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1. Introduction

Now, periodic waves, periodic blow-up waves, solitary waves and kink waves have
always been hot research issues, such as, in [1–3, 5, 16] the authors gave detailed
studies. Tu [17] once employed Lie algebras as a tool for generating nonlinear-
equation hierarchies and proposed a powerful approach for producing Hamiltonian
structures of soliton hierarchies. Ma [13] called the method the Tu-Ma scheme.
By following the way one has obtained some interesting integrable hierarchies of
evolution type and their Hamiltonian structures, Darboux transformations, and
some other properties [6,7,9,10,13–15,24]. Zhang et al. [23] adopt the Tu-Ma scheme
to derive a integrable soliton hierarchy which can reduce to a coupled generalized
Broer-Kaup (gBK) equation vt = vxx − 2vvx − 2wx,

wt = −wxx − 2(wv)x − 2vx,
(1.1)

whose two kinds of Darboux transformations, the bilinear representation, the bilin-
ear Bäcklund transformation and a Lax pair equation are given, respectively.

In this paper, using dynamical system theory and simulation method (see [11,12,
18–22] and the references therein), the travelling wave solutions of equation (1.1) are
studied. The expressions of solutions of kink wave, periodic blow-up wave, periodic
wave and solitary wave are obtained.

The rest of this paper is organized as follows. In Section 2, we derive travelling
wave solutions. In Section 3, we give classifications of travelling wave solutions, and
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their numerical simulations are made using mathematical software Mathematica 7.0.
In Section 4, we give a short conclusion.

2. Travelling wave solutions of equation (1.1)

Making the transformation v(x, t) = ϕ(ξ), w(x, t) = ψ(ξ), with ξ = x − ct in
equation (1.1), we have the following ordinary differential equations.2ψ′ = ϕ′′ − 2ϕϕ′ + cϕ′,

cψ′ = ψ′′ + 2(ψϕ)′ + 2ϕ′,
(2.1)

where c is the wave speed, and the symbol ′ indicates derivative with respect to ξ.
Integrating (2.1) once with respect to ξ, we have the following equations. 2ψ = ϕ′ − ϕ2 + cϕ+A,

cψ = ψ′ + 2ψϕ+ 2ϕ+B,
(2.2)

where A and B are the integration constants. Substituting the first equation of
(2.2) into the second equation of (2.2), we get

ϕ′′ = 2ϕ3 − 3cϕ2 + (c2 − 2A− 4)ϕ+Ac− 2B. (2.3)

For simplicity, we denote w = ψ(ξ) = 1
2 (ϕ′−ϕ2 + cϕ+A) in the entire process.

In (2.3) multiplied by 2ϕ′ both side at the same time and integrating it, we have

(ϕ′)2 = ϕ4 − 2cϕ3 + (c2 − 2A− 4)ϕ2 + 2(Ac− 2B)ϕ+ h, (2.4)

where h is any integration constant.
Let

f(ϕ) = ϕ4 − 2cϕ3 + (c2 − 2A− 4)ϕ2 + 2(Ac− 2B)ϕ+ h, (2.5)

then (2.4) becomes
(ϕ′)2 = f(ϕ). (2.6)

2.1. Cases of f(ϕ) has four conjugate complex roots

When f(ϕ) has four conjugate complex roots ϕ1, ϕ1, ϕ2, ϕ2, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ1)(ϕ− ϕ2)(ϕ− ϕ2). (2.7)

Taking ϕ0 = b1 − a1g is an original value, substituting (2.7) into (2.6) and
integrating it, we have∫ ϕ

ϕ0

1√
(t− ϕ1)(t− ϕ1)(t− ϕ2)(t− ϕ2)

dt = ±
∫ ξ

0

dt. (2.8)

From (2.8), using formula 267.00 in [4], we get two travelling wave solutions as
follows:

ϕ = b1 +
a1
g
− a1(g +

1

g
)

1

1 + sc(P+Q
2 ξ, k)

, (2.9)
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and

ϕ = b1 +
a1
g
− a1(g +

1

g
)

1

1− sc(P+Q
2 ξ, k)

, (2.10)

where b1 = ϕ1+ϕ1

2 , a1 =
√
− (ϕ1−ϕ1)2

4 , b2 = ϕ2+ϕ2

2 , a2 =
√
− (ϕ2−ϕ2)2

4 , P =√
(b1 − b2)2 + (a1 + a2)2, Q =

√
(b1 − b2)2 + (a1 − a2)2, k =

√
4PQ

(P+Q)2 and g =√
4a21−(P−Q)2

−4a21+(P+Q)2
.

2.2. Cases of f(ϕ) has one double real root and two conjugate
complex roots

When f(ϕ) has one double real root ϕ1 and two conjugate complex roots ϕ2, ϕ2,
then

f(ϕ) = (ϕ− ϕ1)2(ϕ− ϕ2)(ϕ− ϕ2). (2.11)

(1) When ϕ < ϕ1, taking an original value ϕ0, and it satisfies ϕ0 < ϕ1, substi-
tuting (2.11) into (2.6) and integrating it, we have∫ ϕ

ϕ0

1

(ϕ1 − t)
√

(t− ϕ2)(t− ϕ2)
dt = ±

∫ ξ

0

dt. (2.12)

From (2.12), we get two travelling wave solutions as follows:

ϕ =
ϕ1(P0e

τ )2 + 2(ϕ1ϕ2 + ϕ1ϕ2 − 2ϕ2ϕ2)P0e
τ + ϕ1(ϕ2 − ϕ2)2

(P0eτ )2 − 2(ϕ2 + ϕ2 − 2ϕ1)P0eτ + (ϕ2 − ϕ2)2
, (2.13)

and

ϕ =
ϕ1(P0e

−τ )2 + 2(ϕ1ϕ2 + ϕ1ϕ2 − 2ϕ2ϕ2)P0e
−τ + ϕ1(ϕ2 − ϕ2)2

(P0e−τ )2 − 2(ϕ2 + ϕ2 − 2ϕ1)P0e−τ + (ϕ2 − ϕ2)2
, (2.14)

where P0 = ϕ2 + ϕ2 − 2ϕ1 +
2
√

(ϕ2−ϕ1)(ϕ2−ϕ1)
(√

(ϕ2−ϕ1)(ϕ2−ϕ1)+
√

(ϕ2−ϕ0)(ϕ2−ϕ0)
)

ϕ1−ϕ0
,

and τ =
√

(ϕ2 − ϕ1)(ϕ2 − ϕ1)ξ.
(2)When ϕ > ϕ1, taking an original value ϕ0, and it satisfies ϕ1 < ϕ0, substi-

tuting (2.11) into (2.6) and integrating it, we have∫ ϕ

ϕ0

1

(t− ϕ1)
√

(t− ϕ2)(t− ϕ2)
dt = ±

∫ ξ

0

dt. (2.15)

From (2.15), we get two travelling wave solutions as follows:

ϕ =
ϕ1(P1e

τ )2 − 2(ϕ2ϕ1 + ϕ2ϕ1 − 2ϕ2ϕ2)P1e
τ + ϕ1(ϕ2 − ϕ2)2

(P1eτ )2 + 2(ϕ2 + ϕ2 − 2ϕ1)P1eτ + (ϕ2 − ϕ2)2
, (2.16)

and

ϕ =
ϕ1(P1e

−τ )2 − 2(ϕ2ϕ1 + ϕ2ϕ1 − 2ϕ2ϕ2)P1e
−τ + ϕ1(ϕ2 − ϕ2)2

(P1e−τ )2 + 2(ϕ2 + ϕ2 − 2ϕ1)P1e−τ + (ϕ2 − ϕ2)2
, (2.17)

where P1 = 2ϕ1 − ϕ2 − ϕ2 +
2
√

(ϕ1−ϕ2)(ϕ1−ϕ2)
(√

(ϕ1−ϕ2)(ϕ1−ϕ2)+
√

(ϕ0−ϕ2)(ϕ0−ϕ2)
)

ϕ0−ϕ1
,

and τ =
√

(ϕ1 − ϕ2)(ϕ1 − ϕ2)ξ.
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2.3. Cases of f(ϕ) has two simple real roots and two conjugate
complex roots

When ϕ1 and ϕ2 are two simple real roots, ϕ3, ϕ3 are two conjugate complex roots
of f(ϕ), where ϕ1 < ϕ2, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ2)(ϕ− ϕ3)(ϕ− ϕ3). (2.18)

(1) When ϕ < ϕ1, substituting (2.18) into (2.6) and integrating it, we have∫ ϕ1

ϕ

1√
(t− ϕ1)(t− ϕ2)(t− ϕ3)(t− ϕ3)

dt = ±
∫ 0

ξ

dt. (2.19)

From (2.19), using formula 3.145 − 3 in [8], we get a travelling wave solution as
follows:

ϕ =
m2ϕ1 −m1ϕ2 + (m1ϕ2 +m2ϕ1)cn(τ, k)

m2 −m1 + (m1 +m2)cn(τ, k)
, (2.20)

where τ =
√
m1m2ξ, m1 =

√
(ϕ2 − ϕ3)(ϕ2 − ϕ3), m2 =

√
(ϕ1 − ϕ3)(ϕ1 − ϕ3), and

k =
√

(m1+m2)2+(ϕ2−ϕ1)2

4m1m2
.

(2)When ϕ2 < ϕ, substituting (2.18) into (2.6) and integrating it, we have∫ ϕ

ϕ2

1√
(t− ϕ1)(t− ϕ2)(t− ϕ3)(t− ϕ3)

dt = ±
∫ ξ

0

dt. (2.21)

From (2.21), using formula 3.145 − 1 in [8], we get a travelling wave solution as
follows:

ϕ =
m2ϕ2 −m1ϕ1 + (m1ϕ1 +m2ϕ2)cn(τ, k)

m2 −m1 + (m1 +m2)cn(τ, k)
. (2.22)

2.4. Cases of f(ϕ) has one double root and two simple real
roots

2.4.1. Cases of ϕ1 is a double root

When ϕ1 is a double root, ϕ2 and ϕ3 are two simple real roots of f(ϕ), where
ϕ1 < ϕ2 < ϕ3, then

f(ϕ) = (ϕ− ϕ1)2(ϕ− ϕ2)(ϕ− ϕ3). (2.23)

(1) If ϕ ≤ ϕ1, taking an original value ϕ0, and it satisfies ϕ0 < ϕ1, substituting
(2.23) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(ϕ1 − t)
√

(ϕ3 − t)(ϕ2 − t)
dt = ±

∫ 0

ξ

dt. (2.24)

From (2.24), we get two travelling wave solutions as follows:

ϕ =
ϕ1(P2e

τ )2 + 2(ϕ1ϕ2 + ϕ1ϕ3 − 2ϕ2ϕ3)P2e
τ + ϕ1(ϕ3 − ϕ2)2

(P2eτ )2 − 2(ϕ2 + ϕ3 − 2ϕ1)P2eτ + (ϕ3 − ϕ2)2
, (2.25)

and

ϕ =
ϕ1(P2e

−τ )2 + 2(ϕ1ϕ2 + ϕ1ϕ3 − 2ϕ2ϕ3)P2e
−τ + ϕ1(ϕ3 − ϕ2)2

(P2e−τ )2 − 2(ϕ2 + ϕ3 − 2ϕ1)P2e−τ + (ϕ3 − ϕ2)2
, (2.26)



214 S. Xie, X. Hong & J. Lu

where P2 = ϕ2 + ϕ3 − 2ϕ1 +
2
√

(ϕ3−ϕ1)(ϕ2−ϕ1)
(√

(ϕ3−ϕ1)(ϕ2−ϕ1)+
√

(ϕ3−ϕ0)(ϕ2−ϕ0)
)

ϕ1−ϕ0
,

and τ =
√

(ϕ3 − ϕ1)(ϕ2 − ϕ1)ξ.
(2) If ϕ1 < ϕ ≤ ϕ2, substituting (2.23) into (2.6) and integrating it, we have∫ ϕ2

ϕ

1

(t− ϕ1)
√

(ϕ3 − t)(ϕ2 − t)
dt = ±

∫ 0

ξ

dt. (2.27)

From (2.27), we get a travelling wave solution as follows:

ϕ = ϕ1 +
2(ϕ3 − ϕ1)(ϕ2 − ϕ1)

ϕ2 + ϕ3 − 2ϕ1 + (ϕ3 − ϕ2) cosh τ
. (2.28)

(3) If ϕ3 ≤ ϕ substituting (2.23) into (2.6) and integrating it, we have∫ ϕ

ϕ3

1

(t− ϕ1)
√

(t− ϕ3)(t− ϕ2)
dt = ±

∫ ξ

0

dt. (2.29)

From (2.29), we get a travelling wave solution as follows:

ϕ = ϕ1 +
2(ϕ3 − ϕ1)(ϕ2 − ϕ1)

ϕ2 + ϕ3 − 2ϕ1 − (ϕ3 − ϕ2) cosh(τ − 2nT )
, (2.30)

where T = arccosh[1+ 2(ϕ2−ϕ1)
ϕ3−ϕ1

], (2n−1)T < τ < (2n+1)T and n = 0,±1,±2, · · · .

2.4.2. Cases of ϕ2 is a double root

When ϕ2 is a double root, ϕ1 and ϕ3 are two simple real roots of f(ϕ), where
ϕ1 < ϕ2 < ϕ3, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ2)2(ϕ− ϕ3). (2.31)

(1) If ϕ ≤ ϕ1 substituting (2.31) into (2.6) and integrating it, we have∫ ϕ1

ϕ

1

(ϕ2 − t)
√

(ϕ3 − t)(ϕ1 − t)
dt = ±

∫ 0

ξ

dt. (2.32)

From (2.32), we get a travelling wave solution as follows:

4d1(ϕ3 − ϕ)(ϕ1 − ϕ) cot2(
√
d1ξ) = [−2d1 + d2(ϕ2 − ϕ)]2, (2.33)

where d1 = (ϕ3 − ϕ2)(ϕ2 − ϕ1), d2 = ϕ1 + ϕ3 − 2ϕ2.
(2) If ϕ3 ≤ ϕ substituting (2.31) into (2.6) and integrating it, we have∫ ϕ

ϕ3

1

(t− ϕ2)
√

(t− ϕ3)(t− ϕ1)
dt = ±

∫ ξ

0

dt. (2.34)

From (2.34), we get a travelling wave solution as follows:

4d1(ϕ− ϕ3)(ϕ− ϕ1) cot2(
√
d1ξ) = [−2d1 − d2(ϕ− ϕ2)]2. (2.35)
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2.4.3. Cases of ϕ3 is a double root

When ϕ3 is a double root, ϕ1 and ϕ2 are two simple real roots of f(ϕ), where
ϕ1 < ϕ2 < ϕ3, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ2)(ϕ− ϕ3)2. (2.36)

(1) If ϕ ≤ ϕ1, substituting (2.36) into (2.6) and integrating it, we have∫ ϕ1

ϕ

1

(ϕ3 − t)
√

(ϕ2 − t)(ϕ1 − t)
dt = ±

∫ 0

ξ

dt. (2.37)

From (2.37), we get a travelling wave solution as follows:

ϕ = ϕ3 +
2(ϕ3 − ϕ1)(ϕ3 − ϕ2)

ϕ1 + ϕ2 − 2ϕ3 + (ϕ2 − ϕ1) cosh(τ − 2nT )
, (2.38)

where τ =
√

(ϕ3 − ϕ1)(ϕ3 − ϕ2)ξ, T = arccosh[ 2(ϕ3−ϕ1)
ϕ2−ϕ1

− 1], (2n − 1)T < τ <

(2n+ 1)T, n = 0,±1,±2,±3, · · · .
(2) If ϕ2 ≤ ϕ < ϕ3, substituting (2.36) into (2.6) and integrating it, we have∫ ϕ

ϕ2

1

(ϕ3 − t)
√

(t− ϕ2)(t− ϕ1)
dt = ±

∫ ξ

0

dt. (2.39)

From (2.39), we get a travelling wave solution as follows:

ϕ = ϕ3 −
2(ϕ3 − ϕ1)(ϕ3 − ϕ2)

2ϕ3 − ϕ1 − ϕ2 + (ϕ2 − ϕ1) cosh τ
. (2.40)

(3) If ϕ3 ≤ ϕ, taking an original value ϕ0, and it satisfies ϕ3 < ϕ0, substituting
(2.36) into (2.6) and integrating it, we have∫ ϕ

ϕ0

1

(t− ϕ3)
√

(t− ϕ1)(t− ϕ2)
dt = ±

∫ ξ

0

dt. (2.41)

From (2.41), we get two travelling wave solutions as follows:

ϕ =
ϕ3(P3e

τ )2 − 2(ϕ1ϕ3 + ϕ2ϕ3 − 2ϕ1ϕ2)P3e
τ + ϕ3(ϕ2 − ϕ1)2

(P3eτ )2 + 2(ϕ1 + ϕ2 − 2ϕ3)P3eτ + (ϕ2 − ϕ1)2
, (2.42)

and

ϕ =
ϕ3(P3e

−τ )2 − 2(ϕ1ϕ3 + ϕ2ϕ3 − 2ϕ1ϕ2)P3e
−τ + ϕ3(ϕ2 − ϕ1)2

(P3e−τ )2 + 2(ϕ1 + ϕ2 − 2ϕ3)P3e−τ + (ϕ2 − ϕ1)2
, (2.43)

where P3 = 2ϕ3 − ϕ1 − ϕ2 +
2
√

(ϕ3−ϕ1)(ϕ3−ϕ2)
(√

(ϕ3−ϕ1)(ϕ3−ϕ2)+
√

(ϕ0−ϕ1)(ϕ0−ϕ2)
)

ϕ0−ϕ3
,

and τ =
√

(ϕ3 − ϕ1)(ϕ3 − ϕ2)ξ.
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2.5. Cases of f(ϕ) has two double real roots

When ϕ1 and ϕ2 are two double real roots of f(ϕ), where ϕ1 < ϕ2, then

f(ϕ) = (ϕ− ϕ1)2(ϕ− ϕ2)2. (2.44)

(1) If ϕ ≤ ϕ1, taking an original value ϕ0, and it satisfies ϕ0 < ϕ1, substituting
(2.44) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(ϕ2 − t)(ϕ1 − t)
dt = ±

∫ 0

ξ

dt. (2.45)

From (2.45), we get two travelling wave solutions as follows:

ϕ = ϕ1 +
(ϕ1 − ϕ0)(ϕ2 − ϕ1)

ϕ1 − ϕ0 − (ϕ2 − ϕ0) exp[(ϕ2 − ϕ1)ξ]
, (2.46)

and

ϕ = ϕ1 +
(ϕ1 − ϕ0)(ϕ2 − ϕ1)

ϕ1 − ϕ0 − (ϕ2 − ϕ0) exp[−(ϕ2 − ϕ1)ξ]
. (2.47)

(2) If ϕ1 < ϕ ≤ ϕ2, taking an original value ϕ0, and it satisfies ϕ1 < ϕ0 < ϕ2,
substituting (2.44) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(ϕ2 − t)(t− ϕ1)
dt = ±

∫ 0

ξ

dt. (2.48)

From (2.48), we get two travelling wave solutions as follows:

ϕ = ϕ1 +
(ϕ0 − ϕ1)(ϕ2 − ϕ1)

ϕ0 − ϕ1 + (ϕ2 − ϕ0) exp[−(ϕ2 − ϕ1)ξ]
, (2.49)

and

ϕ = ϕ1 +
(ϕ0 − ϕ1)(ϕ2 − ϕ1)

ϕ0 − ϕ1 + (ϕ2 − ϕ0) exp[(ϕ2 − ϕ1)ξ]
. (2.50)

(3) If ϕ2 ≤ ϕ, taking an original value ϕ0, and it satisfies ϕ2 < ϕ0, substituting
(2.44) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(t− ϕ2)(t− ϕ1)
dt = ±

∫ 0

ξ

dt. (2.51)

From (2.51), we get two travelling wave solutions as follows:

ϕ = ϕ1 +
(ϕ0 − ϕ1)(ϕ2 − ϕ1)

ϕ0 − ϕ1 − (ϕ0 − ϕ2) exp[(ϕ2 − ϕ1)ξ]
, (2.52)

and

ϕ = ϕ1 +
(ϕ0 − ϕ1)(ϕ2 − ϕ1)

ϕ0 − ϕ1 − (ϕ0 − ϕ2) exp[−(ϕ2 − ϕ1)ξ]
. (2.53)
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2.6. Cases of f(ϕ) has a triple root and a simple real root

2.6.1. Cases of ϕ1 is a triple root

When ϕ1 is a triple root, and ϕ2 is a simple real root of f(ϕ), where ϕ1 < ϕ2, then

f(ϕ) = (ϕ− ϕ1)3(ϕ− ϕ2). (2.54)

(1) If ϕ ≤ ϕ1, taking an original value ϕ0, and it satisfies ϕ0 < ϕ1, substituting
(2.54) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(ϕ1 − t)
√

(ϕ2 − t)(ϕ1 − t)
dt = ±

∫ 0

ξ

dt. (2.55)

From (2.55), we get two travelling wave solutions as follows:

ϕ = ϕ1 −
4(ϕ1 − ϕ0)

(ϕ2 − ϕ1)(ϕ1 − ϕ0)ξ2 + 4
√

(ϕ2 − ϕ0)(ϕ1 − ϕ0)ξ + 4
, (2.56)

and

ϕ = ϕ1 −
4(ϕ1 − ϕ0)

(ϕ2 − ϕ1)(ϕ1 − ϕ0)ξ2 − 4
√

(ϕ2 − ϕ0)(ϕ1 − ϕ0)ξ + 4
. (2.57)

(2) If ϕ2 ≤ ϕ, substituting (2.54) into (2.6) and integrating it, we have∫ ϕ

ϕ2

1

(t− ϕ1)
√

(t− ϕ2)(t− ϕ1)
dt = ±

∫ ξ

0

dt. (2.58)

From (2.58), we get a travelling wave solution as follows:

ϕ = ϕ1 −
4(ϕ2 − ϕ1)

(ϕ2 − ϕ1)2(ξ − 2nT )2 − 4
, (2.59)

where T = 2
ϕ2−ϕ1

, (2n− 1)T < ξ < (2n+ 1)T, n = 0,±1,±2,±3, · · · .

2.6.2. Cases of ϕ1 is a simple real root

When ϕ1 is a simple real root, and ϕ2 is a triple root of f(ϕ), where ϕ1 < ϕ2, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ2)3. (2.60)

(1) If ϕ ≤ ϕ1, substituting (2.60) into (2.6) and integrating it, we have∫ ϕ1

ϕ

1

(ϕ2 − t)
√

(ϕ2 − t)(ϕ1 − t)
dt = ±

∫ 0

ξ

dt. (2.61)

From (2.58), we get a travelling wave solution as follows:

ϕ = ϕ2 +
4(ϕ2 − ϕ1)

(ϕ2 − ϕ1)2(ξ − 2nT )2 − 4
, (2.62)

where T = 2
ϕ2−ϕ1

, (2n− 1)T < ξ < (2n+ 1)T, n = 0,±1,±2,±3, · · · .
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(2) If ϕ2 ≤ ϕ, taking an original value ϕ0, and it satisfies ϕ2 < ϕ0, substituting
(2.60) into (2.6) and integrating it, we have∫ ϕ0

ϕ

1

(t− ϕ2)
√

(t− ϕ1)(t− ϕ2)
dt = ±

∫ 0

ξ

dt. (2.63)

From (2.63), we get two travelling wave solutions as follows:

ϕ = ϕ2 +
4(ϕ2 − ϕ0)

(ϕ2 − ϕ1)(ϕ2 − ϕ0)ξ2 + 4
√

(ϕ2 − ϕ0)(ϕ1 − ϕ0)ξ − 4
, (2.64)

and

ϕ = ϕ2 +
4(ϕ2 − ϕ0)

(ϕ2 − ϕ1)(ϕ2 − ϕ0)ξ2 − 4
√

(ϕ2 − ϕ0)(ϕ1 − ϕ0)ξ − 4
. (2.65)

2.7. Cases of f(ϕ) has a quadruple real root

From (2.5), f(ϕ) has a quadruple real root c
2 , so

f(ϕ) = (ϕ− c

2
)4. (2.66)

(1) If ϕ < c
2 , taking an original value ϕ0, and it satisfies ϕ0 <

c
2 , substituting

(2.66) into (2.6) and integrating it, we have∫ ϕ

ϕ0

1

( c2 − t)2
dt = ±

∫ ξ

0

dt. (2.67)

From (2.67), we get two travelling wave solutions as follows:

ϕ =
c

2
− c− 2ϕ0

2 + (c− 2ϕ0)ξ
, (2.68)

and

ϕ =
c

2
− c− 2ϕ0

2− (c− 2ϕ0)ξ
. (2.69)

(2) If ϕ > c
2 , taking an original value ϕ0, and it satisfies ϕ0 >

c
2 , substituting

(2.66) into (2.6) and integrating it, we have∫ ϕ

ϕ0

1

(t− c
2 )2

dt = ±
∫ ξ

0

dt. (2.70)

From (2.70), we get two travelling wave solutions as follows:

ϕ =
c

2
+

2ϕ0 − c
2− (2ϕ0 − c)ξ

, (2.71)

and

ϕ =
c

2
+

2ϕ0 − c
2 + (2ϕ0 − c)ξ

. (2.72)
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2.8. Cases of f(ϕ) has four simple real roots

When ϕ1, ϕ2, ϕ3 and ϕ4 are four simple real roots of f(ϕ), where ϕ1 < ϕ2 < ϕ3 <
ϕ4, then

f(ϕ) = (ϕ− ϕ1)(ϕ− ϕ2)(ϕ− ϕ3)(ϕ− ϕ4). (2.73)

(1) If ϕ ≤ ϕ1, substituting (2.73) into (2.6) and integrating it, we have∫ ϕ1

ϕ

1√
(ϕ4 − t)(ϕ3 − t)(ϕ2 − t)(ϕ1 − t)

dt = ±
∫ 0

ξ

dt. (2.74)

From (2.74), using formula 251.00 in [4], we get a travelling wave solution as follows:

ϕ = ϕ2 −
(ϕ4 − ϕ2)(ϕ2 − ϕ1)

ϕ4 − ϕ2 − (ϕ4 − ϕ1)sn2(τ, k)
, (2.75)

where k =
√

(ϕ3−ϕ2)(ϕ4−ϕ1)
(ϕ4−ϕ2)(ϕ3−ϕ1)

and τ =

√
(ϕ4−ϕ2)(ϕ3−ϕ1)

2 ξ.

(2) If ϕ2 ≤ ϕ ≤ ϕ3, substituting (2.73) into (2.6) and integrating it, we have∫ ϕ

ϕ2

1√
(ϕ4 − t)(ϕ3 − t)(t− ϕ2)(t− ϕ1)

dt = ±
∫ ξ

0

dt. (2.76)

From (2.76), using formula 254.00 in [4], we get a travelling wave solution as follows:

ϕ = ϕ1 +
(ϕ3 − ϕ1)(ϕ2 − ϕ1)

ϕ3 − ϕ1 − (ϕ3 − ϕ2)sn2(τ, k)
. (2.77)

(3) If ϕ4 ≤ ϕ, substituting (2.73) into (2.6) and integrating it, we have∫ ϕ

ϕ4

1√
(t− ϕ4)(t− ϕ3)(t− ϕ2)(t− ϕ1)

dt = ±
∫ ξ

0

dt. (2.78)

From (2.78), using formula 258.00 in [4], we get a travelling wave solution as follows:

ϕ = ϕ3 +
(ϕ3 − ϕ1)(ϕ4 − ϕ3)

ϕ3 − ϕ1 − (ϕ4 − ϕ1)sn2(τ, k)
. (2.79)

3. Classifications of travelling wave solutions

Let
f0(ϕ) = ϕ4 − 2cϕ3 + (c2 − 2A− 4)ϕ2 + 2(Ac− 2B)ϕ, (3.1)

then f(ϕ) = f0(ϕ) + h and

f ′0(ϕ) = 4ϕ3 − 6cϕ2 + 2(c2 − 2A− 4)ϕ+ 2(Ac− 2B). (3.2)

Let p = − 1
4 (c2 + 2A+ 8), q = −(c+B), and ∆ = q2

4 + p3

27 , then
(1) If ∆ > 0, f ′0(ϕ) = 0 there will be one real root and two conjugate complex

roots.
(2) If ∆ = 0, f ′0(ϕ) = 0 there will be three real roots of which at least two are

equal.
(3) If ∆ < 0, f ′0(ϕ) = 0 there will be three real and unequal roots.
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Clearly, we have the following results.

(1) If ∆ ≥ 0, then f0(ϕ) has an unequal minimum point ϕ∗0, D0 = f0(ϕ∗0) is
minimal value.

(2) If ∆ = 0, and f ′0(ϕ) = 0 has a double real root ϕ∗01, then ϕ∗01 is inflection
point of f0(ϕ), let D01 = f0(ϕ∗01).

(3) If ∆ < 0, then f0(ϕ) has three extreme points ϕ∗1, ϕ
∗
2 and ϕ∗3, where ϕ∗1 <

ϕ∗2 < ϕ∗3, ϕ∗1 and ϕ∗3 are two minimum points, ϕ∗2 is a maximum point. Let D1 =
f0(ϕ

∗
1)+f0(ϕ

∗
3)

2 − |f0(ϕ
∗
1)−f0(ϕ

∗
3)|

2 , D2 =
f0(ϕ

∗
1)+f0(ϕ

∗
3)

2 +
|f0(ϕ∗

1)−f0(ϕ
∗
3)|

2 and D3 = f0(ϕ∗2),
then D1 and D2 are two minimum values, D3 is a maximum value, and D1 ≤ D2 <
D3.

Thus, we have the following theorem.

Theorem 3.1. (1) Under any one of the following two conditions, f(ϕ) has four
conjugate complex roots.
(a) ∆ ≥ 0 and h > −D0. (b) ∆ < 0 and h > −D1.

(2) Under any one of the following three conditions, f(ϕ) has a double real root
and two conjugate complex roots.
(a) ∆ > 0 and h = −D0. (b) ∆ = 0, p 6= 0, q 6= 0 and h = −D0. (c) ∆ < 0
and h = −D1 > −D2.

(3) If ∆ = 0, p = q = 0 and h = −D0, then c
2 is a quadruple real root of f(ϕ).

(4) Under any one of the following four conditions, f(ϕ) has two simple real roots
and two conjugate complex roots.
(a) ∆ > 0 and h < −D0. (b) ∆ = 0, h < −D0 and h 6= −D01. (c) ∆ < 0 and
−D2 < h < −D1, (d) ∆ < 0 and h < −D3.

(5) If ∆ = 0 and h = −D01, then f(ϕ) has a simple real root and a triple real root.

(6) Under any one of the following two conditions, f(ϕ) has two simple real roots
and a double real root.
(a) ∆ < 0 and h = −D2 < −D1. (b) ∆ < 0 and h = −D3.

(7) If ∆ < 0 and h = −D2 = −D1, then f(ϕ) has two double real roots.

(8) If ∆ < 0 and −D3 < h < −D2, then f(ϕ) has four simple real roots.

Let dϕ
dξ = y, then equation (2.3) becomes the following two dimensional system.

dϕ

dξ
= y,

dy

dξ
=

1

2
f ′0(ϕ).

(3.3)

Using the dynamical system theory of planar systems, we know that the singular
points of system (3.3) have the following properties.

(1) (ϕ∗0, 0) is a saddle point.

(2) (ϕ∗01, 0) is a degenerate saddle point.

(3) (ϕ∗1, 0) and (ϕ∗3, 0) are two saddle points.

(4) (ϕ∗2, 0) is a centre point.

Based on the above analysis, we obtain the classification of the travelling wave
solutions of equation (1.1).
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3.1. Bounded smooth periodic wave

When ∆ < 0 and −D3 < h < −D2, the travelling wave solution (2.77) is a bounded
smooth periodic wave.

3.2. Bounded smooth solitary waves

When ∆ < 0 and h = −D2 < −D1, the travelling wave solutions (2.28) and (2.40)
are two bounded smooth solitary waves.

3.3. Bounded kink waves

When ∆ < 0 and h = −D2 = −D1, the travelling wave solutions (2.49) and (2.50)
are two bounded kink waves.

3.4. Unbounded periodic blow-up waves

(1) Under any one of the following four conditions, the travelling wave solutions
(2.20) and (2.22) are two periodic blow-up waves.
(a) ∆ > 0 and h < −D0. (b) ∆ = 0, h < −D0 and h 6= −D01. (c) ∆ < 0 and
−D2 < h < −D1. (d) ∆ < 0 and h < −D3.

(2) When ∆ < 0 and h = −D2 < −D1, the travelling wave solutions (2.30) and
(2.38) are two periodic blow-up waves.

(3) When ∆ < 0 and h = −D3, the travelling wave solutions (2.33) and (2.35) are
two periodic blow-up waves.

(4) When ∆ = 0 and h = −D01, the travelling wave solutions (2.59) and (2.62) are
two periodic blow-up waves.

(5) When ∆ < 0 and −D3 < h < −D2, the travelling wave solutions (2.75) and
(2.79) are two periodic blow-up waves.

3.5. Unbounded periodic waves

Under any one of the following two conditions, the travelling wave solutions (2.9)
and (2.10) are two unbounded periodic waves.

(a) ∆ ≥ 0 and h > −D0. (b) ∆ < 0 and h > −D1.

3.6. Unbounded kink waves

(1) Under any one of the following three conditions, the travelling wave solutions
(2.13), (2.14), (2.16) and (2.17) are four unbounded kink waves.
(a) ∆ > 0 and h = −D0. (b) ∆ = 0, p 6= 0, q 6= 0 and h = −D0. (c) ∆ < 0 and
h = −D1 > −D2.

(2) When ∆ < 0 and h = −D2 < −D1, the travelling wave solutions (2.25), (2.26),
(2.42) and (2.43) are four unbounded kink waves.

(3) When ∆ < 0 and h = −D2 = −D1, the travelling wave solutions (2.46), (2.47),
(2.52) and (2.53) are four unbounded kink waves.

(4) When ∆ = 0 and h = −D01, the travelling wave solutions (2.56), (2.57), (2.64)
and (2.65) are four unbounded kink waves.
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(5) When ∆ = 0, p = q = 0 and h = −D0 , the travelling wave solutions (2.68),
(2.69), (2.71) and (2.72) are four unbounded kink waves.

Based on the above analysis, on ξ−v plane, we will simulate the travelling waves
using mathematical software Mathematica 7.0.

Example 3.1. Choosing c = −2, A = 4 and B = 4, then ϕ∗1
.
= −3.48929, ϕ∗2

.
=

−1.28917 and ϕ∗3
.
= 1.77846, so D1

.
= −49.7095, D2

.
= −7.44017 and D3

.
= 22.1497.

(1) Choosing h = 5, we get ϕ1
.
= −3.79386, ϕ2

.
= −3.13829, ϕ3

.
= 0.150996

and ϕ4
.
= 2.78116. Substituting these data into (2.75), (2.79) and (2.77), we draw

two unbounded periodic blow-up wave graphs as Fig. 1(a) and Fig. 1(b), and a
bounded smooth periodic wave graph as Fig. 2, respectively.

-10 -6 -2 2 6 10

-20

-16

-12

-8

-4

Ξ

v

(a)

-10 -6 -2 2 6 10
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12

16

20

Ξ

v

(b)

Figure 1. The two unbounded periodic blow-up waves with c=−2, A=4, B=4 and h=5.

-10 -6 -2 2 6 10

-3

-2

-1

0

Ξ

v

Figure 2. The bounded smooth periodic wave with c=−2, A=4, B=4 and h=5.

(2) Choosing h = 7.44017, we get ϕ1
.
= −3.48929, ϕ2

.
= 0.221659 and ϕ3

.
=

2.75692. Substituting these data into (2.28), we draw a bounded smooth solitary
wave graph as Fig. 3(a).

Example 3.2. Choosing c = −6, A = 4 and B = 4, then ϕ∗1
.
= −6.938, ϕ∗2

.
=

−2.86651 and ϕ∗3
.
= 0.804512, so D1

.
= −91.2461, D2

.
= −29.2876 and D3

.
= 165.534.

Choosing h = 29.2876, we get ϕ1
.
= −7.82988, ϕ2

.
= −5.77914 and ϕ3

.
=

0.804512. Substituting these data into (2.40), we draw a bounded smooth solitary
wave graph as Fig. 3(b).
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Example 3.3. Choosing c = 2, A = 1 and B = 4, then ϕ∗0
.
= 3.5251, so D0

.
=

−87.9564.

Choosing h = 90, we get ϕ1
.
= −1.53628− 2.19052i, ϕ1

.
= −1.53628 + 2.19052i,

ϕ2
.
= 3.53628 − 0.258965i and ϕ2

.
= 3.53628 + 0.258965i. Substituting these data

into (2.9) and (2.10), we draw two unbounded periodic wave graphs as Fig. 4(a)
and Fig. 4(b) respectively.

-2 -1 0 1 2
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-1

0

Ξ

v

(a) c = −2 and h = 7.44017

-4 -2 0 2 4

-6

-4
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0

Ξ

v

(b) c = −6 and h = 29.2876

Figure 3. The two bounded smooth solitary waves with A = 4 and B = 4.
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(b)

Figure 4. The two unbounded periodic waves with c = 2, A = 1, B = 4 and h = 90.

Example 3.4. Choosing c = 1, A = 0 and B = −1, then ϕ∗1 = −1, ϕ∗2 = 0.5 and
ϕ∗3 = 2, so D1 = D2 = −4 and D3 = 1.0625.

Choosing h = 4, we get ϕ1 = −1 and ϕ2 = 2.

(1) We take ϕ0 = −2, substituting these data into (2.46) and (2.47), we draw
two unbounded kink wave graphs as Fig. 5(a).

(2) We take ϕ0 = 3, substituting these data into (2.52) and (2.53), we draw two
unbounded kink wave graphs as Fig. 5(b).

(3) We take ϕ0 = 1, substituting these data into (2.49) and (2.50), we draw two
bounded kink wave graphs as Fig. 6.
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(a) ϕ0 = −2
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(b) ϕ0 = 3

Figure 5. The four unbounded kink waves with c = 1, A = 0, B = −1 and h = 4.
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Figure 6. The two bounded kink waves with c=1, A=0, B=−1, h=4 and ϕ0=1.

4. Conclusion

In this paper, we studied the bifurcation and global behavior of the gBK equation.
We gave the conditions for periodic waves, solitary waves, blow-up waves and kink
waves existing and we obtained representations of all the waves. On ξ − v plane,
their planar graphs are simulated under some parameters (see Figs. 1–6). The
unbounded periodic blow-up wave solutions and unbounded kink wave solutions in
this paper are new results to the gBK equation.
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