons of Eq. (1.1), are obtained and have been compared with those given in the
literature. Finally, we give some conclusions.

2. A formal sketch of proposed schemes

We provide, in this section, an outline of schemes and the ordinary formulation of
a nonlinear fractional order partial differential equation into an ordinary differen-
tial equation. For this purpose, consider a nonlinear conformable time-fractional
differential equation as follows:

F (u,
∂ζu

∂tζ
,
∂u

∂x
,
∂2ζu

∂t2ζ
,
∂2u

∂x2
, ...) = 0. (2.1)

The wave transformation

u(x, t) = V (ε), ε =

N∑
i=1

kixi − λ
tζ

ζ
, 0 < ζ ≤ 1 (2.2)

reduces Eq. (2.1) to a nonlinear ODE of integer order as given below:

G(V, V
′
, V

′′
, ...) = 0, (2.3)

where the prime demonstrates the conformable differentiation with respect to ε. To
make our calculations easy, we can integrate Eq. (2.3) one or more time. In the
next subsections, we find the exact solutions of aforementioned equation by using
the following three analytical approaches.

2.1. Steps for expζ function scheme

Let us consider a non-trivial solution for the Eq. (2.3) in the following form [14,49,
50]:

U(ε) =
A0 +A1ζ

ε + ...+ANζ
Nε

B0 +B1ζε + ...+BNζNε
, ζ 6= 0, (2.4)

where Ai and Bi, for (0 ≤ i ≤ N), are found later and N is a free positive constant
to be determined with the help of homogeneous balance principle. Replacing the
Eq. (2.4) and its necessary derivatives in the nonlinear Eq. (2.3), yields

℘(ζε) = q0 + q1a
ε + ...+ qτa

τε = 0. (2.5)

Setting qi(0 ≤ i ≤ τ) in Eq. (2.5) to be zero, results give a set of nonlinear equations
as follows:

qi = 0, i = 0, ..., τ, (2.6)

by solving the generated set (2.6), we acquire non-trivial solutions of the nonlinear
PDE (1.1).
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2.2. Steps for hyperbolic function scheme

Let us consider a non-trivial solution to the Eq. (2.3) in the following form [4,41,47]

U(ε) = A0 +

N∑
i=1

sinhi−1(ρ)[Bi sinh(ρ) +Ai cosh(ρ)], (2.7)

where ρ is some specific functions. The positive integer N will be calculated using
the homogeneous balance principle, using Eq. (2.7) in Eq. (2.3), and comparing
the coefficients, we will find a set of nonlinear equations. The solution of this
set finally provides the exact solutions of Eq. (1.1). It is important to mention
that the implementation of separation of variables techniques on dρ

dε = sinh(ρ), we
find sinh(ρ) = ±csch(ε), cosh(ρ) = − coth(ε) and sinh(ρ) = ±ısech(ε), cosh(ρ) =
− tanh(ε). Accordingly, the solution (2.4) can be rewritten as

U(ε) = A0 +

N∑
i=1

(±csch)i−1(ε))[±Bicsch(ε)−Ai coth(ε)],

and

U(ε) = A0 +

N∑
i=1

(±ısech)i−1(ε)[±ıBisech(ε)−Ai tanh(ε)].

Equally, it is evident that from dρ
dε = cosh(ρ), we find sinh(ρ) = − cot(ε), cosh(ρ) =

± csc(ε) and sinh(ρ) = tan(ε), cosh(ρ) = ± sec(ε). Accordingly, the solution (2.4)
can be rewritten as

U(ε) = A0 +

N∑
i=1

(− cot)i−1(ε)[−Bi cot(ε)±Ai csc(ε)],

and

U(ε) = A0 +

N∑
i=1

(tani−1)(ε)[Bi tan(ε)±Ai sec(ε)].

2.3. Steps for modified kudryashov scheme

This section provides a concise report of principles of the Modified Kudryashov
Method in inducing the exact solutions of nonlinear conformable differential equa-
tions [3, 16,41].

Let the solution of Eq. (2.3) can be expressed as a finite series of the form

V (ε) = a0 +

N∑
i=0

aiQ
i(ε), (2.8)

where ai, i = 1, ..., N(aN 6= 0) are unknowns to be calculated, and Q(ε) = 1
1+d0aε

satisfies the following first-order nonlinear equation

Q
′
(ε) = Q(ε)(Q(ε)− 1) ln(a), a 6= 0. (2.9)

It should be pointed out that the positive integer N in Eq. (2.8) is computed using
homogeneous balance principle. Inserting Eq. (2.8) and its necessary derivatives in
Eq. (2.3) gives

P (Q(ε)) = 0, (2.10)
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in which P (Q(ε)) is a polynomial in Q(ε). By setting the coefficient of each power of
Q(ε) in Eq. (2.10) to zero, we will reach a nonlinear algebraic system whose solution
generates new solutions for the original Eq. (1.1).

3. Conformable time-fractional (3 + 1)-dimensional
mKdV-ZK equation

By introducing a transformation ε = kx + py + qz − l t
λ

λ , Eq. (1.1) can be turned
into an ordinary differential equation:

− lV
′
+ kdV 2V

′
+ k3eV

′′′
+ kfp2V

′′′
+ kgq2V

′′′
= 0. (3.1)

Integrate Eq. (3.1) once and taking zero constant of integration.

1

3
dkV 3 + kV ′′

(
ek2 + fp2 + gq2

)
− lV = 0. (3.2)

The expζ function method: After balancing the higher terms in Eq. (3.2) to
obtain N = 1, then the non-trivial solution (2.4) becomes:

V (ε) =
A0 +A1ζ

ε

B0 +B1ζε
. (3.3)

Setting the Eq. (3.3) in Eq. (3.2) and after setting the coefficients of ζε equal to
zero, the obtained nonlinear algebraic system gives the following sets of solutions:

A0 = ±
i
√

3
2B0 log(ζ)

√
l1

√
d

, A1 = ∓
i
√

3
2B1 log(ζ)

√
l1

√
d

,

l = −1

2
k log2(ζ)l1, l1 = ek2 + fp2 + gq2.

Therefore, the explicit exact solutions can be written as

V1(x, y, z, t) =
i
√

3
2 log(ζ)

(
B0 −B1ζ

kx+py+qz+(− 1
2k log2(ζ)l1)

tλ

λ

)√
l1

√
d
(
B0 +B1ζkx+py+qz+( 1

2k log2(ζ)l1)
tλ

λ

) , (3.4)

V2(x, y, z, t) = −
i
√

3
2 log(ζ)

(
B0 −B1ζ

kx+py+qz+(− 1
2k log2(ζ)l1)

tλ

λ

)√
l1

√
d
(
B0 +B1ζkx+py+qz+( 1

2k log2(ζ)l1)
tλ

λ

) . (3.5)

The obtained solutions of Eq. (3.2) given in equations (3.4) and (3.5) are graphed
here corresponding to the following, for the sake of simplicity, numerical values
e = −1, f = − 1

2 = g, k = p = q = 1, and d = 3.

The hyperbolic function method: We again consider the Eq. (3.2) to solve
under the implementation of hyperbolic function method.
Case-1: dω

dε = sinh(ω) and since N = 1, the non-trivial solution (2.7) becomes

u(ε) = B1 sinh(ω) +A1 cosh(ω) +A0. (3.6)
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Figure 1. 2D and 3D plots for the solutions V1 appear in Eq. (3.4) taking y = 1 and z = 0.
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Figure 2. 2D and 3D plots for the solutions V1 appear in Eq. (3.4) taking y = 1 and z = 0.
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Figure 3. 2D and 3D plots for the solutions V2 appear in Eq. (3.5) taking y = 1 and z = 0.
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Figure 4. 2D and 3D plots for the solutions V2 appear in Eq. (3.5) taking y = 1 and z = 0.

By setting the above non-trivial solution in reduced equation Eq. (3.2) and equating
the coefficients of independent functions to zero in the resultant equation, we reach
a nonlinear algebraic set of equations which its solution yields

A0 = 0, A1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

, B1 = ±

√
3
2

√
−ek2 − fp2 − gq2
√
d

,

l =
1

2

(
−ek3 − fkp2 − gkq2

)
,

u1,2(x, y, z, t) = ∓
√
6
√
−ek2−fp2−gq2

2
√
d

tanh

(
kx+py+qz− 1

2 (−ek3−fkp2−gkq2) t
λ

λ

2

)
.

(3.7)

Note that the solutions appear in Eq. (3.7) have been reported in reference [20] and
all others are new up to our knowledge.
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Figure 5. 2D and 3D plots for the solutions u1,2 appear in Eq. (3.7) taking y = 1 and z = 0.

A0 = 0, A1 = ∓
√

6
√
−ek2 − fp2 − gq2√

d
,B1 = 0, l = −2

(
ek3 + fkp2 + gkq2

)
,
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Figure 6. 2D and 3D plots for the solutions u1,2 appear in Eq. (3.7) corresponding to y = 1, z = 0.

u3,4(x, y, z, t) = ∓
√
6
√
−ek2−fp2−gq2√

d
coth(kx+ py + qz + 2

(
ek3 + fkp2 + gkq2

)
tλ

λ ).

(3.8)
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Figure 7. 2D and 3D plots for the solutions u3,4 appear in Eq. (3.8) taking y = 1 and z = 0.

A0 = 0, A1 = 0, B1 = ∓
√

6
√
−ek2 − fp2 − gq2√

d
, l = k

(
ek2 + fp2 + gq2

)
,

u5,6(x, y, z, t) = ∓
(√

6
√
−ek2−fp2−gq2

)
√
d

csch(kx+ py + qz − k
(
ek2 + fp2 + gq2

)
tλ

λ ).

(3.9)

Thus, the following new explicit exact solutions, for the conformable time-fractional
mKdV-ZK equation, can be written as

A0 = 0, A1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

,B1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

,

l =
1

2

(
−ek3 − fkp2 − gkq2

)
,
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Figure 8. 2D and 3D plots for the solutions u3,4 appear in Eq. 3.8 taking y = 1 and z = 0.

u7,8(ε)=∓

√
3
2

√
−ek2−fp2−gq2
√
d

(coth(kx+py+qz−l t
λ

λ
)+csch(kx+py+qz−l t

λ

λ
)).

(3.10)

Case-2: dω
dε = cosh(ω) and for N = 1, we obtain a set of nonlinear equations as

which its solution yields

A0 = 0, A1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

,B1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

,

l =
1

2
k
(
ek2 + fp2 + gq2

)
,

u9,10(ε) = ±
√

6
√
−ek2 − fp2 − gq2

2
√
d

tan

(
kx+ py + qz − l t

λ

λ

2

)
. (3.11)

The following graphical demonstration is of the solution (3.11). For the sake of
simplicity, we assume that e = −1, f = − 1

2 = g, k = p = q = 1, and d = 3.
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Figure 9. 2D and 3D plots for the solutions V9,10 appear in Eq. (3.11) corresponding to y = 1, z = 0.
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Figure 10. 2D and 3D plots for the solutions V9,10 appear in Eq. (3.11) corresponding to y = 1, z = 0.

A0 = 0, A1 = 0, B1 = ∓
√

6
√
−ek2 − fp2 − gq2√

d
, l = 2

(
ek3 + fkp2 + gkq2

)
,

u11,12(x, y, z, t) = ∓
√
6
√
−ek2−fp2−gq2√

d
cot(kx+ py + qz − 2

(
ek3 + fkp2 + gkq2

)
tλ

λ ).

(3.12)

Thus, the following new explicit exact solutions of the conformable time-fractional
(3 + 1)-dimensional mKdV-ZK equation can be written as

A0 = 0, A1 = ∓
√

6
√
−ek2 − fp2 − gq2√

d
, B1 = 0, l = −ek3 − fkp2 − gkq2,

u13,14(x, y, z, t)=±
√

6
√
−ek2−fp2−gq2√

d
csc(kx+py+qz+(ek3+fkp2+gkq2)

tλ

λ
).

(3.13)

A0 = 0, A1 = ∓

√
3
2

√
−ek2 − fp2 − gq2
√
d

,B1 = ±

√
3
2

√
−ek2 − fp2 − gq2
√
d

,

l =
1

2
k
(
ek2 + fp2 + gq2

)
,

u15,16(ε)=±

√
3
2

√
−ek2−fp2−gq2
√
d

(cot(kx+py+qz−l t
λ

λ
)+csc(kx+py+qz−l t

λ

λ
)).

(3.14)

The modified kudryashov method: As we know, after balancing the highest
derivative term and the highest nonlinear terms appear in Eq. (3.2), we obtain
N = 1.

Thus, the non trivial solution Eq. (3.2) becomes:

V (ε) = a1Q(ε) + a0. (3.15)

Inserting the above equation in Eq. (3.2) along with Eq. (2.9) and setting the coef-
ficients of Q(ε) equal to zero, which gives a system of nonlinear algebraic equations.
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On solving the obtained system, we find the following two set of solutions.

a0 = ±
i
√

3
2 log(a)

√
ek2 + fp2 + gq2

√
d

, a1 = ∓ i
√

6 log(a)
√
ek2 + fp2 + gq2√
d

,

l = −1

2
k log2(a)

(
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Therefore, the solutions can be written as

V1,2(ε) = ∓
i
√

3
2 log(a)(2Q(ε)− 1)

√
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√
d

. (3.16)

By replacing the value of Q(ε) = 1
d0aε+1 in above solutions, which provide the

solution in the form:

V1,2(x, t) = ∓
i
√

3
2 log(a)

(
2

d0aε+1 − 1
)√

ek2 + fp2 + gq2

√
d

. (3.17)

We now present the graphical demonstration of the above solutions. Computer
software Matlab 2016 has been used in this work to find solutions and presentation
of the graphs of the above-mentioned equations. For the sake of simplicity, we
assume that e = −1, f = − 1

2 = g, k = p = q = d0 = 1, ζ = 5, and d = 3.
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Figure 11. 2D and 3D plots for the solutions V1,2 appear in Eq.(3.17) corresponding to y = 1 and
z = 0.

4. Conclusion

In this paper, we have acquired many new wave solutions for the nonlinear con-
formable fractional (3+1)- dimensional modified Kdv-ZK equation. The three pro-
lific integration schemes, namely the expζ-function, the hyperbolic function method
and the modified Kudryashov method along with the appropriate transformation
have been applied to accomplish the objective. Among these solutions, we are
with the rational, dark, singular and combined dark-singular solutions and have
been compared with those given in the literature. Furthermore, the numerical sim-
ulations of some secured solutions have been demonstrated via soft computation
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Figure 12. 2D and 3D plots for the solutions V1,2 appear in Eq. (3.17) corresponding to y = 1 and
z = 0.

to analyze the dynamical behavior of the waves. Thus we conclude that one can
implement the aforesaid approaches to other nonlinear fractional order differential
equations.
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