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FINITE ITERATIVE (R,S)-CONJUGATE
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COMPLEX COUPLED
SYLVESTER-TRANSPOSE EQUATIONS

Yajun Xie1 and Yifen Ke2,†

Abstract The iterative method of generalized complex coupled Sylvester-
transpose equations AXB + CY TD = E, MXTN + GYH = F over (R,S)-
conjugate matrix solution (X,Y ) is proposed. Usually, the type of matrix
arises from some physical problems with some form of generalized reflexive
symmetry. On the condition that the coupled matrix equations are consistent,
we show the solution pair (X∗, Y ∗) can be obtained by generalization of CG
iterative method within finite iterative steps in the absence of roundoff-error for
any initial guess chosen by the (R,S)-conjugate matrix. Moreover, the optimal
approximation (R,S)-conjugate matrix solutions can be derived by searching
the least Frobenius norm solution of the novel generalized complex coupled
Sylvester-transpose matrix equations. Finally, some numerical examples are
given to illustrate the presented iterative algorithm is efficient.
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1. Introduction
The Sylvester matrix equations have numerous applications in control theory, model
reduction, system stability, image restoration, pole assignment, decoupling tech-
niques for ordinary and partial differential equations, filtering, etc. [1, 6, 7, 10, 11,
15, 16, 26]. Particularly, Benner discussed two applications to solve Sylvester equa-
tions with factorized right-hand side which come from systems and control theory,
such as, observer design and model reduction using the cross-Gramian [4, 5]. It
is worthy of mention that, recently, Wei et al. investigated robust fast fusion of
multi-band images, i.e., hyperspectral data, based on solving a Sylvester matrix
equation [27,28].

By extending the well-known Jacobi and Gauss-Seidel iterations for Ax = b,
Ding et al. gained the GI method and least squares method for the Sylvester ma-
trix equation and some generalized forms [17–20]. Liang et al. given the mod-
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ified conjugate gradient iterative approach for the matrix equations A1XB1 +
C1X

TD1 = F1, A2XB2+C2X
TD2 = F2 [24]. Moreover, Masoud extended the GP-

BiCG method for solving the Sylvester transpose matrix equations
∑r

i=1(AiXBi +
CiX

TDi) = E, see [21] for more details. In recent years, the coupled matrix equa-
tions have received considerable attentions on account of wide applications in some
practical problems, for instance, the neural network and nonlinear programming,
dynamic analysis etc. Beik et al. presented the global Krylov subspace methods
for solving general coupled matrix equations in [2]. Furthermore, they also studied
the coupled Sylvester-transpose matrix equations over generalized centro-symmetric
matrices solution [3]. Dehghan et al. have obtained some achievements about var-
ious coupled Sylvester matrix equations, for more details, see [12–14]. Hajarian
considered the iterative approach for the periodic solution of the Sylvester matrix
equations ÂjX̂jB̂j+ĈjX̂j+1D̂j = Êj (j = 1, 2, · · · ), see [22]. Xie et al. proposed the
iterative method to solve the generalized coupled Sylvester-transpose linear matrix
equations over reflexive or antireflexive matrix [29,30], however they didn’t further
study the novel appearance of (R,S)-conjugate matrix solutions and discuss their
optimal solution forms which tend to be importantly for real computation.

If a linear differential operator contains no odd derivative terms with domain
and boundary condition symmetry, the corresponding matrix, say A, occurred ei-
ther from finite difference, boundary element, or finite element discretization, can
often be coped with in such a way that A possesses the SAS property [8], namely,
A = PAP, where P is a permutation matrix. As the extensions of reflexive matrix,
Trench presented the so-called (R,S)-conjugate matrix and investigated its char-
acterizations and properties in detail [25]. For the specific type of matrix, Chen
provided three examples that were obtained from physical problems in three dif-
ferent application fields: one deals with the altitude estimation of a level network
which yields a linear least-squares problem, the second is an electric network re-
sulting in a linear system, and the third problem arises from structural analysis
of trusses, for more details see [9]. Considering the practical applications, in the
present paper, we conceive and analyze an efficient algorithm for solving the follow-
ing generalized coupled complex Sylvester-transpose equations over (R,S)-conjugate
matrix solutions: AXB + CY TD = E,

MXTN +GYH = F,
(1.1)

where A, G ∈ Cm×p, C, M ∈ Cm×q, B, H ∈ Cq×n, D, N ∈ Cp×n, E, F ∈ Cm×n

are given constant matrices, X ∈ Cp×q, Y ∈ Cp×q are unknown matrices to be
determined.

As is known that the CG method is the popular and efficient iterative method for
the symmetric and positive definite linear system. By the Kronecker product and
Vec operator, matrix equation can be transformed into the linear systems. Then
the CG method can be applied to various of linear matrix equations on certain
condition. We have to consider some more cheap methods because of the high
computational expense once the dimensions of the matrices increasing. Based on
the above analysis, in this paper, we propose a modified conjugate gradient method
to solve the system (1.1) when the system is consistent and verify that the (R,S)-
conjugate matrix solution pair (X∗, Y ∗) can be obtained within finite iterative steps
in the absence of roundoff-error for any initial value given (R,S)-conjugate matrix.
Moreover, we prove that the optimal (R,S)-conjugate matrix can be derived by
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searching the least Frobenius norm solution of the new generalized complex coupled
Sylvester-transpose linear matrix equations.

As a matter of convenience, we use the following notation throughout this paper:
Let Rm×n , Cm×n and SORm×m denote the set of m × n real, complex matrix
and m-order symmetric orthogonal matrix, respectively. For A ∈ Cm×n, it writes
A+, AH , A, AT , R(A) and ∥A∥ to denote Moore-Penrose generalized inverse, the
conjugate transpose, conjugate, transpose, the column space and the Frobenius
norm of the matrix A, respectively. For any matrices A = (aij), B = (bij), matrix
A ⊗ B denotes the Kronecker product defined as A ⊗ B = (aijB). For the matrix
X = (x1, x2, · · · , xn) ∈ Cm×n, vec(X) denotes the vec operator defined as vec(X) =
(xT

1 , x
T
2 , · · · , xT

n )
T ∈ Cmn. invvec(X) denotes the inverse operation of vec(X). The

inner product in space Cm×n is defined as

⟨A,B⟩ = Retr(BHA), ∀A, B ∈ Cm×n, (1.2)

The inner product space is denoted as (Cm×n,R, ⟨·, ·⟩).

Definition 1.1. Let R ∈ SORn×n, S ∈ SORm×m, namely, R = RT = R−1,
S = ST = S−1. An m×n complex matrix X is said to be a (R,S)-conjugate matrix,
if RXS = X, and denote X ∈ RSCm×n.

Definition 1.2. Let R ∈ SORn×n, S ∈ SORm×m, namely, R = RT = R−1,
S = ST = S−1. An m× n complex matrix X is said to be a shew (R,S)-conjugate
matrix, if RXS = −X, and denote X ∈ SRSCm×n.

The rest of this paper is organized as follows. In section 2, we construct the
modified conjugate gradient (MCG) method for solving the system (1.1) and show
that a (R,S)-conjugate solution pair (X∗, Y ∗) of (1.1) can be obtained by the MCG
method within finite iterative steps in the absence of roundoff-error for any given
initial point of (R,S)-conjugate matrix. Furthermore, we demonstrate the least
Frobenius norm solution can be obtained by setting a kind of special initial matrix.
In section 3, it obtains the optimal approximation (R,S)-conjugate matrix solution
by searching the least Frobenius norm solution of the new generalized coupled com-
plex Sylvester matrix equations. In section 4, some numerical examples are given to
illustrate the introduced iterative algorithm is efficient. Conclusions are arranged
in section 5.

2. The iterative method
First of all, in this section, some basic properties of the permutation matrix will be
recalled. Then the problem (1.1) will be gradually transformed into its equivalent
form by the Kronecker product and relevant knowledge. In addition, the necessary
and sufficient conditions of the consistency of the linear matrix equations (1.1)
will be given further. Finally, the modified conjugate gradient method (MCG)
for solving (1.1) based on the classical conjugate gradient method is proposed and
discussed in detail.

According to Theorem 4.3.8 and Corollary 4.3.10 in [23], for any X ∈ Cp×q,
there exists a permutation matrix Ppq ∈ Rpq×pq such that

vec(XT ) = Ppqvec(X), (2.1)
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where

Ppq =

p∑
i=1

q∑
j=1

Eij ⊗ ET
ij , Eij = eie

T
j ,

and ei ∈ Rp (ej ∈ Rq) is a column vector with a unity in the i-th (j-th) entry and
zeros elsewhere. Then it can be easily shown that

PpqPqp = Ipq, P
T
pq = P−1

pq = Ppq, Pqpvec(X
T ) = vec(X),

and
B ⊗A = PT

mq(A⊗B)Ppn, (A⊗B)Ppn = PT
qm(B ⊗A), (2.2)

where A ∈ Cm×p, B ∈ Cq×n.
From above discussion and the definition of Kronecker product, if the (R-S)-

conjugate matrix solutions exist, then Eqs. (1.1) are equivalent to BT ⊗A (DT ⊗ C)Ppq

(NT ⊗M)Ppq HT ⊗G

vec(X)

vec(Y )

 =

vec(E)

vec(F )

 . (2.3)

Let

T :=

 BT ⊗A (DT ⊗ C)Ppq

(NT ⊗M)Ppq HT ⊗G

 , (2.4)

z :=

vec(X)

vec(Y )

 , f :=

vec(E)

vec(F )

 . (2.5)

As a result, (2.3) can be written as

Tz = f. (2.6)
Lemma 2.1. Eqs. (1.1) are consistent for the (R,S)-conjugate matrices if and only
if

rank(T ) = rank(T, f).

Moreover, if
rank(T ) = rank(T, f) = 2mn,

then, Eqs. (1.1) have a unique (R,S)-conjugate solution.

Lemma 2.2. Eqs. (1.1) are consistent for the (R,S)-conjugate matrices if and only
if the following matrix equations

AXB + CY TD = E,

MXTN +GYH = F,

ARXSB + CSY TRD = E,

MSXTRN +GRY SH = F,

(2.7)

are consistent.
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Proof. If Eqs. (1.1) exist the solutions X∗, Y ∗ ∈ RSCp×q, namely, X∗ =
RX∗S, Y ∗ = RY ∗S, it is evident that X∗, Y ∗ satisfy Eqs. (2.7). In fact,

ARX∗SB + CS(Y ∗)TRD = ARX∗SB + CS(Y ∗)TRD

= AX∗B + C(Y ∗)TD = E,

and

MS(X∗)TRN +GRY ∗SH = MS(X∗)TRN +GR(Y ∗)SH

= M(X∗)TN +GY ∗H = F.

On the other hand, suppose that the solutions X̂, Ŷ ∈ Cp×q of Eqs. (2.7)
exist, by choosing X∗ = 1

2 (X̂ + RX̂S), Y ∗ = 1
2 (Ŷ + RŶ S), as well as notice that

X∗, Y ∗ ∈ RSCp×q, we have

AX∗B + C(Y ∗)TD =
1

2

(
A(X̂ +RX̂S)B + C(Ŷ +RŶ S)TD

)
=

1

2

(
AX̂B + CŶ TD +ARX̂SB + C(RŶ S)TD

)
=

1

2

(
AX̂B + CŶ TD +ARX̂SB + CSŶ TRD

)
=

1

2

(
E + E

)
= E

and

M(X∗)TN +GY ∗H =
1

2

(
M(X̂ +RX̂S)TN +G(Ŷ +RŶ S)H

)
=

1

2

(
MX̂TN +GŶ H +M(RX̂S)TN +GRŶ SH

)
=

1

2

(
MX̂TN +GŶ H +MSX̂TRN +GRŶ SH

)
=

1

2
(F + F ) = F.

Hence, X∗, Y ∗ are the solution of Eqs. (1.1). □
Now, the following so-called modified conjugate gradient (MCG)method to solve

the (R-S)-conjugate solution of (1.1) will be proposed exactly.

( MCG method for (R-S)-conjugate solution )
Step 1 Input A, G ∈ Cm×p, C, M ∈ Cm×q, B, H ∈ Cq×n, D, N ∈ Cp×n,
E, F ∈ Cm×n, choose R ∈ SORp×p, S ∈ SORq×q and initial matrix X1 ∈ RSCp×q,
Y1 ∈ RSCp×q in Definition 1.1. Compute

R1 :=

R
(1)
1 0

0 R
(2)
1

 ,

R
(1)
1 = E −AX1B − CY T

1 D, R
(2)
1 = F −MXT

1 N −GY1H,

R̃1 :=

 R̃
(1)
1 0

0 R̃
(2)
1

 ,



314 Y. Xie & Y. Ke

R̃
(1)
1 = AHR

(1)
1 BH +NR

(2)
1

T
M, R̃

(2)
1 = DR

(1)
1

T
C +GHR

(2)
1 HH ,

M1 =
1

2
(R̃

(1)
1 +RR̃

(1)
1 S), N1 =

1

2
(R̃

(2)
1 +RR̃

(2)
1 S).

Set k := 1.
Step 2 If Rk = 0 or Rk ̸= 0 and Mk = Nk = 0, stop; Otherwise, go to Step 3.
Step 3 Update the sequences

Xk+1 = Xk + αkMk, Yk+1 = Yk + αkNk,

Rk+1 :=

R
(1)
k+1 0

0 R
(2)
k+1

 ,

R
(1)
k+1 = E −AXk+1B − CY T

k+1D, R
(2)
k+1 = F −MXT

k+1N −GYk+1H,

R̃k+1 :=

 R̃
(1)
k+1 0

0 R̃
(2)
k+1

 ,

R̃
(1)
k+1 = AHR

(1)
k+1B

H +NR
(2)
k+1

T
M, R̃

(2)
k+1 = DR

(1)
k+1

T
C +GHR

(2)
k+1H

H ,

Mk+1 =
1

2
(R̃

(1)
k+1 +RR̃

(1)
k+1S) + βkMk, Nk+1 =

1

2
(R̃

(2)
k+1 +RR̃

(2)
k+1S) + βkNk,

(2.8)

where
αk :=

∥Rk∥2

∥Mk∥2 + ∥Nk∥2
, βk :=

∥Rk+1∥2

∥Rk∥2
. (2.9)

Step 4 Set k := k + 1, return to Step 2.

( MCG method for skew (R-S)-conjugate solution )
Step 1 Input A, G ∈ Cm×p, C, M ∈ Cm×q, B, H ∈ Cq×n, D, N ∈ Cp×n,
E, F ∈ Cm×n, choose R ∈ SORp×p, S ∈ SORq×q and initial matrix X1 ∈ SRSCp×q,
Y1 ∈ SRSCp×q in Definition 1.2. Compute

R1 :=

R
(1)
1 0

0 R
(2)
1

 ,

R
(1)
1 = E −AX1B − CY T

1 D, R
(2)
1 = F −MXT

1 N −GY1H,

R̃1 :=

 R̃
(1)
1 0

0 R̃
(2)
1

 ,

R̃
(1)
1 = AHR

(1)
1 BH +NR

(2)
1

T
M, R̃

(2)
1 = DR

(1)
1

T
C +GHR

(2)
1 HH ,

M1 =
1

2
(R̃

(1)
1 −RR̃

(1)
1 S), N1 =

1

2
(R̃

(2)
1 −RR̃

(2)
1 S).

Set k := 1.
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Step 2 If Rk = 0 or Rk ̸= 0 and Mk = Nk = 0, stop; Otherwise, go to Step 3.
Step 3 Update the sequences

Xk+1 = Xk + αkMk, Yk+1 = Yk + αkNk,

Rk+1 :=

R
(1)
k+1 0

0 R
(2)
k+1

 ,

R
(1)
k+1 = E −AXk+1B − CY T

k+1D, R
(2)
k+1 = F −MXT

k+1N −GYk+1H,

R̃k+1 :=

 R̃
(1)
k+1 0

0 R̃
(2)
k+1

 ,

R̃
(1)
k+1 = AHR

(1)
k+1B

H +NR
(2)
k+1

T
M, R̃

(2)
k+1 = DR

(1)
k+1

T
C +GHR

(2)
k+1H

H ,

Mk+1 =
1

2
(R̃

(1)
k+1 −RR̃

(1)
k+1S) + βkMk, Nk+1 =

1

2
(R̃

(2)
k+1 −RR̃

(2)
k+1S) + βkNk,

(2.10)

where
αk :=

∥Rk∥2

∥Mk∥2 + ∥Nk∥2
, βk :=

∥Rk+1∥2

∥Rk∥2
. (2.11)

Step 4 Set k := k + 1, return to Step 2.
Now, it will show that the sequence pair {(Xk, Yk)} generated by Algorithm 1

converges to the solution (X∗, Y ∗) of (1.1) within finite iterative steps in the absence
of roundoff-error for any initial value over (R,S)-conjugate matrix.

For matrices A, B, C, D with suitable dimensions, some vital and useful
results will be presented explictly by the definition of the inner product space
(Cm×n,R, ⟨·, ·⟩) and properties of matrix trace:

⟨A,B⟩ = Re[tr(BHA)] = Re[tr(ABH)] = Re[tr(ABH)

= Re[tr(AHB)] = ⟨B,A⟩ = ⟨BT , AT ⟩,
(2.12)

⟨ABC,D⟩ = Re[tr((ABC)HD)]

= Re[tr(CHBHAHD)] = Re[tr(BHAHDCH)]

= ⟨B,AHDCH⟩
(2.13)

and

⟨A,B⟩ = Re[tr(A
H
B)] (2.14)

= Re[tr(AHB)] = Re[tr(AHB)]

= ⟨A,B⟩.

Moreover, for arbitrary complex matrix Z ∈ Cp×q if R ∈ SORp×p, S ∈ SORq×q,
and X ∈ RSCp×q, then

⟨X,
Z +RZS

2
⟩ = 1

2

(
⟨X,Z⟩+ ⟨X,RZS⟩

)
(2.15)
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=
1

2

(
⟨X,Z⟩+ ⟨RXS,Z⟩

)
=

1

2

(
⟨X,Z⟩+ ⟨X,Z⟩

)
= ⟨X,Z⟩.

Lemma 2.3. Let the sequences {Rk}, {Mk}, {Nk}, {R̃(1)
j }, {R̃(2)

j }, {αk} be gener-
ated by Algorithm 1, then we have

⟨Rk+1, Rj⟩ = ⟨Rk, Rj⟩ − αk

(
⟨Mk, R̃

(1)
j ⟩+ ⟨Nk, R̃

(2)
j ⟩

)
, k, j = 1, 2, · · · .

Proof. By Algorithm 1 and formulas (2.11)-(2.14), it gets

⟨Rk+1, Rj⟩ = ⟨R(1)
k+1, R

(1)
j ⟩+ ⟨R(2)

k+1, R
(2)
j ⟩

= ⟨E −AXk+1B − CY T
k+1D,R

(1)
j ⟩+ ⟨F −MXT

k+1N −GYk+1H,R
(2)
j ⟩

= ⟨E −A(Xk + αkMk)B − C(Yk + αkNk)
TD,R

(1)
j ⟩+

⟨F −M(Xk + αkMk)
TN −G(Yk + αkNk)H,R

(2)
j ⟩

= ⟨E −AXkB − CY T
k D,R

(1)
j ⟩+ ⟨F −MXT

k N −GYkH,R
(2)
j ⟩

−αk

(
⟨AMkB + CNT

k D,R
(1)
j ⟩+ ⟨MMT

k N +GNkH,R
(2)
j ⟩

)
= ⟨Rk, Rj⟩ − αk

(
⟨Mk, A

HR
(1)
j BH +NR

(2)
j

T
M⟩

+⟨Nk, DR
(1)
j

T
C +GHR

(2)
j HH⟩

)
= ⟨Rk, Rj⟩ − αk

(
⟨Mk, R̃

(1)
j ⟩+ ⟨Nk, R̃

(2)
j ⟩

)
,

which completes the proof. □
Lemma 2.4. Let the sequences {Rk}, {Mk}, {Nk} be generated by Algorithm 1,
then we have

⟨Ri, Rj⟩ = 0, ⟨Mi,Mj⟩+ ⟨Ni, Nj⟩ = 0, i, j = 1, 2, · · · , k, i ̸= j.

Proof. Firstly, the objective is to find the following fact

⟨Ri, Rj⟩ = 0, ⟨Mi,Mj⟩+ ⟨Ni, Nj⟩ = 0, 1 ≤ j < i ≤ k. (2.16)

By mathematical induction. For k = 2, by Lemma 2.3, relation (2.15) and notice
that Mj ∈ RSCp×q, Nj ∈ RSCp×q, j = 1, 2, · · · , k, generated by Algorithm 1, we
get

⟨R2, R1⟩ = ⟨R1, R1⟩ − α1(⟨M1, R̃
(1)
1 ⟩+ ⟨N1, R̃

(2)
1 ⟩) (2.17)

= ∥R1∥2 − α1

(
⟨M1,

R̃
(1)
1 +RR̃

(1)
1 S

2
⟩+ ⟨N1,

R̃
(2)
1 +RR̃

(2)
1 S

2
⟩
)

= ∥R1∥2 −
∥R1∥2

∥M1∥2 + ∥N1∥2
(
⟨M1,M1⟩+ ⟨N1, N1⟩

)
= ∥R1∥2 − ∥R1∥2 = 0.
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In addition, by formulas (2.10), (2.11), (2.15), (2.17) and Lemma 2.3, it gives rise
to

⟨M2,M1⟩+⟨N2, N1⟩ =
〈 R̃(1)

2 +RR̃
(1)
2 S

2
+β1M1,M1

〉
+
〈 R̃(2)

2 +RR̃
(2)
2 S

2
+β1N1, N1

〉
= ⟨R̃(1)

2 ,M1⟩+ ⟨R̃(2)
2 , N1⟩+ β1(∥M1∥2 + ∥N1∥2)

=
1

α1

(
⟨R1, R2⟩ − ⟨R2, R2⟩

)
+ β1(∥M1∥2 + ∥N1∥2)

= 0.

Therefore, (2.16) holds for k = 2.
Assume that (2.16) holds for k = l (l > 2). For k = l+1, it follows from Lemma

2.3, Algorithm 1 and (2.15) that

⟨Rl+1, Rl⟩ = ⟨Rl, Rl⟩ − αl

(
⟨Ml, R̃

(1)
l ⟩+ ⟨Nl, R̃

(2)
l ⟩

)
= ∥Rl∥2 − αl

(
⟨Ml,

R̃
(1)
l +RR̃

(1)
l S

2
⟩+ ⟨Nl,

R̃
(2)
l +RR̃

(2)
l S

2
⟩
)

= ∥Rl∥2 − αl

(
⟨Ml,Ml − βl−1Ml−1⟩+ ⟨Nl, Nl − βl−1Nl−1⟩

)
= ∥Rl∥2 − αl

(
∥Ml∥2 + ∥Nl∥2

)
= 0,

where the fourth equality holds by the induction assumption.
By Algorithm 1, (2.10), (2.11), (2.15) and induction, it generates

⟨Ml+1,Ml⟩+ ⟨Nl+1, Nl⟩ =
〈 R̃(1)

l+1 +RR̃
(1)
l+1S

2
+ βlMl,Ml

〉
+
〈 R̃(2)

l+1 +RR̃
(2)
l+1S

2
+ βlNl, Nl

〉
= ⟨R̃(1)

l+1,M1⟩+ ⟨R̃(2)
l+1, Nl⟩+ βl(∥Ml∥2 + ∥Nl∥2)

=
1

αl

(
⟨Rl, Rl+1⟩ − ⟨Rl+1, Rl+1⟩

)
+ βl(∥Ml∥2 + ∥Nl∥2)

= 0.

On the other hand, suppose that

⟨Rl, Rj⟩ = 0, ⟨Ml,Mj⟩+ ⟨Nl, Nj⟩ = 0, j = 1, 2, · · · , l − 2.

In fact, for j = l − 1, the conclusions have been obtained by the above analysis.
Next, the following results will be definitely certified

⟨Rl+1, Rj⟩ = 0, ⟨Ml+1,Mj⟩+ ⟨Nl+1, Nj⟩ = 0, j = 1, 2, · · · , l.

For j = 1, by Lemma 2.3, relation (2.15) and the induction, it deduces

⟨Rl+1, R1⟩ = ⟨Rl, R1⟩ − αl

(
⟨Ml, R̃

(1)
1 ⟩+ ⟨Nl, R̃

(2)
1 ⟩

)
= −αl

(
⟨Ml,

R̃
(1)
1 +RR̃

(1)
1 S

2
⟩+ ⟨Nl,

R̃
(2)
1 +RR̃

(2)
1 S

2
⟩
)
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= −αl

(
⟨Ml,M1⟩+ ⟨Nl, N1⟩

)
= 0.

Then, for j = 2, 3, · · · , l − 1, one obtains

⟨Rl+1, Rj⟩ = ⟨Rl, Rj⟩ − αl

(
⟨Ml, R̃

(1)
j ⟩+ ⟨Nl, R̃

(2)
j ⟩

)
= −αl

(
⟨Ml,

R̃
(1)
j +RR̃

(1)
j S

2
⟩+ ⟨Nl,

R̃
(2)
j +RR̃

(2)
j S

2
⟩
)

= −αl

(
⟨Ml,Mj − βj−1Mj−1⟩+ ⟨Nl, Nj − βj−1Nj−1⟩

)
= −αl

(
⟨Ml,Mj⟩+ ⟨Nl, Nj⟩ − βj−1

(
⟨Ml,Mj−1⟩+ ⟨Nl, Nj−1⟩

))
= 0.

Moreover, by applying Lemma 2.3, (2.15) and the induction, for j = 1, 2, · · · , l− 1,
it yields that

⟨Ml+1,Mj⟩+ ⟨Nl+1, Nj⟩ = ⟨
R̃

(1)
l+1 +RR̃

(1)
l+1S

2
,Mj⟩+ ⟨

R̃
(2)
l+1 +RR̃

(2)
l+1S

2
, Nj⟩

+βl

(
⟨Ml,Mj⟩+ ⟨Nl, Nj⟩

)
= ⟨R̃(1)

l+1,Mj⟩+ ⟨R̃(2)
l+1, Nj⟩

=
1

αl

(
⟨Rj , Rl+1⟩ − ⟨Rj+1, Rl+1⟩

)
= 0.

Therefore, (2.16) holds for k = l + 1. When j < i, by the symmetric property
of the inner product space, it will gets (2.16). This completes the proof. □
Lemma 2.5. Suppose that (1.1) is consistent, i.e. (2.7) holds. Let (X∗, Y ∗) be an
arbitrary solution pair of (1.1). Then for any initial guess X1, Y1 ∈ RSCp×q, the
sequences {Xk}, {Yk}, {Rk}, {Mk}, {Nk} generated by Algorithm 1 satisfy

⟨X∗ −Xk,Mk⟩+ ⟨Y ∗ − Yk, Nk⟩ = ∥Rk∥2 k = 1, 2, · · · . (2.18)

Proof. The conclusion will be accomplished by mathematical induction. Notice
that the sequences pair {(Xk, Yk)}, (k = 1, 2, · · · ) generated by Algorithm 1 are all
(R,S)-conjugate matrix, since initial matrix (X1, Y1) is chosen with (R,S)-conjugate
matrix. Then for k = 1, it follows from Algorithm 1 and formulas (2.13)-(2.15) that

⟨X∗−X1,M1⟩+⟨Y ∗−Y1, N1⟩

=⟨X∗−X1,
R̃

(1)
1 +RR̃

(1)
1 S)

2
⟩+⟨Y ∗−Y1,

R̃
(2)
1 +RR̃

(2)
1 S)

2
⟩

=⟨X∗ −X1, R̃
(1)
1 ⟩+ ⟨Y ∗ − Y1, R̃

(2)
1 ⟩

=⟨X∗ −X1, A
HR

(1)
1 BH +NR

(2)
1

T
M⟩

+ ⟨Y ∗ − Y1, DR
(1)
1

T
C +GHR

(2)
1 HH⟩

=⟨X∗ −X1, A
HR

(1)
1 BH⟩+ ⟨Y ∗ − Y1, DR

(1)
1

T
C⟩
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+ ⟨X∗ −X1, NR
(2)
1

T
M⟩+ ⟨Y ∗ − Y1, G

HR
(2)
1 HH⟩

=⟨A(X∗ −X1)B,R
(1)
1 ⟩+ ⟨C(Y ∗ − Y1)

TD,R
(1)
1 ⟩

× ⟨M(X∗ −X1)
TN,R

(2)
1 ⟩+ ⟨G(Y ∗ − Y1)H,R

(2)
1 ⟩

=⟨AX∗B + CY ∗TD −AX1B − CY T
1 D,R

(1)
1 ⟩

× ⟨MX∗TN +GY ∗H −MXT
1 N −GY1H,R

(2)
1 ⟩

=⟨R(1)
1 , R

(1)
1 ⟩+ ⟨R(2)

1 , R
(2)
1 ⟩

=∥R1∥2.

The seventh equality holds since (X∗, Y ∗) is a solution of the system (1.1). Hence,
(2.18) holds for k = 1.

Assume that (2.18) holds for k = l, (l ≥ 1). For k = l + 1, it follows from the
update formulas of Xl+1, Yl+1 that

⟨X∗ −Xl+1,Ml⟩+ ⟨Y ∗ − Yl+1, Nl⟩ = ⟨X∗ −Xl − αlMl,Ml⟩ (2.19)
+⟨Y ∗ − Yl − αlNl, Nl⟩

= ⟨X∗ −Xl,Ml⟩+ ⟨Y ∗ − Yl, Nl⟩

−αl

(
∥Ml∥2 + ∥Nl∥2⟩

)
= ∥Rl∥2 − ∥Rl∥2 = 0.

In a similar way as above discussion, one immediately has

⟨X∗ −Xl+1, R̃
(1)
l+1⟩+ ⟨Y ∗ − Yl+1, R̃

(2)
l+1⟩ (2.20)

= ⟨X∗ −Xl+1, A
HR

(1)
l+1B

H +NR
(2)
l+1

T
M⟩

+⟨Y ∗ − Yl+1, DR
(1)
l+1

T
C +GHR

(2)
l+1H

H⟩

= ⟨A(X∗ −Xl+1)B,R
(1)
l+1⟩+ ⟨M(X∗ −Xl+1)

TN,R
(2)
l+1⟩

+⟨C(Y ∗ − Yl+1)
TD,R

(1)
l+1⟩+ ⟨G(Y ∗ − Yl+1)H,R

(2)
l+1⟩

= ⟨AX∗B + CY ∗TD −AXl+1B − CYl+1
TD,R

(1)
l+1⟩

+⟨MX∗TN +GY ∗H −MXl+1
TN −GYl+1H,R

(2)
l+1⟩

= ⟨R(1)
l+1, R

(1)
l+1⟩+ ⟨R(2)

l+1, R
(2)
l+1⟩

= ∥Rl+1∥2.

From, (2.19), (2.20), it generates

⟨X∗ −Xl+1,Ml+1⟩+ ⟨Y ∗ − Yl+1, Nl+1⟩ = ⟨X∗ −Xl+1,
R̃

(1)
l+1 +RR̃

(1)
l+1S

2
+ βlMl⟩

+⟨Y ∗ − Yl+1,
R̃

(2)
l+1 +RR̃

(2)
l+1S

2
+ βlNl⟩

= ⟨X∗ −Xl+1, R̃
(1)
l+1⟩+ ⟨Y ∗ − Yl+1, R̃

(2)
l+1⟩

= ∥Rl+1∥2.

This completes the proof. □
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Remark 2.1. The above lemmas are achieved with the assumption that initial
guess is (R,S)-conjugate matrix. Similarly, if the initial guess is shew (R,S)-conjugate
matrix, the same results can be obtained easily. So, it doesn’t need to show these
results in details.

Theorem 2.1. Assume that the system (1.1) is consistent. Then, for any initial
matrices X1, Y1 ∈ RSCp×q, an exact solution of the system (1.1) can be derived at
most 2mn+ 1 iteration steps by Algorithm 1.

Proof. Assume Rk ̸= 0 for k = 1, 2, · · · , 2mn. It follows from Lemma 2.5 that
∥Mk∥2 + ∥Nk∥2 ̸= 0 for k = 1, 2, · · · , 2mn. Then R2mn+1 will be derived by Algo-
rithm 1. According to Lemma 2.4, we know ⟨Ri, Rj⟩ = 0 for i, j = 1, 2, · · · , 2mn+
1, i ̸= j. Then the matrix sequence of R1, R2, · · · , R2pq is the orthogonal basis of
the linear space

H =

{
H|H =

H1 0

0 H2

}
,

where H1,H2 ∈ Rm×n. Since R2mn+1 ∈ H and ⟨R2mn+1, Rk⟩ = 0 for k =
1, 2, · · · , 2mn, hence R2mn+1 = 0, which completes the proof. □

When system (1.1) is consistent, the solution may not be unique. However, it
needs to find the unique least Frobenius norm solution of the system (1.1) for some
practical problems. To this end, the following important lemma will be introduced.

Lemma 2.6. Suppose that linear matrix equation Ax = b has a solution x∗ ∈
R(AH). Then x∗ is the unique least Frobenius norm solution of Ax = b.

Proof. By singular value decomposition of matrix A, it gives rise to

A = U

Σ 0

0 0

V H = U1ΣV
H
1 ,

where U = (U1, U2), V = (V1, V2) are unitary matrices.
Obviously, the unique least norm solution of Ax = b is

x∗ = A+b = V1Σ
−1UH

1 ∈ R(V1).

Note that

x∗ ∈ R(AH) = R(V1ΣU
H
1 ) ∈ R(V1).

Therefore, x∗ is the unique least Frobenius norm solution of Ax = b. □
Theorem 2.2. Suppose the system (1.1) is consistent. By choosing the initial
matrix pair

X1 = AHU1B
H +NV T

1 M +RATU1B
TS +RNV H

1 MS, (2.21)
Y1 = DUT

1 C +GHV1H
H +RDUH

1 CS +RGTV1H
TS, (2.22)

where U1, V1 ∈ Cm×n are two arbitrary matrices, (especially, take X1 = Y1 = 0 ∈
Cp×q ), then the solution (X∗, Y ∗) given by Algorithm 1 is the unique least Frobenius
norm solution of system (1.1).
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Proof. From Lemma 2.2, (2.7) is equivalent to

T̂ z = f̂ , (2.23)

where

T̂ :=


BT ⊗A (DT ⊗ C)Ppq

(NT ⊗M)Ppq HT ⊗G

BHS ⊗AR (DHR⊗ CS)Ppq

(NHR⊗MS)Ppq HHS ⊗GR

 , (2.24)

z :=

vec(X)

vec(Y )

 , f̂ :=


vec(E)

vec(F )

vec(E)

vec(F )

 .

For U1, V1 ∈ Cm×n, it follows from the formulas (2.21), (2.22) and (2.2) thatvec(X1)

vec(Y1)

 =

 B ⊗AH (MH ⊗N)Pmn (SB)⊗ (RAT )
(
(SMT )⊗ (RN)

)
Pmn

(CH ⊗D)Pmn H ⊗GH
(
(SCT )⊗ (RD)

)
Pmn (SH)⊗ (RGT )



×


vec(U1)

vec(V1)

vec(U1)

vec(V1)

 ∈ R(T̂H).

(2.25)
Clearly, if we select X1, Y1 according to the formulas (2.21) and (2.22), respec-

tively, then matrices Xk, Yk generated by Algorithm 1 will satisfyvec(Xk)

vec(Yk)

 ∈ R(T̂H).

Hence, from Lemma 2.6, the solution (X∗, Y ∗) generated by Algorithm 1 is the
unique least Frobenius norm solution of system (1.1). □

3. The optimal (R,S)-conjugate solution
In this section, the optimal approximate solution problem of the system (1.1) will
be reconsidered as follows:

∥X̃ − X̂∥+ ∥Ỹ − Ŷ ∥ = min
X, Y ∈S

∥X − X̂∥+ ∥Y − Ŷ ∥, (3.1)

where, X̂, Ŷ ∈ Cp×q are given matrices, S denotes non-empty solution set of system
(1.1). X̃, Ỹ are the matrices to be determined.
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Firstly, for P ∈ RSCp×q, Q ∈ SRSCp×q, notice that the relation

⟨P,Q⟩ = Re[tr(PHQ)] = Re[tr(SPTRQ)] (3.2)
= Re[tr(PTRQS)] = −Re[tr(PTQ)]

= −Re[tr((PTQ)T )] = −Re[tr(QHP )]

= −⟨P,Q⟩

holds.
Next, an approach of solving the optimal approximate solution of the problem

(3.1) will be provided. Since the system (1.1) is consistent, note that X, Y ∈
RSCp×q as well as (3.2), one gets

∥X − X̂∥2 + ∥Y − Ŷ ∥2

=∥X − X̂ +RX̂S

2
− X̂ −RX̂S

2
∥2 + ∥Y − Ŷ +RŶ S

2
− Ŷ −RŶ S

2
∥2

=∥X − X̂ +RX̂S

2
∥2 + ∥Y − Ŷ +RŶ S

2
∥2 + ∥X̂ −RX̂S

2
∥2 + ∥ Ŷ −RŶ S

2
∥2

:=∥X ′∥2 + ∥Y ′∥2 + C0,
(3.3)

where

X ′=X− X̂+RX̂S

2
, Y ′ = Y − Ŷ +RŶ S

2
, C0 = ∥X̂ −RX̂S

2
∥2 + ∥ Ŷ −RŶ S

2
∥2.

In addition, system (1.1) can be written as

AX ′B + C(Y ′)TD = E −A
X̂ +RX̂S

2
B − C(

Ŷ +RŶ S

2
)TD := E′,

and

M(X ′)TN +GY ′H = F −M(
X̂ +RX̂S

2
)TN −G

Ŷ +RŶ S

2
H := F ′.

Therefore, the optimal approximate (R,S)-conjugate solution of the system (1.1)
will be obtained by solving the least Frobenius norm solution pairs (X ′)∗, (Y ′)∗ of
the following generalized complex coupled Sylvester-transpose matrix equations

AX ′B + C(Y ′)TD = E′, M(X ′)TN +GY ′H = F ′.

Finally, the optimal approximate (R,S)-conjugate solution is normally expressed as

X̃ = (X ′)∗ +
X̂ +RX̂S

2
, Ỹ = (Y ′)∗ +

Ŷ +RŶ S

2
. (3.4)

4. Numerical experiments
In this section, we report some numerical results to illustrate the efficiency of Algo-
rithm 1. The tests have been carried out by MATLAB R2011b (7.13). The relevant



Finite Iterative (R,S)-conjugate solutions of . . . 323

parameters of convergence performance including iteration step (denoted as ‘IT’),
elapsed CPU time (denoted as ‘CPU’), as well as the residual error (denoted as
‘RES’) defined by

RES := ∥E −AXkB − CY T
k D∥+ ∥F −MXT

k N −GYkH∥,

the relative error (denoted as ’δk’) defined by

δk :=
∥Xk −X∗∥+ ∥Yk − Y ∗∥

∥X∗∥+ ∥Y ∗∥
.

The stop criterion is set with RES < 10−10.

Example 4.1. Firstly, consider Eqs. (1.1) with the following matrices:

A =



8− i 4 + i 3− i

1− 2i 1 + 2i 1 + 3i

2− 2i 1− 6i 1− 5i

5 + i 4− i 5 + 2i

1 + i 3− i 1 + i


, B =


7 + 2i 1− i 1− 2i 1 + 3i 1− 2i

1 + 6i 1− 5i 1 + 4i 1− 4i 9 + 3i

1− 2i 1− 3i 2i 2− i 1 + i

1− 2i 1 + 3i 2− 2i 1 + 4i 1− i

 ,

C=



1 + i 1− i 2 + 2i −3− i

3 + 2i 4 + i 2− i 2 + i

1− i 4− i 15 + i 1− i

−3− i −1 + i −2 + i 2− i

2− i 4 + i 1− 3i 2 + 2i


, D=


3 + 2i 11− 2i 3− i 16 + i 1− i

1 + 3i 5− i 4i −2i 2− 2i

2− 2i 1− 3i 2− i 1 + i 1− i

,

M =



3 + i 3− 2i 6 + 2i 3− i

2 + 2i 3 + i 2− i 2 + i

1 + i 2− i 3 + i 4− i

1− i −1 + i 1 + i 3 + i

4− 2i 2 + i 1− 3i 1− i


, N =


2− 2i 2 + 2i 3 + 5i 1− i 2 + i

2− i 5 + i 1− 4i 2i 1 + 2i

2− 2i 1− 3i 2− i 1− i 1 + i

 ,

G =



12− i 1 + i 3− i

1− i 1 + 2i 1− 2i

3− 2i −3i 2− 5i

3 + i 2− 2i 1− 2i

1− i 3− i 1− i


, H =


1− 3i 3 + i 1− 2i 4 + 3i 1− 2i

1 + 3i 4− 2i 2− 2i 3− 3i 2− 3i

2i 3− 3i 3− 2i 1 + i 1− i

1 + i 1− i 2 + i 1− 3i 2 + 2i

 ,
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where

R =


1 0 0

0 0 1

0 1 0

 , S =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

and E, F are generated by the given exact solution (X∗, Y ∗).

We choose the initial matrix pair X1 = 0, Y1 = 0. By implementing Algorithm
1, we obtain the exact solution just need to 34 steps of iteration numbers:

X34 =


2 + 2i 2− 2i 1 + i 1− i

1− 3i 1 + 2i 3− i 4 + i

1− 2i 1 + 3i 4− i 3 + i

 ,

Y34 =


3 + 3i 3− 3i 2 + i 2− i

2− 3i 1 + 3i 3− 2i 4 + 2i

1− 3i 2 + 3i 4− 2i 3 + 2i

 .

The elapsed CPU time is 0.0098 (t), the corresponding residual error, relative
error and least Frobenius norms are

RES = 2.0703e− 011, δk = 9.1735e− 015,

∥X34∥ = 10.1980, ∥Y34∥ = 12.5698,

respectively. The above results are presented in Fig. 1.

5 10 15 20 25 30 35 40
10

−15

10
−10

10
−5

10
0

Iterative k 

 

 

Residual error

 Relative error

Figure 1. The Relative error and Residual error for Example 4.1.
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Example 4.2. Consider Eqs. (1.1) with the following matrices:

A =



1 + i 1− i 2 + 2i −3− i

3 + 2i 4 + i 2− i 2 + i

1− i 4− i 7 + i 2− i

−1− i −1 + i −1 + i 2 + i

4− i 4 + i 2− 3i 1 + i


, B =


2i 2i 3− i 1 + i 1− i

0 5− i 4i −2i 1− 2i

−2i 3i 4− i 1 + i 1− i

 ,

C =



4− i 3 + i 4− i

−2i 1− 2i 3i

5− 2i −6i 1− 5i

5 + i 4− i 2i

1 + i 2− i 1 + i


, D =


−2i −i −2i 3i 2i

6i 5i 4i 4i 3i

2i 3i 2i i i

i i 2i 4i i

 ,

M =



2− i 1 + i 3− i

1− i 1 + 2i 2i

3− 2i −3i 2− 5i

3 + i 2− i 1− 2i

1− i 3− i 1− i


, N =


1− 2i 1− i 2− 2i 2 + 3i 1− 2i

3i 2− 2i 2i −4i −3i

2i −3i −2i 1 + i 1− i

1 + i 1− i i 3i 2i

 ,

G =



2 + i 1− 2i 1 + 2i 3− i

2 + 2i 3 + i 2− i 2 + i

1 + i 2− i 3 + i 6− i

1− i −1 + i 1 + i 3 + i

4− 2i 2 + i 1− 3i 1− i


,H =


1− 2i 1 + 2i 3 + i 1− i 1 + i

2− i 5 + i 1− 4i 2i 1 + 2i

2− 2i 1− 3i 2− i 1− i 1 + i

 ,

where

R =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , S =


1 0 0

0 0 1

0 1 0

 ,

and E, F are chosen by the exact solution (X∗, Y ∗).

Analogously, choosing the initial matrix pair X1 = 0, Y1 = 0 for the sake of
getting the least Frobenius norms solution, running Algorithm 1, it gets the solution
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also only with 31 iteration steps:

X31 =


1− i 2 + i 3− i

1 + i 3 + i 2− i

4− i 5 + i 1− i

4 + i 1 + i 5− i

 ∈ RSC4×3,

Y31 =


3− 2i 5 + i 1− i

3 + 2i 1 + i 5− i

2− i 6 + i 1− 3i

2 + i 1 + 3i 6− i

 ∈ RSC4×3.

The elapsed CPU time is 0.0096 (t), the corresponding residual error, relative error
and least norms are

RES = 1.0084e− 011, δk = 5.3890e− 015,

∥X31∥ = 11.1355, ∥Y31∥ = 13.6382,

respectively. The results are presented in Fig. 2.
Moreover, we will find the optimal approximation solution X̃∗ , Ỹ ∗ of the prob-

lem (3.1). Firstly, it sets

X̂ =


3− i 1 + i 2− i

4 + i 2 + i 3− i

5− i 6 + i 3 + i

4− i 1 + 2i 2 + i

 , Ŷ =


1− 2i 2− i 4− i

3 + i 2 + i 3− i

1− i 3 + i 1− 2i

3 + i 2 + i 4− i

 .

From the analysis in Section 3 and (3.4), it products

X̃∗ =


1.0000− 1.0000i 2.0000 + 1.0000i 3.0000− 1.0000i

1.0000 + 1.0000i 3.0000 + 1.0000i 2.0000− 1.0000i

4.0000− 1.0000i 5.0000 + 1.0000i 1.0000− 1.0000i

4.0000 + 1.0000i 1.0000 + 1.0000i 5.0000− 1.0000i

 ,

Ỹ ∗ =


−0.5000− 1.5000i 2.5000 + 0.0000i 4.0000− 1.0000i

−0.5000 + 1.5000i 4.0000 + 1.0000i 2.5000− 0.0000i

1.5000− 2.0000i 4.5000 + 2.0000i 0.5000− 2.0000i

1.5000 + 2.0000i 0.5000 + 2.0000i 4.5000− 2.0000i

 .
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Figure 2. The Relative error and Residual error for Example 4.2.

Example 4.3. Consider Eqs. (1.1) with the following matrices:

A = tril(rand(m, p), 1) ∗ i− 0.4 ∗ ones(m, p) ∈ Cm×p,

B = tril(rand(q, n), 1) ∗ i− 1.5 ∗ ones(q, n) ∈ Cq×n,

C = tril(rand(m, q), 1) ∗ i− 1.12 ∗ ones(m, q) ∈ Cm×q,

D = triu(rand(p, n), 1) ∗ i− 1.09 ∗ ones(p, n) ∈ Cp×n,

M = tril(rand(m, q), 1) ∗ i ∈ Cm×q,

N = tril(rand(p, n), 1) ∈ Cp×n,

G = tril(rand(m, p), 1)− 0.4 ∗ ones(m, p) ∈ Cm×p,

H = triu(rand(q, n), 1) ∗ i ∈ Cq×n,

where
R = fliplr(eye(p)) ∈ Rp×p, S = fliplr(eye(q)) ∈ Rq×q,

and the right matrices E,F are generated by the (R,S)-conjugate rectangular ma-
trices X∗ = fourdiag(−i, 2, 2, i) ∈ Cp×q, Y ∗ = fourdiag(1− i, 1, 1, i+ i) ∈ Cp×q.

In this example, the coefficient matrices are randomly generated, so we test the
problem by taking the average value with 100 experiments. The concrete numerical
results are listed in Tables 1-3. Also, we can see the error curve with respect to
the iterative number k in Figs. 3-9. All the numerical examples demonstrate the
proposed Algorithm is very efficient.

Table 1. Numerical results for Example 4.3 with n = 50, p = 10, q = 11.
m = 1000 m = 200 m = 100 m = 50

IT 477 460 450 430
CPU 3.2804 0.7025 0.5261 0.3124
RES 8.2625e− 011 9.7891e− 011 8.9053e− 011 5.8936e− 011
δk 6.2234e− 013 5.5674e− 013 4.5219e− 013 3.2235e− 013
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Table 2. Numerical results for Example 4.3 with m = 1000, p = 10, q = 11.
n = 500 n = 200 n = 100 n = 50

IT 675 670 520 485
CPU 46.2749 20.3371 8.1740 3.6709
RES 9.8690e− 011 5.6114e− 011 8.9810e− 011 7.5620e− 011
δk 7.13503e− 013 6.1003e− 013 4.1063e− 013 3.0383e− 013

Table 3. Numerical results for Example 4.3 with m = 500, n = 300.
p = 20 , q = 21 p = 10 , q = 11 p = 8 , q = 9 p = 6 , q = 7

IT 1006 512 430 227
CPU 32.5398 10.8271 7.7464 4.9403
RES 8.0427e− 011 9.4303e− 011 9.4683e− 011 6.7878e− 011
δk 6.3533e− 013 4.1203e− 013 3.0503e− 013 4.0381e− 013
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Figure 3. The Relative error and Residual er-
ror for Example 4.3 with m = 200, n = 50, p =
10, q = 11.
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Figure 4. The Relative error and Residual er-
ror for Example 4.3 with m = 100, n = 50, p =
10, q = 11.
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Figure 5. The Relative error and Residual
error for Example 4.3 with m = 50, n = 50, p =
10, q = 11.
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Figure 6. The Relative error and Residual
error for Example 4.3 with m = 1000, n =
500, p = 10, q = 11.
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Figure 7. The Relative error and Residual
error for Example 4.3 with m = 1000, n =
200, p = 10, q = 11.

100 200 300 400 500 600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterative k 

 

 

Residual error

 Relative error

Figure 8. The Relative error and Residual
error for Example 4.3 with m = 1000, n =
100, p = 10, q = 11.
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Figure 9. The Relative error and Residual er-
ror for Example 4.3 with m = 1000, n = 50, p =
10, q = 11.
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Figure 10. The Relative error and Resid-
ual error for Example 4.3 with m = 500, n =
300, p = 20, q = 21.

50 100 150 200 250 300 350 400 450 500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterative k 

 

 

Residual error

 Relative error

Figure 11. The Relative error and Resid-
ual error for Example 4.3 with m = 500, n =
300, p = 10, q = 11.
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Figure 12. The Relative error and Resid-
ual error for Example 4.3 with m = 500, n =
300, p = 8, q = 9.
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Figure 13. The Relative error and Residual error for Example 4.3 with m = 500, n = 300, p = 6, q = 7.

5. Conclusion
An efficient iterative method is investigated for solving the generalized complex
coupled Sylvester-transpose linear matrix equations AXB+CY TD = E, EXTF +
GYH = F over (R,S)-conjugate matrix solutions. Using the properties of Kro-
necker product, vec operator as well as permutation matrix, the exact solution of
the above matrix equations can be determined by the MCG method within finite
iterative steps in the absence of roundoff-error for any given initial value of (R,S)-
conjugate matrix. Moreover, we also consider the least Frobenius norm solution by
choosing a special initial iteration guess. Furthermore, we analyze fully the optimal
approximate solution problem by exploiting the least Frobenius norm solution of a
new generalized complex coupled Sylvester matrix equations. Finally, a number of
numerical examples are provided to demonstrate the presented iterative algorithm
is effective.
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