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Abstract In this paper, we present a two-level additive Schwarz method for
solving a system arising from the discretization of the nonselfadjoint elliptic
equation. By employing the Cauchy-Schwarz-type inequality and stable de-
composition under the energy norm, we obtain the optimal convergence theory
for the proposed method. It shows that the convergence rate is bounded and
independent of the fine mesh size and the number of subdomains. Some nu-
merical results are reported to verify our theoretical result. Moreover, we
demonstrate the benefit compared to the classical two-level additive Schwarz
algorithm for solving convection-diffusion equations.

Keywords Additive Schwarz method, AHSS iteration, nonselfadjoint elliptic
problems, convergence rate.

MSC(2010) 65N55, 65N30.

1. Introduction

Domain decomposition methods are some of the most popular methods for the so-
lution of large linear systems arising from partial differential equations (PDEs).
For linear problems, domain decomposition methods can often be viewed as pre-
conditioners for Krylov subspace accelerator techniques. The classical two-level
additive Schwarz (AS) methods are originally presented for solving selfadjoint posi-
tive definite (SPD) problems [12,14,15]. And these methods have been successfully
applied to elliptic problems with discontinuous coefficients [13, 18, 23, 30]. Recent-
ly, AS methods are also employed to solve the system of equations arising from
Discontinuous Galerkin and finite volume element discretizations of selfadjoint el-
liptic PDEs [1,22,30]. For nonselfadjoint and indefinite linear elliptic problems, two
variants of the AS methods are presented in [10]. The analysis shows that the con-
vergence rate is bounded independent of the fine mesh size and the number of subdo-
mains if the coarse mesh size is sufficiently small. Two-level AS methods are also de-
veloped for the mortar element and P1 nonconforming finite element approximation

†The corresponding author. Email address: lss6@sina.com(S. Li)
1School of Mathematics and Information Science, Henan Polytechnic Univer-
sity, Jiaozuo 454003, China

2School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
∗The authors were supported by National Natural Science Foundation of Chi-
na (Nos. 11726636, 11701133), Natural Science Foundation of Henan(No.
212300410347) and Fundamental Research Funds for the Universities of
Henan Province (No. NSFRF200315).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20190256


Convergence analysis of new additive . . . 193

of nonselfadjoint and indefinite elliptic problems [11,37]. Additionally, AS methods
have been also developed and applied to other problems in [19, 26, 29, 31, 32, 36, 38]
and the references therein.

In this paper, we introduce a two-level AS algorithm based on the asymmetric
Hermitian/skew-Hermitian splitting (AHSS) iteration proposed in [24]. The AHSS
iteration can be viewed as a generalized version of the HSS iteration which is first
presented by Bai, Golub and Ng [7]. It has been shown that these methods converge
unconditionally to the unique solution of the linear system. Numerical results show
that these methods perform very well for convection-diffusion equations. So these
methods have been deeply studied and widely developed [3–6, 20, 24, 25, 27, 28, 35].
However, it is very costly to solve the system of equations with shifted skew-
Hermitian matrix. Although some techniques, such as the inexact approximations,
are used, the difficulty is not easy to overcome since the system of the equations is
very large usually. Combining the ideas of the AS method with the AHSS iteration,
we present a new two-level AS algorithm. Different from the Schwarz algorithm
presented in [10], the Schwarz operator in our algorithm includes both the selfad-
joint and skew-selfadjoint parts of the equation. Moreover, since the systems in
the subdomains are small and can be easily solved by ILU, the proposed Schwarz
algorithm performs very well for convection-diffusion equations. We establish an
optimal convergence theory and prove that the convergence rate is bounded and
independent of the fine mesh size and the number of subdomains. Further, it shows
that the parameters in the Schwarz operators should be chosen as the minimum
and the maximum eigenvalues of the selfadjoint part of the coefficient matrix. To
confirm the convergence theory and demonstrate the applicability of this method,
we show some numerical experiments and compare our approach with the classical
AS algorithm.

The rest of this paper is organized as follows. In Section 2, we describe the
model problem and introduce the two-level AS algorithm. In Section 3, we present
the convergence analysis of the proposed algorithm based on the abstract Schwarz
theory in [10]. Some numerical experiments are reported to illustrate the perfor-
mance of this algorithm in Section 4. Finally, some concluding remarks are given
in Section 5.

2. Preliminaries and notations

We consider the following second-order elliptic boundary value problem{
−∇ · (a(x)∇u) + 2b(x) · ∇u+ c(x)u = f(x), in Ω,

u = 0, on ∂Ω,
(2.1)

where Ω is an open, bounded polygonal domain in Rd and a(x) ∈ C1(Ω, Rd×d),
b(x) ∈ C1(Ω)d, c(x) ∈ C1(Ω) and the right hand side f(x) ∈ L2(Ω). Assume that
a(x) = (aij(x))d×d is a symmetric and uniformly positive definite matrix in Ω, i.e.,
there exists a positive constant m such that ξTa(x)ξ ≥ m|ξ|2 for all ξ ∈ Rd and
x ∈ Ω. We assume that c(x) −∇ · b(x) ≥ 0 for any x ∈ Ω, and problem (2.1) has
a unique solution in H1

0 (Ω). For brevity, we omit the variable x in the following
discussion.

The weak form of problem (2.1) is: find u ∈ H1
0 (Ω) such that

A(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), (2.2)
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where the bilinear form A(u, v) is defined as

A(u, v) =

∫
Ω

(a∇u · ∇v + 2b · ∇uv + cuv)dx

=

∫
Ω

(a∇u · ∇v + 2b · ∇uv +∇ · buv + c̃uv)dx ∀ u, v ∈ H1
0 (Ω),

where c̃ = c − ∇ · b. From the assumption for problem (2.1), we see that c̃ is a
nonnegative function, and there exists a constant C > 0, such that

A(u, v) ≤ C 9 u 91 9v 91 ∀ u, v ∈ H1
0 (Ω), (2.3)

Denote

Â(u, v) =

∫
Ω

a∇u · ∇vdx, H(u, v) =

∫
Ω

(a∇u · ∇v + c̃uv)dx,

S(u, v) =

∫
Ω

(2b · ∇uv +∇ · buv)dx =

∫
Ω

b · (∇uv −∇vu)dx,

where H(u, v) and S(u, v) correspond to selfadjoint and skew-selfadjoint parts of
A(u, v), respectively. It is clear that A(u, v) = H(u, v) + S(u, v), and there exists a
constant C > 0, such that

|S(u, v)| ≤ C 9 u 91 ‖v‖ and |S(u, v)| ≤ C‖u‖ 9 v 91 ∀ u, v ∈ H1
0 (Ω). (2.4)

Define the norm
9u91 =

√
H(u, u).

It is easy to see that

c‖u‖1 ≤ 9u91 ≤ C‖u‖1 ∀ u ∈ H1
0 (Ω), (2.5)

where c and C are positive constants and ‖ · ‖1 denotes the H1 norm in Sobolev
space. We assume the solution of (2.1) with a = I, b = 0, and c = 0 satisfy the
following regularity estimate:

‖u‖2 ≤ C‖f‖, (2.6)

where ‖·‖2 and ‖·‖ denote the H2 norm and L2 norm in Sobolev space, respectively.
The following estimates are straightforward from the assumptions for problem (2.1).

We next introduce the overlapping Schwarz preconditioner for (2.2). Let {Ωi}1≤i≤N
be a set of non-overlapping simplices such that Ω =

∑N
i=1 Ωi. Denote the diameter

of Ωi by Ĥi. Let H0 denote the mesh parameter which is the maximum diameter of
all subdomains, i.e., H0 = max{Ĥ1, . . . , ĤN}. Divide each Ωi into smaller simplices,
which denoted as τ ji (j = 1, . . .). Let hji be the diameter of τ ji and h = max{hji}.
By repeatedly adding some layers of fine mesh elements, we extend each subdomain
Ωi to the larger domain Ω′i, such that ∂Ω′i does not cut through any fine elements,
and denote the corresponding overlap by δi. Therefore, Ωi ⊂ Ω′i, it is enough to
assume that every point x ∈ Ω belongs to at most Nc overlapping subdomains. The

maximum of Ĥi/δi is defined by H0/δ = max
1≤i≤N

{
Ĥi/δi

}
. Finally, we introduce a

shape-regular coarse mesh on Ω. For simplicity, we assume that the coarse mesh
is nested in the fine mesh. Denote the coarse mesh size by Hc and assume that
Hc ≤ CĤi ≤ CH0, where C > 0 is a constant.
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Define the coarse and fine finite element spaces on Ω by VH and Vh, which
consist of continuous, piecewise linear functions. We introduce the subspaces V ih =
Vh∩H1

0 (Ω′i) (i = 1, 2, . . . , N). Then the finite element space Vh can be decomposed
as

Vh = VH + V 1
h + V 2

h + · · ·+ V Nh .

Define the operators A0 : VH → VH and A : Vh → Vh by

(A0uH , vH) = A(uH , vH) ∀ uH , vH ∈ VH ,
(Auh, vh) = A(uh, vh) ∀ uh, vh ∈ Vh.

The operators Ai, Hi and Si : V ih → V ih (i = 1, 2, . . . , N) are defined by

(Aiu
i
h, v

i
h) = A(uih, v

i
h), (Hiu

i
h, v

i
h) = H(uih, v

i
h),

(Siu
i
h, v

i
h) = S(uih, v

i
h) ∀ uih, vih ∈ V ih .

Obviously, Ai = Hi + Si, where Hi = 1
2 (Ai +ATi ), Si = 1

2 (Ai −ATi ). Let λmax and
λmin be the the maximum and minimum eigenvalues of Hi, respectively. It is well
known that λmax = O(h−2) and λmin is a constant.

Define projection operators P0, P̂0 and Q0 : Vh → VH by

A(P0uh, vH) = A(uh, vH), H(P̂0uh, vH) = H(uh, vH),

(Q0uh, vH) = (uh, vH) ∀ uh ∈ Vh, vH ∈ VH .

The operators Pi, P̂i and Qi : Vh → V ih (i = 1, 2, . . . , N) are defined by

A(Piuh, v
i
h) = A(uh, v

i
h), H(P̂iuh, v

i
h) = H(uh, v

i
h),

(Qiuh, v
i
h) = (uh, v

i
h) ∀ uh ∈ Vh, vih ∈ V ih .

From the definitions of Pi (i = 1, 2, . . . , N), we have

‖Piuh‖1 ≤ C‖uh‖1,Ω′
i

and 9 Piuh91 ≤ C 9 uh 91,Ω′
i
∀ uh ∈ Vh, (2.7)

where ‖ · ‖1,Ω′
i

and 9 · 91,Ω′
i

are only nonzero on the overlapping subdomain Ω′i.
Define the operator O : Vh → Vh

9O91 = sup
uh,vh∈Vh

|H(Ouh, vh)|
9uh 91 9vh91

. (2.8)

The finite element solution of (2.2) is to find u∗h ∈ Vh such that

A(u∗h, vh) = (f, vh) ∀ vh ∈ Vh. (2.9)

From the above analysis, (2.9) can be rewritten as

Au∗h = f, (2.10)

where A is nonselfadjoint and positive definite.
Define

Mi =
1

α+ β
(αI +Hi)(βI + Si), Ni =

1

α+ β
(βI −Hi)(αI − Si), (2.11)
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where α ≥ 0, β > 0, and I is the identity operator. We observe that Ai = Mi−Ni.
Based on the AHSS iteration [24], we define the operator Ti : Vh → V ih (i =
1, 2, . . . , N) by

M(Tiuh, v
i
h) = A(uh, v

i
h) ∀ uh ∈ Vh, vih ∈ V ih . (2.12)

By the definition of Pi, Qi and (2.12), we have

Ti = M−1
i QiA = M−1

i AiPi. (2.13)

Let T0 = P0, the two-level AS operator is defined by

T =

N∑
i=0

Ti = P0 +

N∑
i=1

M−1
i QiA = A−1

0 Q0A+

N∑
i=1

M−1
i QiA = B−1A, (2.14)

where B−1 = A−1
0 Q0 +

N∑
i=1

M−1
i Qi.

Now we present the two-level AS algorithm.

Algorithm 2.1 (Two-level AS algorithm). Find the solution of the problem (2.9)
or (2.10) by solving

Tuh = g (2.15)

with a Krylov subspace method, where g = A−1
0 Q0Au

∗
h +

N∑
i=1

M−1
i QiAu

∗
h.

To analyze the convergence performance of the AS algorithm, we introduce
several important properties.

Lemma 2.1. There exists a constant C > 0, which is independent of H0 and h,
such that for all uh ∈ Vh,

9T0uh91 ≤ C 9 uh91

and
‖T0uh − uh‖ ≤ CH0 9 uh 91 .

Proof. It follows from the definition of T0 and (2.3), we have

A(T0uh, T0uh) = A(uh, T0uh) ≤ C 9 uh 91 9T0uh 91 .

Since S(T0uh, T0uh) = 0, we have H(T0uh, T0uh) = A(T0uh, T0uh). Therefore,

9T0uh91 ≤ C 9 uh 91 .

Analogously to Lemma 11.3 in [33], by using a “duality” argument and (2.3), we
obtain

‖T0uh − uh‖ ≤ CH0 9 T0uh − uh91 ≤ CH0 9 uh 91 .

This completes the proof of the lemma.

Proposition 2.1 (Strengthened Cauchy-Schwarz inequalities). There exists a con-
stant 0 ≤ kij ≤ 1, for uih ∈ V ih , u

j
h ∈ V

j
h , 1 ≤ i, j ≤ N , such that

|H(uih, u
j
h)| ≤ kijH(uih, u

i
h)

1
2H(ujh, u

j
h)

1
2 . (2.16)

We will denote the spectral radius of K = {kij} by ρ(K).
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Proposition 2.2 (Stability of the decomposition). For any vh ∈ Vh, there exist

v0
h = vH ∈ VH and vih ∈ V ih such that vh =

N∑
i=0

vih and

N∑
i=0

H(vih, v
i
h) ≤ C2

0H(vh, vh), (2.17)

where C0 = C(1 +H0/δ)
1
2 and C is a constant independent of the mesh parameters

h, H0.

Remark 2.1. (i) In Proposition 2.1, we have

|H(uih, u
j
h)| =

∣∣∣Â(uih, u
j
h) + (c̃uih, u

j
h)
∣∣∣ ≤ ∣∣∣Â(uih, u

j
h)
∣∣∣+
∣∣∣(c̃uih, ujh)

∣∣∣ .
It follows from Assumption 2.3 in [33], Lemma 3.3 in [9] and Cauchy-Schwarz in-
equality that

|H(uih, u
j
h)| ≤

∣∣∣Â(uih, u
j
h)
∣∣∣+
∣∣∣(c̃uih, ujh)

∣∣∣
≤ kijÂ(uih, u

i
h)

1
2 Â(ujh, u

j
h)

1
2 + kij(c̃u

i
h, u

i
h)

1
2 (c̃ujh, u

j
h)

1
2

≤ kijH(uih, u
i
h)

1
2H(ujh, u

j
h)

1
2 .

(ii) Proposition 2.2 can be directly obtained from Lemma 4 in [8] and Theorem
4.1 in [16].

3. Convergence analysis of the two-level additive
Schwarz algorithm

In this section, we present the convergence analysis of Algorithm 2.1. Following
Eisenstat, Elman and Schultz [17], the convergence rate of AS preconditioned GM-
RES method can be computed by the two quantities

cT = inf
uh 6=0

H(Tuh, uh)

H(uh, uh)
and CT = sup

uh 6=0

9Tuh91

9uh91
.

Moreover, the residual at the kth iteration is bounded as

9rk91 ≤
(

1− c2T
C2
T

) k
2

9 r091,

where rk = b− Tukh.
To estimate the bounds of cT and CT and their dependency on h and the number

of subdomains, we first present the following two assumptions, and give the main
result of this paper based on these assumptions in section 3.1. Then we prove the
proposed assumptions in section 3.2.

Assumption 3.1. Suppose that α = O(λmin) and β = O(λmax) hold. There exists
a constant C > 0, independent of H0 and h, such that for uh ∈ Vh,

N∑
i=1

H(Tiuh, Tiuh) ≤ CNcH(uh, uh).
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Assumption 3.2. If H0 is sufficiently small, and suppose that α = O(λmin) and
β = O(λmax) hold. There exists a constant C > 0, independent of H0 and h, such
that

N∑
i=0

H(Tiuh, Tiuh) ≥ CC−2
0 H(uh, uh) ∀ uh ∈ Vh,

where C0 is introduced in Proposition 2.2.

3.1. The upper and lower bounds of the operator T

By employing above two assumptions, we provide estimates for the upper and lower
bounds of the operator T .

Theorem 3.1. If Assumptions 3.1 and 3.2 hold and H0 is sufficiently small, sup-
pose that α = O(λmin) and β = O(λmax), then

(1) there exists a constant CT such that

H(Tuh, Tuh) ≤ C2
TH(uh, uh) ∀ uh ∈ Vh,

where C2
T = C(1 +N2

c ) and C is a positive constant independent of H0 and h.
(2) there exists a constant cT such that

H(Tuh, uh) ≥ cTH(uh, uh),

where cT = CC−2
0 = C(1 + H0/δ)

−1 and C is a positive constant independent of
H0 and h.

Proof. (1) It follows from (2.14) and the mean value inequality, we have

H(Tuh, Tuh) = H

(
N∑
i=0

Tiuh,

N∑
i=0

Tiuh

)
= H

(
T0uh +

N∑
i=1

Tiuh, T0uh +

N∑
i=1

Tiuh

)

≤ 2H(T0uh, T0uh) + 2H

(
N∑
i=1

Tiuh,

N∑
i=1

Tiuh

)
. (3.1)

By Proposition 2.1, we obtain

H

(
N∑
i=1

Tiuh,

N∑
i=1

Tiuh

)
=

N∑
i=1

N∑
j=1

H(Tiuh, Tjuh)

≤
N∑
i=1

N∑
j=1

kijH(Tiuh, Tiuh)
1
2H(Tjuh, Tjuh)

1
2

≤ ρ(K)

N∑
i=1

H(Tiuh, Tiuh) ≤ Nc
N∑
i=1

H(Tiuh, Tiuh).

Combining this inequality with Assumption 3.1 implies

H

(
N∑
i=1

Tiuh,

N∑
i=1

Tiuh

)
≤ CN2

cH(uh, uh). (3.2)
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It follows from (3.1), (3.2) and Lemma 2.1 that

H(Tuh, Tuh) ≤ C(1 +N2
c )H(uh, uh) = C2

TH(uh, uh).

(2) From (2.14), we have

H(Tuh, uh) = H

(
N∑
i=0

Tiuh, uh

)

=

N∑
i=0

H(Tiuh, Tiuh) +

N∑
i=0

(H(Tiuh, uh)−H(Tiuh, Tiuh))

=

N∑
i=0

H(Tiuh, Tiuh) +

N∑
i=0

H(uh − Tiuh, Tiuh). (3.3)

For i = 0, by the definition of T0, we have

H(uh − T0uh, T0uh) = A(uh − T0uh, T0uh)− S(uh − T0uh, T0uh)

= −S(uh − T0uh, T0uh).

It follows from (2.4) and Lemma 2.1 that

|S(uh − T0uh, T0uh)| ≤ C‖uh − T0uh‖ 9 T0uh91 ≤ CH0H(uh, uh). (3.4)

For i > 0, since S(Tiuh, Tiuh) = 0, we have

H(uh − Tiuh, Tiuh) = A(uh − Tiuh, Tiuh)− S(uh − Tiuh, Tiuh)

= A(uh − Tiuh, Tiuh)− S(uh, Tiuh). (3.5)

It follows from (2.12) and (3.5) that

H(uh − Tiuh, Tiuh) = A(uh − Tiuh, Tiuh)− S(uh, Tiuh)

= A(uh, Tiuh)−A(Tiuh, Tiuh)− S(uh, Tiuh)

= M(Tiuh, Tiuh)−A(Tiuh, Tiuh)− S(uh, Tiuh)

= N(Tiuh, Tiuh)− S(uh, Tiuh). (3.6)

By (2.11), we have

N(Tiuh, Tiuh)

=
1

α+β
(αβ(Tiuh, Tiuh)−αH(Tiuh, Tiuh)−βS(Tiuh, Tiuh)+(H · S)(Tiuh, Tiuh))

=
1

α+ β
(αβ(Tiuh, Tiuh)− αH(Tiuh, Tiuh) + (H · S)(Tiuh, Tiuh))

≤ 1

α+ β
(αβ(Tiuh, Tiuh) + (H · S)(Tiuh, Tiuh)) . (3.7)

Using Friedrichs’ inequality, we obtain

(Tiuh, Tiuh) ≤ CĤ2
i Â(Tiuh, Tiuh) ≤ CĤ2

iH(Tiuh, Tiuh) ≤ CH2
0H(Tiuh, Tiuh).

(3.8)
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Combining the definition of Si and (2.8) implies

(H · S)(Tiuh, Tiuh) = H(SiTiuh, Tiuh) ≤ C 9 Si 91 H(Tiuh, Tiuh). (3.9)

It follows from the definition of P̂i and (2.4) that

H(Siuh, vh) = H(Siuh, P̂ivh) = (Siuh, HiP̂ivh)

= S(uh, HiP̂ivh) ≤ C 9 uh 91 ‖HiP̂ivh‖ ∀ uh, vh ∈ V ih . (3.10)

Analogously to the proof of Theorem 2 in [27], if β = O(λmax), we have

1

β
‖HiP̂ivh‖ =

1

Cλmax
(HiP̂ivh, HiP̂ivh)

1
2 =

1

C
√
λmax

H

(
vh,

1

λmax
HiP̂ivh

) 1
2

≤ C 1√
λmax

H(vh, vh)
1
2 = C

1√
λmax

9 vh 91 . (3.11)

Combining (2.8), (3.10) and (3.11) yields

1

β
9 Si91 ≤ C

1√
λmax

. (3.12)

Since α = O(λmin) is a constant, β = O(λmax) = O(h−2), it follows from (3.7)-(3.9)
and (3.12) that

N(Tiuh, Tiuh) ≤ 1

α+ β
(αβ(Tiuh, Tiuh) + (H · S)(Tiuh, Tiuh))

≤ C(H2
0 + h)H(Tiuh, Tiuh).

Summing over i on both sides of the above inequality, we obtain

N∑
i=1

N(Tiuh, Tiuh) ≤ C(H2
0 + h)

N∑
i=1

H(Tiuh, Tiuh). (3.13)

It follows from (2.4), Proposition 2.1 and Friedrichs’ inequality that∣∣∣∣∣
N∑
i=1

S(uh − Tiuh, Tiuh)

∣∣∣∣∣ =

∣∣∣∣∣S
(
uh,

N∑
i=1

Tiuh

)∣∣∣∣∣ ≤ C 9 uh 91

∥∥∥∥∥
N∑
i=1

Tiuh

∥∥∥∥∥
= C 9 uh 91

 N∑
i=1

N∑
j=1

(Tiuh, Tjuh)

 1
2

≤ C 9 uh 91

 N∑
i=1

N∑
j=1

kij(Tiuh, Tiuh)
1
2 (Tjuh, Tjuh)

1
2

 1
2

≤ C
√
ρ(K) 9 uh 91

(
N∑
i=1

‖Tiuh‖2
) 1

2

≤ C
√
Nc 9 uh 91

(
N∑
i=1

CĤ2
i 9 Tiuh92

1

) 1
2
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≤ CH0

√
Nc 9 uh 91

(
N∑
i=1

H(Tiuh, Tiuh)

) 1
2

. (3.14)

By (3.6), (3.13), (3.14) and Assumption 3.1, we have

N∑
i=1

H(uh − Tiuh, Tiuh)

≤
N∑
i=1

N(Tiuh, Tiuh) +

N∑
i=1

S(uh − Tiuh, Tiuh)

≤C(H2
0 + h)

N∑
i=1

H(Tiuh, Tiuh) + CH0

√
Nc 9 uh 91

(
N∑
i=1

H(Tiuh, Tiuh)

) 1
2

≤C(H2
0 + h)Nc 9 uh 92

1 +CH0Nc 9 uh 92
1 . (3.15)

Combining (3.4) with (3.15) implies

N∑
i=0

H(uh − Tiuh, Tiuh) ≤ C
(
(H2

0 + h+H0)Nc +H0

)
9 uh 92

1 . (3.16)

If H0 is sufficiently small, from (3.3) and (3.16), we have

H(Tuh, uh) =

N∑
i=0

H(Tiuh, Tiuh) +

N∑
i=0

H(uh − Tiuh, Tiuh)

≥
N∑
i=0

H(Tiuh, Tiuh)− C
(
(H2

0 + h+H0)Nc +H0

)
9 uh92

1

≥
N∑
i=0

H(Tiuh, Tiuh). (3.17)

It follows from Assumption 3.2 and (3.17) that

H(Tuh, uh) ≥
N∑
i=0

H(Tiuh, Tiuh) ≥ CC−2
0 H(uh, uh).

The proof is completed.

3.2. The verification of Assumptions 3.1 and 3.2

Lemma 3.1. Suppose that α = O(λmin) and β = O(λmax) are satisfied. Then
Assumption 1 holds.

Proof. Since α = O(λmin) and β = O(λmax), from (2.8), (2.11) and (2.13), we
have

H(Tiuh, Tiuh) = H(M−1
i AiPiuh, Tiuh)

=
α+ β

β
H(β(βI + Si)

−1(αI +Hi)
−1AiPiuh, Tiuh)
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≤ C 9 β(βI + Si)
−1 91 9(αI +Hi)

−1AiPiuh 91 9Tiuh 91 . (3.18)

Cancelling the common factor and squaring both sides of (3.18), we have

H(Tiuh, Tiuh) ≤ C 9 β(βI + Si)
−1 92

1 9(αI +Hi)
−1AiPiuh 92

1 . (3.19)

It follows from (2.3), (2.7) and (2.8) that

9(αI +Hi)
−1AiPiuh92

1 = H((αI +Hi)
−1AiPiuh, (αI +Hi)

−1AiPiuh)

= (Hi(αI +Hi)
−1AiPiuh, (αI +Hi)

−1AiPiuh)

≤ λmax
α+ λmax

A(Piuh, (αI +Hi)
−1AiPiuh)

≤ C 9 Piuh 91 9(αI +Hi)
−1AiPiuh91

≤ C 9 uh 91,Ω′
i
9(αI +Hi)

−1AiPiuh 91 .

Therefore, we obtain

9 (αI +Hi)
−1AiPiu91 ≤ C 9 uh 91,Ω′

i
. (3.20)

Since β = O(λmax) = O(h−2), there exist h0 > 0 and 0 < q < 1 such that for
h < h0,

9 β−1Si91 ≤ C
1√
λmax

< q < 1. (3.21)

From (3.21) and Neumann Lemma, we obtain

9 β(βI + Si)
−191 = 9(I + β−1Si)

−191 ≤ C. (3.22)

It follows from (3.19), (3.20) and (3.22) that

N∑
i=1

H(Tiuh, Tiuh) ≤ C
N∑
i=1

9uh92
1,Ω′

i
≤ CNcH(uh, uh). (3.23)

Which completes the proof of Assumption 3.1.

Lemma 3.2. Suppose that α = O(λmin) and β = O(λmax) are satisfied. Then
Assumption 2 holds.

Proof. By the definitions of Pi and Ti, we obtain

H(uh, uh) = A(uh, uh) =

N∑
i=0

A(uh, u
i
h)

= A(P0uh, u
0
h) +

N∑
i=1

A(Piuh, u
i
h)

= A(P0uh, u
0
h) +

N∑
i=1

(MiM
−1
i AiPiuh, u

i
h)

= A(T0uh, u
0
h) +

1

α+ β

N∑
i=1

((αI +Hi)(βI + Si)Tiuh, u
i
h). (3.24)
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Due to α = O(λmin), it follows from (2.8) and (3.21) that

((αI +Hi)(βI + Si)Tiuh, u
i
h) = H

(
H−1
i (αI +Hi)(βI + Si)Tiuh, u

i
h

)
≤ α+ λmin

λmin
H((βI + Si)Tiuh, u

i
h)

≤ Cβ 9 I + β−1Si 91 H(Tiuh, Tiuh)
1
2H(uih, u

i
h)

1
2

≤ CβH(Tiuh, Tiuh)
1
2H(uih, u

i
h)

1
2 .

Summing over i on both sides of the above inequality and using Cauchy-Schwarz
inequality, we have

N∑
i=1

1

α+ β
((αI +Hi)(βI + Si)Tiuh, u

i
h)

≤C β

α+ β

N∑
i=1

H(Tiuh, Tiuh)
1
2H(uih, u

i
h)

1
2

≤C

(
N∑
i=1

H(Tiuh, Tiuh)

) 1
2
(

N∑
i=1

H(uih, u
i
h)

) 1
2

. (3.25)

From (2.3), we obtain

A(T0uh, u
0
h) ≤ C 9 T0uh 91 9u0

h91 = CH(T0uh, T0uh)
1
2H(u0

h, u
0
h)

1
2 . (3.26)

Using Cauchy-Schwarz inequality and Proposition 2.2, it follows from (3.24)-(3.26)
that

H(uh, uh) ≤ C

(
N∑
i=0

H(Tiuh, Tiuh)

) 1
2
(

N∑
i=0

H(uih, u
i
h)

) 1
2

≤ CC0

(
N∑
i=0

H(Tiuh, Tiuh)

) 1
2

H(uh, uh)
1
2 .

Therefore,

H(uh, uh) ≤ CC2
0

N∑
i=0

H(Tiuh, Tiuh),

which completes the proof of Assumption 3.2.

Remark 3.1. From Lemmas 3.1 and 3.2, we observe that Theorem 3.1 holds and
the Algorithm 2.1 converges for solving nonselfadjoint elliptic equations. Different
from the classical Schwarz algorithm, we introduce a new Schwarz operator which
includes both the selfadjoint and skew-selfadjoint parts of the equation in Algorithm
2.1, namely, two systems instead of the original system should be solved by ILU in
each subdomain. With these techniques, our proposed algorithm performs well for
nonselfadjoint elliptic equation when the skew-selfadjoint part is dominant.
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4. Numerical examples

In this section, we present some numerical experiments to demonstrate the perfor-
mance of the proposed AS method. In the experiments, the domain Ω = [0, 1]d is
covered by a uniform coarse mesh of size H0, and a uniform fine mesh of size h.
The fine mesh is decomposed into Nx ×Ny subdomains in [0, 1]2 or Nx ×Ny ×Nz
subdomains in [0, 1]3. All the subdomain problems are solved inexactly by ILU
factorization. And the coarse problem is solved exactly. The overlap is denoted
by “ovlp”, which is chosen as 0, 1 and 2, respectively. Note that AS method with
overlap of 0 is equivalent to the block Jacobi method. The linear systems are solved
by restarted GMRES(20) and the stopping criterion for GMRES is

‖rk‖0
‖r0‖0

≤ 10−6,

where rk = b− Tukh is the kth step residual. Moreover, the GMRES method is also
terminated when the total number of iterations exceeds 1000.

Example 4.1. Consider a two-dimensional convection diffusion equation [2]{
− ε4u+ b · ∇u = f, in Ω,

u = 0, on ∂Ω,

where b = (cosπ/8, sinπ/8)T and f is chosen that u = x(1−x) sin(πy) is the exact
solution.

In the first test, we set ε = 1, h = 1/256 and vary the subdomain partition, the
overlapping size as well as the coarse mesh size H0. The number of iteration denoted
by “IT” is listed in Table 1. It is clear that the number of iteration goes down
with the increase of the overlapping size, and is bounded and independent of the
number of subdomains, which illustrates that Algorithm 2.1 is optimal. Moreover,
the number of iteration also decreases when choosing smaller H0. Note that it is
not easy to choose the parameters α and β to obtain optimal convergence rate for
AHSS or HSS iteration, so some techniques have been proposed to compute the
optimal parameters [6, 7, 21, 34]. In the implementation, we choose the parameters
as α = h2/ε and β = 1, respectively. It confirms the theoretical analysis that α and
β should be the minimum and maximum eigenvalues, respectively. The numerical
results show that it performs very well for this example.

Next, we present some numerical results to compare Algorithm 2.1 and the
classical two-level AS algorithm [10, 12]. For brevity, we denote Algorithm 2.1 and
the classical two-level AS algorithm by “AHSS-AS”and “AS”, respectively. We fix
H0 = 1/32, h = 1/256, ovlp= 1 and vary the subdomains partition as well as
the coefficient ε. The numerical results are listed in Table 2, where the symbol
“*”indicates that the algorithm failed to converge in 1000 iterations. It shows that
the number of iteration for AHSS-AS and AS is almost the same and bounded
independent of the number of subdomians when ε = 1, 0.1, 0.05. And the iterative
steps of AS is less than that of AHSS-AS when ε = 0.01. However, AS does not
converge in 1000 iterations in the case of ε = 0.001, and AHSS-AS works well for
this case. If we set smaller coarse mesh size such that H0 = 1/64, the numerical
results listed in Table 3 show that AHSS-AS performs as well as AS in the case of
ε = 1, 0.1, 0.05, 0.01, and it performs better than AS for the case ε = 0.001.
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Table 1. The numerical results for solving Example 4.1 by Algorithm 2.1 with ε = 1 and h = 1/256

Nx ×Ny 2× 2 4× 4 8× 8 16× 16

ovlp 0 1 2 0 1 2 0 1 2 0 1 2

H0 = 1/16 29 20 17 26 18 16 25 17 15 24 16 13

H0 = 1/32 20 16 16 19 15 14 18 14 13 17 13 12

H0 = 1/64 16 15 15 15 14 14 14 13 14 14 12 13

H0 = 1/128 14 15 14 13 14 15 12 13 14 12 12 13

Table 2. The numerical comparisons between Algorithm 2.1 and the classical two-level AS algorithm
for solving Example 4.1 with H0 = 1/32, h = 1/256 and ovlp=1

Nx ×Ny 2× 2 4× 4 8× 8 16× 16

ε Algorithm ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT

1
AHSS-AS 4.16e-4 16 4.16e-4 15 4.16e-4 14 4.16e-4 13

AS 4.16e-4 16 4.16e-4 15 4.16e-4 14 4.16e-4 13

0.1
AHSS-AS 4.50e-4 18 4.50e-4 17 4.50e-4 17 4.50e-4 15

AS 4.50e-4 19 4.50e-4 17 4.50e-4 16 4.50e-4 15

0.05
AHSS-AS 4.79e-4 19 4.79e-4 18 4.79e-4 17 4.79e-4 16

AS 4.79e-4 19 4.79e-4 18 4.79e-4 17 4.79e-4 16

0.01
AHSS-AS 5.29e-4 24 5.29e-4 25 5.29e-4 25 5.29e-4 24

AS 5.29e-4 19 5.29e-4 20 5.29e-4 22 5.29e-4 23

0.001
AHSS-AS 5.52e-4 497 5.52e-4 497 5.52e-4 508 5.52e-4 502

AS * * * * * * * *

Table 3. The numerical comparisons between Algorithm 2.1 and the classical two-level AS algorithm
for solving Example 4.1 with H0 = 1/64, h = 1/256 and ovlp=1

Nx ×Ny 2× 2 4× 4 8× 8 16× 16

ε Algorithm ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT

1
AHSS-AS 4.16e-4 15 4.16e-4 14 4.16e-4 13 4.16e-4 12

AS 4.16e-4 15 4.16e-4 14 4.16e-4 13 4.16e-4 12

0.1
AHSS-AS 4.50e-4 17 4.50e-4 16 4.50e-4 15 4.50e-4 14

AS 4.50e-4 17 4.50e-4 16 4.50e-4 15 4.50e-4 14

0.05
AHSS-AS 4.79e-4 19 4.79e-4 17 4.79e-4 16 4.79e-4 15

AS 4.79e-4 17 4.79e-4 17 4.79e-4 16 4.79e-4 15

0.01
AHSS-AS 5.29e-4 18 5.29e-4 18 5.29e-4 18 5.29e-4 18

AS 5.29e-4 18 5.29e-4 19 5.29e-4 20 5.29e-4 21

0.001
AHSS-AS 5.52e-4 236 5.52e-4 238 5.52e-4 240 5.52e-4 244

AS * * * * * * * *

Example 4.2. Consider a three-dimensional convection diffusion equation{
− ε4u+ b · ∇u = f, in Ω,

u = g, on ∂Ω,
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where b = (1, 1, 1) and f is chosen that u(x, y, z) = sin(πx) sin(πy) sin(πz) is the
exact solution.

Table 4. The numerical results for solving Example 4.2 by Algorithm 2.1 with ε = 1 and h = 1/64

Nx ×Ny ×Nz 2× 2× 2 4× 4× 4 8× 8× 8

ovlp 0 1 2 0 1 2 0 1 2

H0 = 1/16 10 9 9 10 9 9 9 8 8

H0 = 1/32 9 10 10 8 9 9 8 8 8

Table 5. The numerical comparisons between Algorithm 2.1 and the classical two-level AS algorithm
for solving Example 4.2 with H0 = 1/16, h = 1/64 and ovlp=1

Nx ×Ny ×Nz 2× 2× 2 4× 4× 4 8× 8× 8

ε Algorithm ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT

1
AHSS-AS 1.88e-2 10 1.88e-2 9 1.88e-2 8

AS 1.88e-2 12 1.88e-2 10 1.88e-2 8

0.1
AHSS-AS 3.64e-2 10 3.64e-2 10 3.64e-2 10

AS 3.64e-2 13 3.64e-2 11 3.64e-2 10

0.05
AHSS-AS 4.37e-2 12 4.37e-2 12 4.37e-2 12

AS 4.38e-2 12 4.38e-2 13 4.38e-2 11

0.01
AHSS-AS 5.24e-2 13 5.24e-2 13 5.24e-2 13

AS 5.20e-2 12 5.20e-2 14 5.20e-2 16

0.005
AHSS-AS 5.94e-2 15 5.94e-2 15 5.94e-2 15

AS 5.32e-2 49 5.32e-2 45 5.32e-2 40

Table 6. The numerical comparisons between Algorithm 2.1 and the classical two-level AS algorithm
for solving Example 4.2 with H0 = 1/32, h = 1/64 and ovlp=1

Nx ×Ny ×Nz 2× 2× 2 4× 4× 4 8× 8× 8

ε Algorithm ‖u− uh‖ IT ‖u− uh‖ IT ‖u− uh‖ IT

1
AHSS-AS 1.88e-2 10 1.88e-2 9 1.88e-2 8

AS 1.88e-2 12 1.88e-2 10 1.88e-2 8

0.1
AHSS-AS 3.64e-2 8 3.64e-2 8 3.64e-2 8

AS 3.64e-2 12 3.64e-2 11 3.64e-2 9

0.05
AHSS-AS 4.38e-2 8 4.38e-2 8 4.38e-2 8

AS 4.38e-2 12 4.38e-2 12 4.38e-2 11

0.01
AHSS-AS 5.59e-2 5 5.59e-2 5 5.59e-2 5

AS 5.20e-2 10 5.20e-2 13 5.20e-2 14

0.005
AHSS-AS 5.25e-2 5 5.25e-2 5 5.25e-2 5

AS 5.32e-2 40 5.32e-2 39 5.32e-2 34

We test another example to show the performance of Algorithm 2.1. Similar to
Example 4.1, we set ε = 1, h = 1/64 and vary the coarse mesh size, subdomains par-
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tition and overlapping size, respectively. From Table 4, we observe that the number
of iteration decreases when we increase the overlap and is bounded independent of
the number of subdomains. And the iterative steps decreases when choosing smaller
coarse mesh size H0.

In the next set of experiments, we compare the performance of AHSS-AS and
AS for solving this example with different coefficient ε. In the implementation,
the parameters α and β are set as α = h2/ε and β = 1, respectively. We fix
H0 = 1/16, h = 1/64, ovlp= 1 and vary the subdomains partition as well as the
coefficient ε. The numerical results presented in Table 5 show that the iterative steps
of both AHSS-AS and AS is bounded independent of the number of subdomains,
and AHSS-AS needs less iterative steps than AS for most of the cases. Finally, we
change the coarse mesh size H0 = 1/32 and fix other parameters. From Tables 5
and 6, we observe that the iterative steps of both AHSS-AS and AS decrease when
choose smaller coarse mesh size. The numerical results in Table 6 also show that the
number of iteration of AHSS-AS is much less than that of AS for the cases ε = 0.01
and ε = 0.005.

5. Concluding remarks

We presented a two-level AS algorithm for solving nonselfadjoint elliptic equations,
and established a convergence theory which shows that the convergence rate is
bounded independent of the number of subdomains and the fine mesh size. The
numerical experiments confirm the convergence analysis, it shows that our algorithm
performs very well for solving the convection-diffusion equations by choosing the
parameters easily. On the other hand, the numerical comparisons show that our
algorithm has a benefit over the classical two-level AS algorithm for the presented
numerical examples.
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