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A THEORETICAL STUDY ON
SCHISTOSOMIASIS INFECTION MODEL :

APPLICATION OF BIOLOGICAL OPTIMAL
CONTROL

Mouhamadou Diaby1,† and Abderrahman Iggidr2

Abstract A general mathematical model for schistosomiasis is formulated
that incorporates the miracidia and cercariae dynamics, since parasites play an
important role in the transmission dynamics of schistosomiasis. This model is
an extension of the study undertaken in Diaby etc [6] concerning the evolution
of a schistosomiasis infection. Meanwhile, optimal control theory is applied to
the proposed model. In the first part of our analysis we describe and propose
a complete mathematical analysis of a new mathematical model for schisto-
somiasis infection with fixed control for both drug and biological treatment.
It also includes a net inflow of competitor snails into the aquatic region at
the rate u per unit of time as control term. Schistosomiasis is associated with
water resource development such as dams and irrigation schemes, where the
snail is the intermediate host of the parasite breeds. The snail intermediate
host breeds in slow-flowing or stagnant water. We establish a deterministic
model to explore the role of biological control strategy. We derive the basic re-
production number R0 and establish that the global dynamics are completely
determined by the values of R0. It is shown that the disease can be eradicated
when R0 ≤ 1. In the case where R0 > 1, we prove the existence, uniqueness
and global asymptotic stability of an endemic equilibrium. We also show how
the control u can be chosen in order to eradicate the disease. In the second
part, we take the controls as time dependent and obtain the optimal control
strategy to minimize both infected humans and snails populations. All the an-
alytical results are verified by simulation works. Some important conclusions
are given at the end of the paper.

Keywords Schistosomiasis model, stability analysis, basic reproduction num-
ber, optimal control.
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1. Introduction

Schistosomiasis is a chronic, parasitic disease caused by blood flukes (trematode
worms) of the genus schistosoma. More than 229 million people required preventive
treatment in 2018, with an estimated 2290.8 million people at risk in 78 endemic
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countries [26]. Schistosomiasis is prevalent in tropical and subtropical areas, espe-
cially among poor communities without access to safe drinking water and adequate
sanitation. Of the people with schistosomiasis, 90% lives in Africa [26]. Schistoso-
miasis continues to be a significant public health threat in the word. In the area of
parasitic disease, it is widely considered second only to malaria as a health problem,
with an incalculable drain on the economy [26]. Therefore, it is an important and
urgent task to prevent and control the schistosoma infection. Schistosoma rely on
an intermediate host (snails in most cases) to complete their life cycle: they pass
the egg stage to miracidia and then to cercariae stage to finally become adult flukes.
Unlike direct parasites as hookworms, schistosoma have two stages of reproduction:
sexual reproduction in humans and asexual amplification in snails.

In fact, eggs passed in the feces must be deposited in water if they are to hatch
and release miracidia, which invade suitable water snails and develop through pri-
mary and secondary sporocysts to become cercariae. When the cercariae fully
develop, they leave the snail and swim freely in the water, where they stay alive for
several hours. Ruminants are generally infected when cercariae penetrate the skin,
although it has been shown that infection can be acquired orally when drinking.
During penetration, cercariae become schistosomula, which are transported via the
lymph and blood to their favorite sites.

Dynamical behavior of schistosomiasis infection models have been investigated
by many researchers since the first paper by MacDonald [18] in 1965. Numerous
subsequent studies have been done to provide a better understanding of the schis-
tosomiasis control and transmission process (see Anderson and May [2,3], Chiyaka
etc [5], Kalinda etc [13], Guiro etc [9], Zhang etc [27], liu etc [17], Diaby etc [6],
Qi etc [20], Li etc [16], Ding etc [7]).

In [1], a mathematical model for a schistosomiasis infection based on a simplified
life cycle of the parasite is developed. The model involves human and intermediate
snail hosts, as well as an additional mammalian host and a competitor snail species.
In fact, in [4](1980), researchers reported schistosomiasis infection in wild rats and
mice and it is well known that Thiara granifera is a snail which competes with the
intermediate host snail of schistosomes Biomphalaria glabrata (see [1]). Moreover,
in [1], values for the parameters in the model are estimated. Results of the sim-
ulations indicate that invading competing snail species can change the dynamics
of a schistosomiasis infection. Diaby etc [6] have studied the deterministic model
developed by Allen and Victory [1] and have established threshold conditions to
discuss the effectiveness of the biological control. The authors also dealt with the
global stability of the equilibria of the deterministic model.

However, the built model in [1] is based on simplifications of the complicated
indirect-cycle dynamics of schistosomiasis. In fact, the life cycle of schistosomes
consists of adults in human hosts and different larval forms assumed by the parasite
in aquatic snails, and it is more realistic to adequately incorporate these stages in
the mathematical modeling.

Schistosomiasis is considered to be a complex disease involving two different
types of host (molluscs, mammalian), at least five different stages of parasite devel-
opment (egg, miracidium, mother spore, cercaria , adult) and two different periods
of reproduction (within the mammal and within the snail ). Indeed, mathemat-
ical study of schistosomiasis model is so complicated that models like Allen’s [1]
have taken only certain aspects of the disease by omitting the stage of parasite
development that is essential in its life cycle .
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In this paper, our model is a natural extension of those in [1] and [6], in which
improvement relates to the cercariae and the miracidia dynamics modeling. In
this sense, this new model can aid in designing control strategy like the reduction
in worm burden. In addition, it also includes a net inflow of competitor snails
into aquatic region at the rate u per unit time as control term. We divide the
population into humans (including uninfected and infected humans), host snails
(including uninfected, latent and infected snails), mammals (including uninfected
and infected mammals), as well as the cercariae and the miracidia.

A mathematical model is derived that describes the interaction between the
different populations. One of our purposes is to propose a complete mathematical
analysis of that deterministic model, to analyze how the biological control can be
effective and then to determine the potential impact of the introduction of the
dynamics of cercariae and miracidia. Among others we will show that miracidia
and cercariae elimination is better than cure for controlling the infection.

This paper is organized as follows. We analyze the dynamics of the model
with constant controls in the next section 2 and establish conditions for global
asymptotic stability of the disease free equilibrium and the endemic equilibrium by
using the Krasnoselskii sub-linearity tricks and the theory of K-monotone systems.
In Section 3 some discussions are given about our theoretical results. Section 4
is devoted to the optimal control of the system with time dependent controls and
simulations on optimal control are given in Section 5. Finally, we present some
discussions and conclusions in Section 6. To be self-contained, we collect a brief
theoretical background material that helped us to analyze our model in Appendix A.

2. Analysis of the systems for fixed controls

2.1. Model and preliminaries

In this section we present basic facts on the biological control strategy on the life
cycle of the schistosome parasite. In what follows we describe a dynamical model for
schistosomiasis derived from the model of [1] and based on biological assumptions
and on the available data in [1].

We divide the human population, snail population and a second mammalian host
into subgroups in respect to the infection status: four definite mammalian host sub-
populations, three intermediate snail host sub-populations, a population of resistant
competitor snails, cercariae and miracidia populations are also considered.

It is assumed that infected snails and infected mammals do not recover from
schistosomiasis as their life span are short in comparison to that for humans and
also, that infected mammal has the same contribution as an infected individual for
the simplicity of the model. In addition, the population of snails as well as mammals
are assumed to be competitive. We denote by bi and di the natural birth and death
rate of the various sub-populations respectively.

For an infected human, eggs leave the body and hatch into miracidia at the rate
γm into the fresh water, and the infected snails release cercariae at the rate γp.

The dynamical compartments of the model are:
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Hs(t) : the susceptible (uninfected) human population size,

Hi(t) : the infected human population size,

Pm(t) : the miracidia population size,

Ss(t) : the susceptible snail host population size,

Se(t) : the population size of the infected snails which are not yet shedding cercariae,

Si(t) : the infected and shedding snail population size (shedding population size),

Src(t) : the competitor snail population size (resistant to infection),

Ms(t) : the susceptible mammal population size,

Mi(t) : the infected mammal population size,

Pc(t) : the cercariae population size.

The transmission parameters for the model are:

t110 := Composite parameter being the rate at which a susceptible human becomes

infected with cercariae released by the snails,

t39 := The rate at which miracidia causes potentially successful penetration into

to susceptible snail,

t710 := Composite parameter being the rate at which a susceptible mammal becomes

infected with cercariae released by the snails.

Competition parameters are defined for the populations:

c33 is the competition parameter between Ss and Ss, Se, Si,

c44 and c55 are the competition parameters between Se and Si, respectively, and
Ss,

Se, and Si,

c36 is the competition parameter for snails Src with snails Ss,

c46 and c56 are defined analogously,

c64 is the competition parameter for snails Ss, Se and Si with Src,

c66 is the competition parameter for Src with Src,

c77 and c88 are the competition parameter for the mammals populations.

Also, r12 the rate that infected humans recover (both natural and treatment
recovery) and

r54 denotes the rate that the latent snail population Se becomes shedding Si.
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The following system of equations relate the evolution of various populations :

dHs

dt
= −t110 PcHs + r12Hi;

dHi

dt
= t110 PcHs − r12Hi;

dSs

dt
= b3 (Ss+Se + Si)−t39 Pm Ss − d3 Ss − c33 Ss(Ss + Se + Si)− c36 Ss Src;

dSe

dt
= t39 Pm Ss − d4 Se − c44 Se(Ss + Se + Si)− c46 Se Src − r54 Se;

dSi

dt
= r54 Se − d5 Si − c55 Si(Ss + Se + Si)− c56 Si Src;

dSrc

dt
= u+ b6 Src − c64 Src(Ss + Se + Si)− c66 S

2
rc − d6 Src;

dMs

dt
= b7 (Ms +Mi)− t710 PcMs − c77Ms(Ms +Mi)− d7Ms;

dMi

dt
= t710 PcMs − d8Mi − c88Mi (Ms +Mi);

dPm

dt
= γm (Hi +Mi)− d9 Pm;

dPc

dt
= γp Si − d10 Pc;

(2.1)
the real number u ≥ 0 represents the rate of an external inflow of the competitor
snail population and it is considered as a control term.

It is assumed for simplicity that c33 = c44 = c55, c77 = c88 and c46 = c56 =
c36. Furthermore, the death rate of different sub-populations of mammals and
intermediate host snails will be assumed to be equal, i.e d3 = d4 = d5 and d7 = d8.
We shall assume that, for each subpopulation, the death rate di is less than the
birth rate bi, that is di < bi, and we shall use the notation

ai = bi − di.

The total population of humans (Hs +Hi) is constant and denoted by NH . The
total mammal population is NM = Ms +Mi and it satisfies the equation

dNM

dt
= (b7 − d7)NM − c77N

2
M =

(
a7

c77
−NM

)
c77NM .

The total no resistant snails population is denoted NSi = Ss + Se + Si. Its time-
evolution is governed by

dNSi

dt
= (b3 − d3)NSi − c33N

2
Si − c36 SrcNSi.

It follows that

dNSi

dt
≤ (b3 − d3)NSi − c33N

2
Si =

(
a3

c33
−NSi

)
c33NSi.
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We also have

dSrc

dt
= u+(b6−d6)Src− c66 S

2
rc− c64 Src(Ss +Se +Si) ≤ u+

(
a6

c66
− Src

)
c66 Src.

Thus, for a given control u, the feasible region for the system 2.1 is

D ={(Hs, Hi, Ss, Se, Si, Pm, Pc, Src,Ms,Mi) ∈ R10
+ :

Hs+Hi =NH , NSi≤
a3

c33
, NM ≤

a7

c77
, Src≤

a6 +
√
a2

6 + 4c66 u

2c66
, Pc ≤

γpNSi

d10
,

Pm ≤
γm(NH +NM )

d9
}.

In Appendix B, we prove the following proposition.

Proposition 2.1. The compact set D is a positively invariant and attracting set
for system 2.1.

Thanks to Proposition 2.1, it is sufficient to study the system on the compact
set D.

2.2. Reduction model

To derive the dynamical properties of the model, we shall use the variables NSi and
NM instead of Ss and Ms since Ss = NSi−Se−Si and Ms = NM −Mi. Moreover
we can skip the equation of Hs since Hs = NH − Hi and NH is assumed to be
constant.

Using the assumptions on the parameters: c44 = c55 = c33, c46 = c56 = c36,
c88 = c77, d4 = d5 = d3, and d8 = d7, we get the following equivalent differential
system:



dHi

dt
= t110(NH −Hi)Pc − r12Hi,

dSe

dt
= t39 Pm (NSi − Se − Si)− Se(c33NSi + c36Src + r54 + d3),

dSi

dt
= r54 Se − Si (c33NSi + c36Src + d3) ,

dMi

dt
= t710 Pc (NM −Mi)−Mi (c77NM + d7) ,

dPm

dt
= γm(Hi +MiNM )− d9 Pm,

dPc

dt
= γpNSi Si − d10 Pc,

dSrc

dt
= u+ a6 Src − c64 SrcNSi − c66 S

2
rc = F2(NSi, Src),

dNSi

dt
= a3NSi − c33N

2
Si − c36 SrcNSi = F1(NSi, Src),

dNM

dt
= a7NM − c77N

2
M .

(2.2)
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The last three equations do not depend on the variables Hi, Pc, Pm, Se, Si, Mi.

We will then first study the following sub-system:



dNSi

dt
= a3NSi − c33N

2
Si − c36SrcNSi = F1(NSi, Src);

dSrc

dt
= u+ a6Src − c64SrcNSi − c66 S

2
rc = F2(NSi, Src);

dNM

dt
= a7NM − c77N

2
M ;

(2.3)

2.3. Equilibria of system (2.3)

The equilibria of system (2.3) are: the trivial equilibrium (0, 0, 0), two boundary
equilibria (E1 and E2), and two possible interior equilibria E∗ and E∗∗. The coor-
dinates of these possible equilibria are:

E1 =

(
a3

c33
, 0,

a7

c77

)
exists only when u = 0, E2 =

(
0,
a6 +

√
a2

6 + 4 c66 u

2 c66
,
a7

c77

)
,

E∗ = (N∗Si, S
∗
rc, N

∗
M ), and E∗∗ = (N∗∗Si , S

∗∗
rc , N

∗∗
M ) with



N∗Si =
2a3c33c66 − a3c36c64 − a6c33c36 − c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c33c66 − c36c64)
,

S∗rc =
a6c33 − a3c64 +

√
(a6c33 − a3c64)2 + 4c33u(c33c66 − c36c64)

2 (c33c66 − c36c64)
,

N∗M =
a7

c77
.

(2.4)

N∗∗Si =
2a3c33c66 − a3c36c64 − a6c33c36 + c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c36c64 − c33c66)

=
−2a3c33c66 + a3c36c64 + a6c33c36 − c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c33c66 − c36c64)
,

S∗∗rc =
a3c64 − a6c33 +

√
(a6c33 − a3c64)2 + 4c33u(c33c66 − c36c64)

2 (c36c64 − c33c66)

=
(a6c33 − a3c64)−

√
(a6c33 − a3c64)2 + 4c33u(c33c66 − c36c64)

2 (c33c66 − c36c64)
,

N∗∗M =
a7

c77
.

(2.5)
Hereafter we shall discuss the possible existence of two positive equilibria E∗ and
E∗∗.
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Existence and positiveness of E∗:

1st case: c33c66 − c36c64 > 0:

S∗rc =

(a6c33 − a3c64)

(
1 +
|a6c33 − a3c64|
a6c33 − a3c64

√
1 + 4 c33 u (c33c66−c36c64)

(a6c33−a3c64)2

)
2 (c33c66 − c36c64)

.

This shows that S∗rc is always positive.

llN∗Si =
2a3c33c66 − a3c36c64 − a6c33c36 − c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c33c66 − c36c64)

=
2 c33 (a3c66 − a6c36) + c36(a6c33 − a3c64)− c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c33c66 − c36c64)
.

(2.6)
So N∗Si > 0 iff√

(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64) <
2 c33 (a3c66 − a6c36) + c36(a6c33 − a3c64)

c36

iff

(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64) <

(
2 c33 (a3c66 − a6c36) + c36(a6c33 − a3c64)

c36

)2

iff

u <
1

4 c33 (c33c66 − c36c64)

((
2 c33 (a3c66 − a6c36) + c36(a6c33 − a3c64)

c36

)2

− (a6c33 − a3c64)2

)
.

Hence

N∗Si > 0 iff u <
a3 (a3c66 − a6c36)

c236

and so, a3c66 − a6c36 > 0.

2nd case: c33c66−c36c64 < 0: In this case E∗ ∈ IR3 if u ≤ (a6c33 − a3c64)2

4 c33(c36c64 − c33c66)
.

But S∗rc is always negative. So when c33c66−c36c64 < 0, the equilibrium E∗ does not
belong to the positive orthant. Therefore, E∗ = (N∗Si, S

∗
rc, N

∗
M ) exists and belongs

to the positive orthant iff

c33c66 − c36c64 > 0, a3c66 − a6c36 > 0 and u <
a3 (a3c66 − a6c36)

c236

.

Existence and positiveness of E∗∗:

1st case: c33c66 − c36c64 > 0:

S∗∗rc = −
(a3c64 − a6c33)

(
1 +
|a3c64 − a6c33|
a3c64 − a6c33

√
1 + 4 c33 u (c33c66−c36c64)

(a3c64−a6c33)2

)
2 (c33c66 − c36c64)

.

This shows that S∗∗rc is always negative. In this case the equilibrium E∗∗ =
(N∗∗Si , S

∗∗
rc , N

∗∗
M ) ∈ IR3, for u > 0, but it does not belong to the positive orthant.
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2nd case: c33c66 − c36c64 < 0:
In this case S∗∗rc is always positive, and
N∗∗Si > 0 iff√

(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64) <
−2 c33 (a3c66 − a6c36)− c36(a6c33 − a3c64)

c36

iff

(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64) <

(
−2 c33 (a3c66 − a6c36)− c36(a6c33 − a3c64)

c36

)2

.

Since c33c66 − c36c64) < 0, this implies

u >
1

4 c33 (c33c66 − c36c64)

((
−2 c33 (a3c66 − a6c36)− c36(a6c33 − a3c64)

c36

)2

− (a6c33 − a3c64)2

)
.

Hence

N∗∗Si > 0 iff u >
a3 (a3c66 − a6c36)

c236

.

Therefore, E∗∗ = (N∗∗Si , S
∗∗
rc , N

∗∗
M ) exists and belongs to the positive orthant iff

c33c66 − c36c64 < 0, and

a3 (a3c66 − a6c36)

c236

< u <
(a6c33 − a3c64)2

4 c33(c36c64 − c33c66)
.

The existence conditions for the interior equilibria can then be summarized as
follows:

Proposition 2.2. The coexistence of two interior equilibria E∗∗ and E∗ can not
hold: if c33c66−c36c64<0 then the unique positive equilibrium is E∗∗=(N∗∗Si , S

∗∗
rc , N

∗∗
M )

with this following additional requirement
a3(a3c66−a6c36)

c236

<u<
(a6c33−a3c64)2

4c33(c36c64−c33c66)
.

Else, the unique positive equilibrium is E∗ = (N∗Si, S
∗
rc, N

∗
M ) under conditions

a3c66 − a6c36 > 0 and u <
a3 (a3c66 − a6c36)

c236

.

2.4. Stability of the equilibria of system (2.3)

The trivial equilibrium (0, 0, 0) is unstable (US): three positive eigenvalues a3, a6,
and a7.

E1 =

(
a3

c33
, 0,

a7

c77

)
is associated to eigenvalues −a3, −a7, and a6 −

a3c64

c33
=

a6c33 − a3c64

c33
.

Hence, when it exists (i.e., for u = 0), it is asymptotically stable (AS) iff a6c33−
a3c64 < 0.

E2 =

(
0,
a6 +

√
a2

6 + 4 c66 u

2 c66
,
a7

c77

)
is associated with two negative eigenvalues

−
√
a2

6 + 4 c66 u, −a7, and a third eigenvalue λE2 = a3−
c36

(
a6 +

√
a2

6 + 4 c66 u
)

2 c66
=

2a3 c66 − c36

(
a6 +

√
a2

6 + 4 c66 u
)

2c66
.
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It can be shown that the equilibrium E2 is asymptotically stable (λE2
< 0) iff

a6c33 − a3c64 < 0 or u >
a3(a3 c66 − a6 c36)

c236

.

Moreover using the Poincaré-Bendixson theorem on Γ = [0,
b3−d3

c33
]× [0,

b6−d6

c66
]

one can prove the global stability of E2 iff a6c33−a3c64<0 or u >
a3(a3 c66 − a6 c36)

c236

.

Let ρ(NSi, Src) =
1

NSi Src
defined on Γ1 =]0,

b3 − d3

c33
[×]0,

b6 − d6

c66
[.

We have
∂(ρF1)

∂NSi
+
∂(ρF2)

∂Src
= −

(
c33

Src
+

c66

NSi
+

u

NSi S2
rc

)
< 0.

By Dulac criterion, we conclude that there is no periodic orbit for the sys-
tem (2.3) lying entirely in Γ1. The set Γ\Γ1 can not contain a periodic since it is
just the union of two segments.

Therefore there are no periodic orbits in Γ.
Because of the local stability of the equilibrium E2 for a6c33 − a3c64 < 0 or

u >
a3(a3 c66 − a6 c36)

c236

, the equilibrium E2 is globally asymptotically stable (GAS).

It remains to explore the stability of E∗ and E∗∗. The Jacobian matrix of
system (2.3) is given by:

J(NSi,X6,NM ) =


a3 − 2 c33NSi − c36 Src −c36NSi 0

−c64 Src a6 − c64NSi − 2 c66 Src 0

0 0 a7 − 2 c77NM

 .

For all the equilibria, the third coordinate is given by N∗M =
a7

c77
and is associated

with the negative eigenvalue −a7. Hence, we only need to study at each equilibrium
the 2× 2 matrix:

JE =

a3 − 2 c33NSi − c36 Src −c36NSi

−c64 Src a6 − c64NSi − 2 c66 Src

 .

1. 1st case: c33c66 − c36c64 > 0.
In this case the only positive equilibrium is E∗ = (N∗Si, S

∗
rc, N

∗
M ). We will

show that the existence of E∗ implies that E∗ is asymptotically stable (AS)
and that E2 is unstable.
Indeed, the Jacobian at E∗ is

JE∗ =

a3 − 2 c33N
∗
Si − c36 S

∗
rc −c36N

∗
Si

−c64 S
∗
rc a6 − c64N

∗
Si − 2 c66 S

∗
rc

 .

Using the relations at the equilibria:a3 = c33N
∗
Si + c36 S

∗
rc,

a6 = −u+ c64N
∗
Si + c66 S

∗
rc,

(2.7)
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we obtain

Tr(JE∗) = a3 + a6 − 2 c33N
∗
Si − c64N

∗
Si − c36 S

∗
rc − 2 c66 S

∗
rc

= −c33N
∗
Si − c66 S

∗
rc − u < 0,

Det(JE∗) = (a3 − 2 c33N
∗
Si)(a6 − c64N

∗
Si)− (a6c36

+2 c66 (a3 − 2 c33N
∗
Si))S

∗
rc + 2 c36 c66 S

∗2
rc

= N∗Si (−c36 c64 S
∗
rc + c33 (u+ c66 S

∗
rc))

= N∗Si ((c33 c66 − c36 c64)S∗rc + c33 u).

So Det(JE∗) > 0 since c33 c66 − c36 c64 > 0 and u ≥ 0.
Moreover, in this case E2 is unstable since

2c66 λE2
= 2 a3 c66 − c36

(
a6 +

√
a2

6 + 4 c66 u

)
> 2 a3 c66 − c36

(
a6 +

√
a2

6 + 4 c66
a3(a3 c66 − a6 c36)

c236

)
since u <

a3(a3 c66 − a6 c36)

c236

> 2 a3 c66 − c36a6 −
√
c236 a

2
6 + 4 c66 a3(a3 c66 − a6 c36)

> 2 a3 c66 − c36a6 −
√

(2 c66 a3 − c36 a6)2 = 0

since a3c66 − a6c36 > 0.

Hence λE2
> 0.

2. 2nd case: c33c66 − c36c64 < 0.
In this case the only positive equilibrium is E∗∗.
The boundary equilibrium E1 is AS when it exists, i.e., when u = 0. Indeed,
c33c66−c36c64 < 0 and a3c66−a6c36 > 0 imply that a6c33−a3c64 < 0. Hence,
if morover u = 0 then E1 is AS.
The second boundary equilibrium E2 is stable since

λE2
< 2 a3 c66 − c36a6 −

√
(2 c66 a3 − c36 a6)2 = 0.

We have

Det(JE∗∗) = N∗∗Si ((c33 c66 − c36 c64)S∗∗rc + c33 u) > 0

⇔ (c33 c66 − c36 c64)S∗∗rc + c33 u > 0

⇔ a6c33 −a3c64 + 2c33 u−
√

(a6c33−a3c64)2+4c33(−c36 c64 + c33 c66)u > 0

⇔ u >
a3c64 − a6c33 + c33c66 − c36c64

c33
.
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Hence, E∗∗ is AS iff c33c66 − c36c64 < 0, and

um := max

{
a3 (a3c66 − a6c36)

c236

,
a3c64 − a6c33 + c33c66 − c36c64

c33

}
< u <

(a6c33 − a3c64)2

4 c33(c36c64 − c33c66)
.

The existence and stability of different equilibria are summarized in the following
table 1.

We shall assume that E1 and E2 are unstable which implies that

a6c33 − a3c64 > 0 and a3c66 − a6c36 > 0 and u <
a3 (a3c66 − a6c36)

c236

. (2.8)

This implies

c33c66 − c36c64 > 0, and u <
a3 (a3c66 − a6 c36)

c236

. (2.9)

Therefore, with relation (2.9), E∗ is the unique positive equilibrium and it is
asymptotically stable: eigenvalues with negative real part.

Let
V = (NSi −N∗Si logNSi) + d (Src − S∗rc logSrc).

Then

V̇ = (NSi−N∗Si)(a3− c33NSi− c36Src) + d (Src−S∗rc)(a6 +
u

Src
− c64NSi− c66Src).

Using equilibria relations, we obtain:

V̇ = (NSi −N∗Si)(c33N
∗
Si + c36S

∗
rc − c33NSi − c36Src) + d (Src − S∗rc)(c64N

∗
Si

+c66S
∗
rc − c64NSi − c66Src −

u

S∗rc
+

u

Src
)

= −c33(NSi −N∗Si)
2 − d c66(Src − S∗rc)2 − c36(NSi −N∗Si)(Src − S∗rc)

−d c64(NSi −N∗Si)(Src − S∗rc) + d u(Src − S∗rc)(
1

Src
− 1

S∗rc
)

= −c33(NSi −N∗Si)
2 − d c66(Src − S∗rc)2 − (c36 + d c64)(NSi −N∗Si)(Src − S∗rc)

+d u(Src − S∗rc)(
1

Src
− 1

S∗rc
).

We choose d =
c66a

2
3

c33a2
6

. With this and using (2.9) we can show

(c36 + d c64)2 − 4 d c33 c66 < 0, (2.10)

then V̇ is definite negative and hence the equilibrium (N∗Si, S
∗
rc, N

∗
M ) is GAS (glob-

ally asymptotically stable).
Then, under the condition (2.9), (N∗Si, S

∗
rc, N

∗
M ) is GAS.

Remark. It is also possible to prove the GAS of (N∗Si, S
∗
rc) by using Dulac criterion

with the function ρ(NSi, Src) =
1

NSi Src
defined on Ω =]0,

b3 − d3

c33
[×]0,

b6 − d6

c66
[.
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We have
∂(ρF1)

∂NSi
+
∂(ρF2)

∂Src
= −

(
c33

Src
+

c66

NSi
+

u

NSi S2
rc

)
< 0.

Thanks to Theorem A.1 (see Appendix A), we will reduce the stability analysis
of (2.1), to the study of a smaller and simpler system.

Therefore, under the assumption (2.9), the stability properties of system (2.2)
on the set D are the same as those of the following reduced system :

dHi

dt
= t110(NH −Hi)Pc − r12Hi,

dSe

dt
= t39 Pm (N∗Si − Se − Si)− Se(c33N

∗
Si + c36Src + r54 + d3),

dSi

dt
= r54 Se − Si (c33N

∗
Si + c36Src + d3) ,

dMi

dt
= t710 Pc (N∗M −Mi)−Mi (c77N

∗
M + d7) ,

dPm

dt
= γm(Hi +MiN

∗
M )− d9 Pm,

dPc

dt
= γpN

∗
Si Si − d10 Pc.

(2.11)

Using the equilibria relations related to S∗rc, N
∗
Si, and N∗M :

u+ a6 S
∗
rc − c64 S

∗
rcN

∗
Si − c66 S

∗2
rc = 0, a3NSi − c33N

∗2
Si − c36 SrcN

∗
Si = 0,

and a7N
∗
M − c77N

∗2
M = 0,

with ai = bi − di, we obtain the following system:

dHi

dt
= t110 (NH −Hi)Pc − r12Hi;

dSe

dt
= t39 Pm (N∗Si − Se − Si)− (b3 + r54)Se;

dSi

dt
= r54 Se − b3 Si;

dMi

dt
= t710 Pc (N∗M −Mi)− b7Mi;

dPm

dt
= γm(Hi +MiN

∗
M )− d9 Pm;

dPc

dt
= γpN

∗
Si Si − d10 Pc

(2.12)

defined on the set

D1 = {(Hi, Pm, Pc, Se, Si,Mi) ∈ R6
+ : Hi ≤ NH , Pm ≤

γm(NH +N∗M )

d9
, Pc ≤

γpN
∗
Si

d10
}.

2.5. Reproduction number and local stability of the disease
free equilibrium of system (2.12)

In this section, we give an analytic expression for R0 the basic reproductive number
of the system and completely answer the stability question for the disease-free equi-
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librium (DFE). As usual ρ(M) and s(M) denote respectively the spectral radius
and the stability modulus of the matrix M .

The basic reproduction number, R0, is defined as the number of secondary
infections produced by one infectious individual during his or her entire infectious
period in a completely susceptible population [23].

It can be easily seen that system (2.12) admits the disease free equilibrium
(DFE)

E0 =
(

0, 0, 0, 0, 0, 0
)

on the boundary of D1.
The Jacobian matrix at E0 is

J0 =



−r12 0 0 0 0 NH t110

0 −(b3 + r54) 0 0 N∗Si t39 0

0 r54 −b3 0 0 0

0 0 0 −b7 0 N∗M t710

γm 0 0 γmN∗M −d9 0

0 0 γpN
∗
Si 0 0 −d10


J0 is Metzler matrix and J0 = F + V with

F =



0 0 0 0 0 NH t110

0 0 0 0 N∗Si t39 0

0 0 0 0 0 0

0 0 0 0 0 N∗M t710

γm 0 0 γmN∗M 0 0

0 0 γpN
∗
Si 0 0 0


,

V =



−r12 0 0 0 0 0

0 −(b3 + r54) 0 0 0 0

0 r54 −b3 0 0 0

0 0 0 −b7 0 0

0 0 0 0 −d9 0

0 0 0 0 0 −d10


.

We have F > 0 and V is Metzler stable. Thanks to Varga’s theorem [24]: The
matrix J0 is stable if only if ρ(−FV −1) < 1. A straightforward calculus give :

R0 = ρ(−F V −1) =
4

√
γm γp r54 t39N

∗2
Si

(
b7 t110NH + r12 t710N

∗2
M

)
b3 b7 d9 d10 r12 (b3 + r54)

= T
1/4
0 .

Then E0 is LAS if T0 ≤ 1 and is unstable if T0 > 1.
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2.6. Global Stability of the disease free equilibrium:

Theorem 2.1. If T0 ≤ 1 then the DFE is GAS.

Proof. Consider this following Lyapunov function :

V =
r54 t39N

∗
Si

r12(b3 + r54)
Hi +

d9 r54

γm (b3 + r54)
Se +

d9

γm
Si +

r54 t39N
∗
M N∗Si

b7 (b3 + r54)
Mi

+
t39 r54N

∗
Si

γm (b3 + r54)
Pm +

b3 d9

γpN∗Si γm
Pc.

Its derivative along trajectories of (2.12) satisfy:

V̇ =
r54 t39N

∗
Si

r12(b3 + r54)
[t110 (NH −Hi)Pc − r12Hi]

+
d9 r54

γm (b3 + r54)
[t39 Pm (N∗Si − Se − Si)− (b3 + r54)Se]

+
d9

γm
[r54 Se − b3 Si] +

r54 t39N
∗
MN

∗
Si

b7 (b3 + r54)
[t710 Pc (N∗M −Mi)− b7Mi]

+
t39 r54N

∗
Si

γm (b3 + r54)
[γm(Hi +MiN

∗
M )− d9 Pm] +

b3 d9

γpN∗Si γm
[γpN

∗
Si Si − d10 Pc]

= − r54 t39N
∗
Si

r12 (b3 + r54)
t110Hi Pc −

d9 r54

γm (b3 + r54)
t39 Pm(Se + V5)

− r54 t39N
∗
M N∗Si

b7 (b3 + r54)
t710 PcMi + Pm

[
d9 r54N

∗
Si

γm (b3 + r54)
t39 −

t39 r54N
∗
Si

γm (b3 + r54)
d9

]
+Pc

[
r54 t39N

∗
Si

r12(b3 + r54)
t110NH +

γm r54 t39N
∗
M N∗Si

b7 d9 (b3 + r54)
t710N

∗
M −

b3 d9

γpN∗Si γm
d10

]
+Si

[
−d9

γm
b3+

b3 d9

γpN∗Si γm
γpN

∗
Si

]
+Se

[
− d9 r54

γm (b3+r54)
(b3 + r54)+

d9

γm
r54

]
+Mi

[
−r54 t39N

∗
M N∗Si

b7 (b3 + r54)
b7 +

t39 r54N
∗
Si

γm (b3 + r54)
γmN∗M

]
+Hi

[
− r54 t39N

∗
Si

r12(b3 + r54)
r12 +

t39N
∗
Si r54

γm (b3 + r54)
γm

]
.

Then,

V̇ ≤ Pc
b3 d9

γpN∗Si γm
d10

[
γm γpNH N∗2Si r54 t39 t110

b3 d9 d10 r12 (b3 + r54)
+
γm γpN

∗
M N∗2Si r54 t39 t710

b3 b7 d9 d10 (b3 + r54)
− 1

]

≤

(
γm γpN

∗2
Si r54 t39

(
b7NH t110 +N∗2M r12 t710

)
b3 b7 d9 d10 r12 (b3 + r54)

− 1

)
b3 d9

γpN∗Si γm
d10 Pc

≤ Pc
b3 d9

γpN∗Si γm
d10 (T0 − 1) .

Its follows that
V̇ ≤ 0 if T0 ≤ 1.
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It can be shown that the largest invariant set contained in V̇ = 0 is reduced to the
DFE. Hence, thanks to Lasalle Invariance Principle [15] we conclude.

2.7. Existence and uniqueness of the endemic equilibrium

We shall present here a result concerning the existence and the uniqueness of the
point of endemic equilibrium of the model (2.12). In what follows, we will prove
the existence of a unique endemic equilibrium of system (2.12) when R0 > 1. For
this purpose, we express the problem as a fixed point problem and we use Theorem
A.2 ( [10], theorem 2.1, see Appendix A).

Let us define Ê∗ = (H∗i , P
∗
m, P

∗
c , S

∗
e , S

∗
i ,M

∗
i ) an equilibrium point. We can define

a multi-variable function with respect in (Hi, Se,Mi) as follows ( see Appendix D) :

U = F(U),

where

U =


Hi

Se

Mi

 ,

F =



F1 :=
γpNH N∗Si r54 t110 Se

b3 d10

(
r12 +

γpN
∗
Si r54 t110 Se

b3 d10

)
F2 :=

γm t39N
∗
Si (Hi +N∗M Mi)

d9

b3 + r54 +

γm

(
1 +

r54

b3

)
t39 Se (Hi +N∗M Mi)

d9


F3 :=

γpN
∗
Si r54 t710N

∗
M Se

b3 d10

(
b7 +

γpN
∗
Si r54 t710 Se

b3 d10

)



.

Then the equilibrium points (H∗i , S
∗
e ,M

∗
i ) are fixed point of F given by U =

F(U) and it is from this formulation that we shall prove the existence and the
uniqueness of the point of endemic equilibrium (H∗i , S

∗
e , S

∗
i , P

∗
m, P

∗
c ).

F(U) is continuous, bounded function which maps into the non-negative orthant
R3

+ into itself and infinitely differentiable with Jacobian as follows

Je =

 0
b3 γp d10NH N∗Si r12 r54 t110

(b3 d10 r12 + γpN∗Si r54 t110 Se) 2
0

b23 γm d9 t39N
∗
Si

(b3 + r54) (b3 d9 + γm t39 Se (Hi +N∗M Mi)) 2
0

b23 γm d9N
∗
M t39N

∗
Si

(b3 + r54) (b3d9 + γm t39 Se (Hi +N∗M Mi)) 2

0
b3 b7 γp d10N

∗
Si r54 t710N

∗
M

(b3 b7 d10 + γpN∗Si r54 t710 Se) 2
0


where the off-diagonal elements are non-negative. Thus, function F(U) is monotone

non-decreasing and F(0) = 0. Note that ρ(F ′(0)) = T
1/2
0 > 1. Thanks to the graph

theory, we claim that F ′(0) is irreducible because the associated graph of the matrix
is strongly connected.

Let us now prove that F is strictly sub linear in Ω, i.e., F(r U) > rF(U), for
any U ∈ Ω with U > 0, and r ∈ (0, 1).
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Few computations provide:

r1 F1(U)

F1(r1 U)
=

r12 + r1 γpNH N∗Si r54 t110 Se

b3 d10

r12 +
γpNH N∗Si r54 t110 Se

b3 d10

=
r12 + r1 γpNH N∗Si r54 t110 Se

r12 + γpNH N∗Si r54 t110 Se
< 1.

r2 F2(U)

F2(r2 U)
=
b3 + r54 +

r2 γm

(
1 +

r54

b3

)
t39 Se (Hi +N∗M Mi)

d9

b3 + r54 +

γm

(
1 +

r54

b3

)
t39 Se (Hi +N∗M Mi)

d9

< 1.

r3 F3(U)

F3(r3 U)
=

r3 γpN
∗
Si r54 t710N

∗
M Se

b3 d10

(
b7 +

γpN
∗
Si r54 t710 Se

b3 d10

) b3 d10

(
b7 +

r3 γpN
∗
Si r54 t710 Se

b3 d10

)
r3 γpN∗Si r54 t710N∗M Se

.

(2.13)

r3 F3(U)

F3(r3 U)
=
b7 +

r3 γpN
∗
Si r54 t710 Se

b3 d10

b7 +
γpN

∗
Si r54 t710 Se

b3 d10

< 1.

So the function F(U) is strictly sub-linear with r = min (r1, r2, r3). In this way we
have proved the following theorem

Theorem 2.2. If R0 ≤ 1, the only equilibrium point of the system is the DFE.
If R0 > 1, there is also a unique endemic equilibrium point Ê∗ in int(D1).

2.8. Local Stability of the Endemic Equilibrium

In this section, the local stability of the endemic equilibrium will be proved when
R0 > 1. To do so, we are going to follow the method given by Hethcote and
Thieme [10], which is based on a Krasnoselkii technique.

Let us consider the system of differential equations:

x̄′ = f(x̄). (2.14)

A way in which we can show the local asymptotic stability of an equilibrium
point x̄0 of system 2.14 is to prove that the linearized equation

Z̄ ′ = Df(x̄0)Z̄ (2.15)

has no solutions of the form

Z̄(t) = Z̄0 exp(w t) (2.16)

with Z̄0 ∈ Cn\{0}, w ∈ C and Re w ≥ 0, where C denotes the complex numbers
i.e., w Z̄ = Df(x̄0) Z̄ with Z̄ ∈ Cn\{0}, w ∈ Cn implies Re w < 0.

Theorem 2.3. If R0 > 1, then the endemic equilibrium labeled Ê∗ of the system
(2.12) is locally asymptotically stable (LAS).

The proof of Theorem 2.3 is given in Appendix C.
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2.9. Global Stability of the Endemic Equilibrium

In this section we will establish the global stability of the unique endemic equilibrium
point when R0 > 1. We shall use Theorem A.3, stated in the Appendix A for
convenience to prove the following result.

Theorem 2.4. If R0 > 1, Then the endemic positive equilibrium (EEP) of the
model is globally asymptotically stable in the interior of the set D1.

The detailed proof is shown in Appendix D.

3. Biological control

By using a competitor resistant snail species, capable of eliminating the population
of the intermediate host snails, we found that the biological control can ultimately
eradicate the disease. The first concerns the way to eradicate the disease by exclud-
ing completely the intermediate host snails. This means that system (2.3) admits

E2 =

(
0,
a6 +

√
a2

6 + 4 c66 u

2 c66
,
a7

c77

)
as a globally asymptotically stable equilibrium

state. This equilibrium corresponds to the absence of the intermediate host snails:
NSi = 0. According to the computations done in Paragraph 2.4, the parameters

must satisfy c66 a3− c36a6 < 0 or the control u must satisfy u >
a3 (a3c66 − a6c36)

c236

and the other equilibrium E1 =

(
a3

c33
, 0,

a7

c77

)
(equilibrium corresponding to the

absence of competitor snails) must be unstable which implies that we must have
c33a6−c64a3 > 0. It is worth noting that when the two above conditions are satisfied
then the coexistence of positive equilibrium (E∗ and E∗∗) does not exist.

Well, just to recap, the population of the intermediate host snails can be elimi-
nated if the parameters satisfy the following listed conditions

c66 a3 − c36a6 < 0 or u >
a3 (a3c66 − a6c36)

c236

. (3.1)

Another way to control the disease without completely eliminating the inter-
mediate host snails is to choose a competitor resistant snail species that keep the
size of the snail population below a certain threshold. We have to make a control
mechanism, u, so as to reduce the basic reproduction number R0 to a value less
than one. Recall that

R4
0 =

γm γp r54 t39N
∗2
Si

(
b7 t110NH + r12 t710N

∗2
M

)
b3 b7 d9 d10 r12 (b3 + r54)

.

In the expression of R0, the only quantity that depends on the competitor
resistant snail species is N∗Si since (by relation (2.4))

N∗Si =
2a3c33c66−a3c36c64−a6c33c36−c36

√
(a6c33−a3c64)2+4 c33 u (c33c66−c36c64)

2 c33(c33c66 − c36c64)

and the other terms do not depend on the competitor.
We can remark that the introduction of a competitor reduces the value of R0

since the value of the steady state size of the intermediate host snail in the absence
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of the competitor (which is equal to
a3

c33
) is larger than its value in the presence of

the competitor.
Now, R0 ≤ 1 iff

N∗2Si =

(
2a3c33c66 − a3c36c64 − a6c33c36 − c36

√
(a6c33 − a3c64)2 + 4 c33 u (c33c66 − c36c64)

2 c33(c33c66 − c36c64)

)2

≤ b3 b7 d9 d10 r12 (b3 + r54)

γm γp r54 t39 (b7NH t110 +N∗2M r12 t710)
:= Γ0.

This implies

u ≥ (a3 − c33 Γ
1/2
0 )(a3 c66 − a6 c36 − c33 c66 Γ

1/2
0 + c36 c64 Γ

1/2
0 )

c236

. (3.2)

Γ0 is a function of the disease characteristics and related parameters such as hu-
man, mammal and intermediate snail demographic parameters. Thus, in order to
eradicate the disease, the control u has to satisfy the inequality (3.2). This situation
is illustrated in Fig. 1.

Consequently, the critical value of the control rate u above which schistosomiasis

can be eradicated is uc =
(a3 − c33 Γ

1/2
0 )(a3 c66 − a6 c36 − c33 c66 Γ

1/2
0 + c36 c64 Γ

1/2
0 )

c236

.

It has a significant effect in reducing intermediate snail hosts to sufficient low
levels to combat schistosomiasis in the long term.
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Figure 1. Evolution of the latent Se(t) and infected Si(t) snails when the control u = 0 (Figure (a))
and when the control u satisfies relation (3.2) (Figure (b)). The parameter values are taken in table 2.
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4. The optimal control problem

In the previous sections we have analyzed the model with two controls, one is drug
treatment and other is the release of competitor snails and throughout the analysis
we consider their fixed value. But in the reality these parameters should be time
dependent. In this section we formulate the optimal control problem applied to
system (2.1). We want to minimize the drug treatment cost, as well as the cost of
production and release of competitors snails. For this end we consider as control
variables:

1. The increase in the recovery rate by drug treatment investment denoted by
u1(t), and

2. The investment in production and release of competitor snails denoted by
u2(t).

The control u1describes the effects of the chemotherapeutic treatment only on
the humans, meanwhile u2 is related to the number of competitor snails, Src , that
should be released at time t.

Further, we want to minimize the number of infected humans. For this end, we
consider the following performance index

J [u1, u2] =
1

2

∫ T

0

(
c1 u

2
1 + c2 u

2
2 + c3H

2
i − c4 S2

rc

)
dt (4.1)

and the control set ∆ = {(u1(t), u2(t))|ui(t) is Lebesgue on [0, T ], 0 ≤ u1(t) ≤ 1, 0 ≤
u2(t) ≤ Ub}, where the upper bound of the control u2(t) is defined by Ub.

The costs and benefits of the controls should be weighed and both epidemiolog-
ical and economic goals considered.

This is taken into account in the objective functional (4.1) that includes the costs

which relate to the resources that is needed for applying drug treatment
1

2
c1 u

2
1 and

releasing competitor snails
1

2
c2 u

2
2. The quantities c3 and c4 respectively represent

the associated with minimizing infected human population Hi and competitor snails
population Src.

In the control problem, we assume fixed final time, and free dynamical variables
at this time. Further, we assume a quadratic functional cost [14] since we believe
that the performance index is a nonlinear function. The quadratic terms act as
a penalization [12, 22], amplifying the effects of great variations of the variables.
Each quadratic term is multiplied by a coefficient, ci; i = 1, ...4, which establishes
the relative importance of the term on schistosomiasis control cost. Notice that
when we minimize the performance index, J , the competitor snails population is
maximized.
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Mathematically, the optimal control problem is formulated as the minimization
of the functional (4.1) subject to the system

dHs

dt
= −t110 PcHs + r12 u1Hi;

dHi

dt
= t110 PcHs − r12 u1Hi;

dSs

dt
= b3 (Ss+Se+Si)−t39 Pm Ss−d3 Ss−c33 Ss(Ss + Se + Si)−c36 Ss Src;

dSe

dt
= t39 Pm Ss − d4 Se − c44 Se(Ss + Se + Si)− c46 Se Src − r54 Se;

dSi

dt
= r54 Se − d5 Si − c55 Si(Ss + Se + Si)− c56 Si Src;

dSrc

dt
= u2 + b6 Src − c64 Src(Ss + Se + Si)− c66 S

2
rc − d6 Src;

dMs

dt
= b7 (Ms +Mi)− t710 PcMs − c77Ms(Ms +Mi)− d7Ms;

dMi

dt
= t710 PcMs − d8Mi − c88Mi (Ms +Mi);

dPm

dt
= γm (Hi +Mi)− d9 Pm;

dPc

dt
= γp Si − d10 Pc;

(4.2)
where Hs(0), Hi(0), Ss(0), Se(0), Si(0), Src(0),Ms(0),Mi(0), Pm(0), Pc(0) are
given and the control variables u1, and u2 are non-negatives. This scenario assumes
that control mechanisms are introduced in a steady state of the individu population
at time t = 0.

Since one of our objectives is to control the introduction of competitor snails, Src,
the constant rate u2 in (2.1) is replaced by the control function u2. The insecticide
control u1 in (4.2) appears as the fraction of infected humans Hi that are submitted
to treatment.

4.1. Characterization of the optimal control problem

We use the Pontryaguin Maximum Principle [8] to determine the formulation of
our optimal control u∗1 and u∗2. To this end, we note that the Hamiltonian for our
problem is given by

H =
1

2

(
c1 u

2
1 + c2 u

2
2 + c3H

2
i − c4 S2

rc

)
+ λ1

dHm

d t
+ λ2

dHi

d t
+ λ3

dSs

d t

+λ4
dSe

d t
+ λ5

dSi

d t
+ λ6

dSrc

d t
+ λ7

dMs

d t
+ λ8

dMi

d t
+ λ9

dPm

d t
+ λ10

dPc

d t
.

(4.3)

In (4.3), λi, i = 1, ..., 10, are the adjoint variables; they determine the adjoint
system which, together with the state system (2.1), gives the optimality system. We
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shall consider all possible non-negative values for the control variables, including
the case u1 = u2 = 0.

Pontryaguin Maximum Principle [8] states that the unconstrained optimal vari-
ables u∗1, and u∗2 satisfy

∂ H

u∗1
=
∂ H

u∗2
= 0.

We find
∂ H

u∗i
, and solve for u∗i , i = 1, 2, by setting the partial derivatives of H

equal to zero. Thus, from
dH

du∗1
= r12 λ2Hi − r12 λ1Hi − c1 u∗1

dHi

du∗2
= λ6 + c2 u

∗
2,

we have 
u∗1 =

r12 λ2Hi − r12 λ1Hi

c1

u∗2 = −λ6

c2
.

(4.4)

Using the property of the control space, we obtain

u∗1 =



0, if
r12 λ2Hi − r12 λ1Hi

c1
≤ 0

r12 λ2Hi − r12 λ1Hi

c1
, if

r12 λ2Hi − r12 λ1Hi

c1
∈ (0, 1)

1, if
r12 λ2Hi − r12 λ1Hi

c1
≥ 1.

(4.5)

Those can be rewritten in compact notation
u∗1 = min

{
1,max{0, r12 λ2Hi − r12 λ1Hi

c1
}
}

u∗2 = −λ6

c2
.

(4.6)

The Pontryagin Maximum Principle establishes that the following equations

dλ

dt
= −∂H

dx
,

H (x(t), u∗(t), λ(t), t) = max
u∈U

H (x(t), u(t), λ(t), t)

(4.7)

are necessary conditions that must be satisfied by the optimal control u(t) and the
state variable x(t). System (4.7) is referred as the adjoint system. In our problem
it becomes

λ′1 = − dH

dHs
, λ′2 = − dH

dHi
, λ′3 = − dH

dSs
, λ′4 = − dH

dSe
, λ′5 = −dH

dSi
,

λ′6 = − dH

dSrc
, λ′7 = − dH

dMs
, λ′8 = − dH

dMi
, λ′9 = − dH

dPm
, λ′10 = − dH

dPc
.

(4.8)
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Taking the partial derivatives of H in (4.3) and substituting them above we obtain

λ′1 = t110 λ1 Pc − t110 λ2 Pc;

λ′2 = −c3Hi − b9 λ9 − r12 λ1 u1 + r12 λ2 u1;

λ′3 = λ3 (− (b3 − c33 (Se + Si + Ss)− c36 Src − c33 Ss − d3 − t39 Pm))

− λ4 (t39 Pm − c44 Se) + c55 λ5 Si + c64 λ6 Src;

λ′4 =λ3 (−(b3−c33 Ss))−λ4 (−c44 (Se + Si + Ss)− c44 Se − c46 Src − d4 − r54)

− λ5 (r54 − c55 Si) + c64 λ6 Src;

λ′5 = λ3 (− (b3 − c33 Ss))− λ5 (−c55 (Se + Si + Ss)− c55 Si − c56 Src − d5)

+ c44 λ4 Se + c64 λ6 Src − γp λ10;

λ′6 = −λ6 (b6 − c64 (Se + Si + Ss)− 2 c66 Src − d6) + c46 λ4 Se

+c56 λ5 Si + c36 λ3 Ss + c4 Src;

λ′7 =λ7 (−(b7−c77 (Mi +Ms)−c77Ms − t710 Pc − d7))− λ8 (t710 Pc − c88Mi) ;

λ′8 = λ7 (− (b7 − c77Ms))− λ8 (−c88 (Mi +Ms)− c88Mi − d8)− γm λ9;

λ′9 = d9 λ9 + t39 λ3 Ss − t39 λ4 Ss;

λ′10 = d10 λ10 + t110 λ1Hs − t110 λ2Hs + t710 λ7Ms − t710 λ8Ms;

(4.9)

Finally we analyze the transversality conditions for the adjoint variables. Since
in our problem there are not terminal values for the state variables, these conditions
are given at the final time T by

λi(T ) = 0, i = 1, ..., 10. (4.10)

4.2. The optimality system

The optimality system describes how the system behaves under the application of
the controls that minimize J . It is obtained taking the state system (4.2), with the
adjoint system (4.9), the optimal control u1, and u2 (4.6), the initial conditions,
and the transversality conditions (4.10), which gives:

dHs

dt
= −t110 PcHs + r12 u1Hi;

dHi

dt
= t110 PcHs − r12 u1Hi;

dSs

dt
= b3 (Ss + Se + Si)− t39 Pm Ss − d3 Ss − c33 Ss(Ss + Se + Si)− c36 Ss Src;

dSe

dt
= t39 Pm Ss − d4 Se − c44 Se(Ss + Se + Si)− c46 Se Src − r54 Se;

dSi

dt
= r54 Se − d5 Si − c55 Si(Ss + Se + Si)− c56 Si Src;
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dSrc

dt
= u2 + b6 Src − c64 Src(Ss + Se + Si)− c66 S

2
rc − d6 Src;

dMs

dt
= b7 (Ms +Mi)− t710 PcMs − c77Ms(Ms +Mi)− d7Ms;

dMi

dt
= t710 PcMs − d8Mi − c88Mi (Ms +Mi);

dPm

dt
= γm (Hi +Mi)− d9 Pm;

dPc

dt
= γp Si − d10 Pc;

dλ1

dt
= t110 λ1 Pc − t110 λ2 Pc;

dλ2

dt
= −c3Hi − b9 λ9 − r12 λ1 u1 + r12 λ2 u1;

dλ3

dt
= λ3 (− (b3 − c33 (Se + Si + Ss)− c36 Src − c33 Ss − d3 − t39 Pm))

− λ4 (t39 Pm − c44 Se) + c55 λ5 Si + c64 λ6 Src;

dλ4

dt
=λ3 (−(b3−c33 Ss))−λ4 (−c44 (Se+Si+ Ss)−c44 Se − c46 Src−d4−r54)

− λ5 (r54 − c55 Si) + c64 λ6 Src;

dλ5

dt
= λ3 (− (b3 − c33 Ss))− λ5 (−c55 (Se + Si + Ss)− c55 Si − c56 Src − d5)

+ c44 λ4 Se + c64 λ6 Src − γp λ10;

dλ6

dt
= −λ6 (b6 − c64 (Se + Si + Ss)− 2 c66 Src − d6) + c46 λ4 Se

+ c56 λ5 Si + c36 λ3 Ss + c4 Src;

dλ7

dt
=λ7 (−(b7−c77 (Mi +Ms)−c77Ms− t710 Pc −d7))− λ8 (t710 Pc − c88Mi) ;

dλ8

dt
= λ7 (− (b7 − c77Ms))− λ8 (−c88 (Mi +Ms)− c88Mi − d8)− γm λ9;

dλ9

dt
= d9 λ9 + t39 λ3 Ss − t39 λ4 Ss;

dλ10

dt
= d10 λ10 + t110 λ1Hs − t110 λ2Hs + t710 λ7Ms − t710 λ8Ms;

u∗1 =
r12 λ2Hi − r12 λ1Hi

c1
;

u∗2 = −λ6

c2
;

λi(T ) = 0, i = 1, ..., 10.

5. Numerical results

In this section we discuss the method to solve numerically the optimality system
(20), and we present the obtained results.

The numerical method deals with a two-point boundary-value problem with
separated boundary conditions at time t = 0 and t = T . In our simulations we use
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a period of T = 5 years. This value was chosen to represents the time (in years) at
which the release strategy of snails is applied.

Our aim is to understand the effect of two conflicting mechanisms of control,
named, drug treatment and the release of competitor snails. For the epidemiological
and demographic parameters in all simulations, we use the values given in [1] (see
Table 2 ); the initial conditions for the state variables are given by Hs = 8 ∗ 103,
Hi = 450, Ss = 8500, Se = 2 ∗ 103, Si = 1 ∗ 103, Src = 0, Ms = 2400, Mi = 1000,
Pm = 7000, Pc = 4000.

Interestingly, Fig. 2 shows that it is optimal to apply a drug treatment on
the maximum rate after one and half year, while the competitor snails must be
released at upper bound at the beginning after which it declines steadily to 0. This
means that competitor snails releasing is more important in the beginning of disease
outbreak. On the other hand, drug treatment is more important while the disease
prevails.
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Figure 2. Optimal control trajectories for insecticide application (Figure (a)), and release of sterile
male snails (Figure (b)) when all the costs are proportionally equal (c1 = c2 = c3 = c4 = 1). The
parameter values are taken in table 2.

Figs. 3 present the trajectories of the infected humans, infected snails, com-
petitor snails and cercaria population. The dashed line show the evolution of the
sub-populations resulting from control, while the solid line show the evolution re-
sulting from no control. Others figures are not shown to avoid repetition. We can
observe that the prevalence of the disease increases and stays very high if there is
no additional control measures employed.

As was expected, the population of the resistant and competitor snails follows
the same pattern than the control u2. On the other hand, if the strategy which
apply simultaneously u2 and u1 is made to treat the schistosomiasis infection, the
prevalence comes down at faster rate in snails population (Figure 3(b)), and larvae
population (Figure 3(d)) and at slowly rate in humans population (Figure 3(a)).

This study and observations show that with only chemotherapeutic drug con-
trol there is a little change in the nature of infected humans evolution while with
only competitor snails releasing there is a remarkable change in infected snails and
cercaria evolution. But using both controls together we can get the best result as
it lowers the growth level of infected humans and eliminates infected snails and
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cercaria population.
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Figure 3. The evolution for the state variables showing the impact of the controls strategy : Infected
humans (a), Infected Snails (b), Competitor snails (c) and Cercaria (d). The parameter values are taken
in table 2.

6. Summary and conclusions

In this paper, we have described and completely analyzed a deterministic model for
the transmission dynamics of a schistosomiasis infection including miracidia and
cercariae dynamics.

We have considered treatment with drug and biological control in our modeling.
This work highlights also the significance of optimal control theory as a tool to design
effective ways of controlling schistosomiasis in the community. Ten sub-population
sizes were modeled: human host susceptible and infected, snail intermediate host
susceptible, latent, and shedding, resistant competitor snail, mammal host suscep-
tible and infected, miracidia and cercariae. The snails competition is needed to
study the control of the infection by biological control. Our model itself is just an
attempt to mimic the real situation as much as possible.

First we examine the dynamic behavior of the epidemic system for fixed controls.
The reproductive number R0 is calculated. We proved that the disease-free steady
state E0 is globally asymptotically stable if R0 ≤ 1 and it is unstable if R0 > 1.
We proved also the existence and uniqueness of the endemic equilibrium Ê∗ in the
case where R0 > 1 as well as its global asymptotic stability. Also some discussions
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are done to support our analytic results and it is also observed that our system may
reach to its disease free equilibrium by the successful application of controls.

After investigating the dynamic behavior of the system with fixed controls we
study the dynamics of the disease if the controls become time dependent. In this
situation our objective is to get maximum disease control by using minimum cost. So
we form the optimal control problem and solve it by using Pontryagin’s maximum
principle. The main conclusion based on the results is that high application of
competitor snails releasing is needed at the beginning of the control, with a small
decay as well as high application of drug treatment after a while. As such one of
the limitations of this study is that it proposes and analyzes a non-spatial model.
An interesting futur work can consist to explore the influence of river velocity on
miracidia and cercariae transmission dynamics.

Appendix A Theoretical background

In this appendix, we outline general mathematical frameworks that have been used
in this paper.

We start by recalling a reduction theorem for stability results given by Vidyasagar
[25]. The author proved the following statement which give criteria for stability in
the case of a finite dimensional non-autonomous system in triangular form.

Theorem A.1 (Theorem 3.1, [25]). Consider the following C1 system

ẋ = f(x); x ∈ Rn y ∈ Rm,

ẏ = g(x, y);

with a equilibrium point, (x∗, y∗) i.e,

f(x∗) = 0 and g(x∗, y∗) = 0.

(A.1)

If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x), and if y∗

is GAS in Rm, for the system ẏ = g(x∗, y), then (x∗, y∗) is (locally) asymptotically
stable for (A.1).

Moreover, if all the trajectories of (A.1) are forward bounded, then (x∗, y∗) is
GAS for (A.1).

After that, we notice a theorem due to Hethcote and Thieme ( [10], Theorem
2.1) for the existence and uniqueness of a positive fixed point of a multi-variable
function.

Theorem A.2 (Theorem 2.1, Hethcote and Thieme [10]).
Let F (x) be a continuous, monotone non-decreasing, strictly sub linear, bounded
function which maps the non-negative orthant Rn

+ = [0,∞) into itself. Let F (0) = 0
and F ′(0) exists and be irreducible. Then F (x) does not have a non-trivial fixed point
on the boundary of Rn

+. Moreover, F (x) has a positive fixed point iff ρ(F ′(0)) > 1.
If there is a positive fixed point, then it is unique.

Finally, we point out the properties of K-monotone systems for the analysis of
our system (see [21]). To that end, let us first look the definition of K-monotone
systems. Let

ẋ = f(x) (A.2)
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where f is a continuously differentiable function defined on a convex, open set U in
Rn. We seek sufficient conditions for the flow associated with (A.2) to preserve a par-
tial ordering on Rn generated by an orthant. More precisely, let m = (m1, ...,mn),
mi ∈ {0, 1}, 1 ≤ i ≤ n, and Km = {x ∈ Rn : (−1)mi xi ≥ 0, 1 ≤ i ≤ n}. We
say that the solution operator φ(t) of (A.2) preserves the partial ordering ≤ (for
t ≥ 0) and (A.2) is type Km monotone if whenever x, y ∈ U with x ≤Km

y then
φt(x) ≤Km

φt(y) for all t ≥ 0 for which both φt(x) and φt(y) are defined.

The following lemma gives necessary and sufficient conditions for (A.2) to be
a type Km monotone system in the case that f ∈ C1(U) for an open convex set
U ∈ Rn.

Lemma A.1 (Lemma 2.1, Smith [21]). If f ∈ C1(U) where U is open and convex in
Rn then φt preserves the partial ordering ≤Km

for t ≥ 0 if only if PmDf(x)Pm has
non-negative off-diagonal elements for every x∈U , where Pm =diag((−1)m1 , ..., (−1)mn).

We assume that f is strongly monotone flow in ordered space X.

We now highlight below a result concerning convergence properties of strongly
monotone systems.

Theorem A.3 (Theorem 10.3, Hirsh [11]). Suppose X is an open subset of a
strongly ordered topological vector space. Let W ⊂ X be an open set of points
with compact orbit closures, and assume that there is a unique equilibrium p in⋃
x∈W

ω(x). Then x.t −→ p for all x ∈W .

Appendix B Proof of Proposition 2.1

It is sufficient to show that on the border of D, the vector field associated to sys-
tem 2.1 is pointing inside D.

Consider the system on the faces of D and to show that for each face, the vector
fields associated to the system point into the set D.

If NSi = 0 then
dNSi

dt
= 0.

If NSi =
a3

c33
then

dNSi

dt
≤ 0.

If NM = 0 then
dNM

dt
= 0.

If NM =
a7

c77
then

dNM

dt
≤ 0.

If Src = 0 then
dSrc

dt
= u ≥ 0.

If Src =
a6 +

√
a2

6 + 4c66 u

2c66
then

dSrc

dt
= −c64 Src(Ss + Se + Si) ≤ 0.

If Pc = 0 then
dPc

dt
= γp Si ≥ 0.

If Pc =
γpNSi

d10
then

dPc

dt
≤ γpNSi − γpNSi = 0.

If Pm = 0 then
dPm

dt
= γm (Hi +Mi) ≥ 0.

If Pm =
γm (NH +NM )

d9
then

dPm

dt
≤ γm (NH +NM )− d9

γm (NH +NM )

d9
= 0.
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Appendix C Proof of Theorem 2.3

By replacing a solution of the form (2.16) in the linearized equation of the endemic
equilibrium, one can get the following linear equations.



w Z̄1 = − (t110 P
∗
c + r12) Z̄1 + t110 (NH −H∗i ) Z̄3,

w Z̄2 = γm Z̄1 − d9 Z̄2 + γmN∗M Z̄6,

w Z̄3 = −d10 Z̄3 + γpN
∗
Si Z̄5,

w Z̄4 = t39 (N∗Si − S∗e − S∗i ) Z̄2 + (−b3 − r54 − t39 P
∗
m ) Z̄4 − t39 P

∗
m Z̄5,

w Z̄5 = r54 Z̄4 − b3 Z̄5,

w Z̄6 = t710 (N∗M −M∗i ) Z̄3 + (t710 P
∗
c − b7) Z̄6.

(C.1)

Solving for Z̄5 from the fifth equation of (C.1), and substituting at the same
time as simplifying the result into the rest of the equations, we have the equivalent
system :



(
1 +

w + t110 P
∗
c

r12

)
Z̄1 =

t110 (NH −H∗i )

r12
Z̄3,(

1 +
w

d9

)
Z̄2 =

γm
d9

Z̄1 +
γmNM

d9
Z̄6,(

1 +
w

d10

)
Z̄3 =

γpNSi

d10
Z̄5,(

1 +
w

b3 + r54
+

t39 P
∗
m

b3 + r54

(
1 +

r54

w + b3

))
Z̄4 =

t39 (N∗Si − S∗e − S∗i )

b3 + r54
Z̄2,(

1 +
w

d3

)
Z̄5 =

r54

b3
Z̄4,(

1 +
w + t710 P

∗
c

b7

)
Z̄6 =

t710 (N∗M −M∗i )

b7
Z̄3.

(C.2)

Let us define

G1(w) =
w + t110 P

∗
c

r12
, G2(w) =

w

d9

G3(w) =
w

d10
, G4(w) =

w

b3 + r54
+

t39 P
∗
m

b3 + r54

(
1 +

r54

w + b3

)
,

G5(w) =
w

d3
, G6(w) =

w + t710 P
∗
c

b7
.
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We get the following system :

[1 +G1(w)] Z̄1 =
(
L Z̄

)
3

;

[1 +G2(w)] Z̄2 =
(
L Z̄

)
6

;

[1 +G3(w)] Z̄3 =
(
L Z̄

)
5

;

[1 +G4(w)] Z̄4 =
(
L Z̄

)
2

;

[1 +G5(w)] Z̄5 =
(
L Z̄

)
4

;

[1 +G6(w)] Z̄6 =
(
L Z̄

)
3

;

(C.3)

with

L =



0 0
t110 (NH −H∗i )

r12
0 0 0

γm
d9

0 0 0 0
γm
d9

N∗M

0 0 0 0
γpN

∗
Si

d10
0

0
t39 (N∗Si − S∗e − S∗i )

b3 + r54
0 0 0 0

0 0 0
r54

b3
0 0

0 0
t710 (N∗M −M∗i )

b7
0 0 0


.

Note that the notation L (Z̄)i (with i = 1, ..., 4)) denote the ith coordinate of
the vector L(Z̄). It should further be noted that the matrix L has non-negative
entries, and the equilibrium Ê∗ = (H∗i , P

∗
c , P

∗
m, S

∗
e , S

∗
i ,M

∗
i ) satisfies Ê∗ = L Ê∗.

Furthermore, since the coordinates of Ê∗ are all positive, its follows that if Z̄ is
a solution of (C.3), then it is possible to find a minimal positive real numbers s,
depending on Z̄, such that

‖Z̄‖ ≤ s Ê∗, (C.4)

where ‖Z̄‖ =
(
‖Z̄1‖, ‖Z̄2‖, ‖Z̄3‖, ‖Z̄4‖

)
with the lexicographic order, and ‖ ‖ is a

norm in C. Now we want to show that Rew < 0. Deny it, we distinguish two cases
: w = 0 and w 6= 0.

In the first case, the determinant of the homogeneous linear system (C.1) in the
variable Z̄i (i = 1, ..., 6) corresponds to that of the Jacobian of the matrix

−1−G1(0) 0
t110 (NH −H∗i )

r12
0 0 0

γm
d9

−1−G2(0) 0 0 0
γm
d9

N∗M

0 0 −1−G3(0) 0
γpN

∗
Si

d10
0

0
t39 (N∗Si − S∗e − S∗i )

b3 + r54
0 −1−G4(0) 0 0

0 0 0
r54

b3
−1−G5(0) 0

0 0
t710 (N∗M −M∗i )

b7
0 0 −1−G6(0)


,
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which is given by

∆ = (−1−G6(0)) ((1 +G1(0) +G2(0) +G1(0)G2(0)) (−1−G3(0)) (−1−G4(0)) (−1−G5(0))

+
γm γpN

∗
Si r54 t39 t110 (NH −H∗i ) (N∗Si − S∗e − S∗i )

b3 d9 d10 r12 (b3 + r54)
)

+
γm γp (−1−G1(0)) N∗M N∗Si r54 t39 t710 (N∗Si − S∗e − S∗i ) (N∗M −M∗i )

b3 b7 d9 d10 (b3 + r54)
.

(C.5)
Since G2(0) = G3(0) = G5(0) = 0,

∆ = (−1−G6(0)) (1 +G1(0)) (−1−G4(0))

+ (−1−G6(0))
γm γpN

∗
Si r54 t39 t110 (NH −H∗i ) (N∗Si − S∗e − S∗i )

b3 d9 d10 r12 (b3 + r54)

+
γm γp (−1−G1(0))N∗M N∗Si r54 t39 t710 (N∗Si −X∗4 − S∗i ) (N∗M −M∗i )

b3 b7 d9 d10 (b3 + r54)

= (−1−G6(0)) (1 +G1(0)) (−1−G4(0))

− 1

P ∗m

(
(1 +G6(0))

γmH∗i
d9

+ (1 +G1(0))
γmN∗M M∗i

d9

)
.

Let α = max{1 +G1(0), 1 +G6(0)}, we have

∆ > 1 +G1(0) +G4(0) +G1(0)G4(0) +G6(0) +G1(0)G6(0)

+G4(0)G6(0) +G1(0)G4(0)G6(0)− α.

Then if α = 1 +G1(0), we have

∆ > G4(0)+G1(0)G4(0)+G6(0)+G1(0)G6(0)+G4(0)G6(0)+G1(0)G4(0)G6(0) > 0.

Else α = 1 +G6(0), and

∆ >G1(0) +G4(0) +G1(0)G4(0) +G1(0)G6(0)

+G4(0)G6(0) +G1(0)G4(0)G6(0) > 0,

since G1(0), G2(0), G4(0) are also positive.
Thus, for w = 0, the unique solution of the system (C.3) is the trivial solution

which implies that w 6= 0. Let us suppose now that w 6= 0, and that Rew ≥ 0.
Let G(w) = min {|1 +Gi(w)| , i = 1, ..., 4}. It is easy to prove that in the case
|1 +Gi(w)| > 1 for all i, and then G(w) > 1. Taking norms on both sides of (C.3),
and using the fact that L is positive, we obtain the following inequality:

G(w) ‖Z̄‖ ≤ L ‖Z̄‖. (C.6)

Using (C.4) and (C.6), we find

G(w) ‖Z̄‖ ≤ sL Ê∗ = s Ê∗.

That implies

‖Z̄‖ ≤ s

G(w)
Ê∗ < s Ê∗,

but this contradicts the minimality of s. Therefore Re w < 0 .
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Appendix D Proof of Existence of multi-variable
function F

Let us define Ê∗ = (H∗i , P
∗
m, P

∗
c , S

∗
e , S

∗
i ,M

∗
i ) an equilibrium point. Then the posi-

tive equilibrium point (equilibrium with Hi, Pm, Pc, Se, Si,Mi > 0) maybe obtained
by solving the equations of the second member of the system (2.12) equal zero.

t110 (NH −Hi)Pc − r12Hi = 0; (D.1)

γm(Hi +MiN
∗
M )− d9 Pm = 0; (D.2)

γpN
∗
Si Si − d10 Pc = 0; (D.3)

t39 Pm (N∗Si − Se − Si)− (b3 + r54) Se = 0; (D.4)

r54 Se − b3 Si = 0; (D.5)

t710 Pc (N∗M −Mi)− b7Mi = 0; (D.6)

Using Equation (D.3) we have

Pc =
γpN

∗
Si

d10
Si.

Equation (D.5) gives

Se =
b3
r54

Si.

Also, Equation (D.2) produces

Pm =
γm (Hi +MiN

∗
M )

d9
.

And, Equation (D.1) gives

Hi =
γpNH N∗Si r54 t110 Se

b3 d10

(
r12 +

γpN
∗
Si r54 t110 Se

b3 d10

)
with Equation (D.4) we get

Se =
γmN∗Sit39 (Hi +N∗M Mi)

d9

b3 + r54 +

γm

(
1 +

r54

b3

)
Se t39 (Hi +N∗MMi)

d9


.

And, Equation (D.6) gives

Mi =
γpN

∗
Si r54 t710N

∗
M Se

b3 d10

(
b7 +

γpN
∗
Si r54 t710 Se

b3 d10

) .
So, we can define a multi-variable function with respect in (Hi, Se,Mi) as follows:

U = F(U),
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where

U =


Hi

Se

Mi

 , F =



F1 :=
γpNH N∗Si r54 t110 Se

b3 d10

(
r12 +

γpN
∗
Si r54 t110 Se

b3 d10

)
F2 :=

γm t39N
∗
Si (Hi +N∗M Mi)

d9

b3 + r54 +

γm

(
1 +

r54

b3

)
t39 Se (Hi +N∗M Mi)

d9


F3 :=

γpN
∗
Si r54 t710N

∗
M Se

b3 d10

(
b7 +

γpN
∗
Si r54 t710 Se

b3 d10

)



.

Appendix E Proof of Theorem 2.4

Let us rewrite the system (2.12) in terms of variables (Hi, Pm, Pc, Ss, Si,Mi) for
more convenience. We get the following system :

dHi

dt
= t110 (NH −Hi)Pc − r12Hi;

dPm

dt
= γm (Hi +MiN

∗
M )− d9 Pm;

dPc

dt
= γpN

∗
Si Si − d10 Pc;

dSs

dt
= b3 − (t39 Pm + b3) Ss;

dSi

dt
= r54 Ss − b3 Si;

dMi

dt
= t710 Ss (N∗M −Mi)− b7Mi;



:= f(Hi, Pm, Pc, Ss, Si,Mi) = f(x)

(E.1)
with Jacobian

Df(x) =



−r12 − t110 Pc 0 t110 (NH −Hi) 0 0 0

γm −d9 0 0 0 γmN∗M

0 0 −d10 0 γpN
∗
Si 0

0 −t39 Ss 0 −b3 − t39 Pm 0 0

0 0 0 −r54 −b3 − r54 0

0 0 t710 (N∗M −Mi) 0 0 −b7 − t710 Pc



.
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We choose the matrix T as

T =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



.

Then from the matrix T and the Jacobian given, we get

T (Df(x)) T =



−r54 − t110 Pc 0 t110 (NH −Hi) 0 0 0

γm −d9 0 0 0 γmN∗M

0 0 −d10 0 γpN
∗
Si 0

0 t39 Ss 0 −b3 − t39 Pm 0 0

0 0 0 r54 −b3 − r54 0

0 0 t710 (N∗M −Mi) 0 0 −b7 − t710 Pc


.

It is observed that the system is K-monotone in D̊1 with respect to the partial
ordering defined by the orthant
K =

{
(Hi, Ss, Si,Mi) ∈ R4 : Hi ≥ 0, Ss ≤ 0, Si ≥ 0,Mi ≥ 0

}
. Moreover it is strongly

monotone with respect to the orthant K because Df(x) is irreducible.

Thanks to Hirsch’s theorem A.3 and the fact that we have only one endemic
equilibrium E∗ which is locally asymptotically stable in D̊1 when R0 > 1 we state
that E∗ is globally asymptotically stable in D̊1 when R0 > 1.

Table 1. Existence and stability of equilibria of system (2.3)

E1 E2 E∗ E∗∗

c33c66 − c36c64 > 0 AS iff u = 0 and
a6c33 − a3c64 < 0

GAS iff a3 c66 − a6 c36 < 0

or u >
a3(a3 c66 − a6 c36)

c236

AS if u <
a3 (a3c66 − a6c36)

c236

,

and a3c66−a6c36 > 0

does not exist

c33c66 − c36c64 < 0 AS iff u = 0 and
a6c33 − a3c64 < 0

GAS iff a3 c66 − a6 c36 < 0

or u >
a3(a3 c66 − a6 c36)

c236

does not exist AS if um < u <
(a6c33 − a3c64)2

4 c33(c36c64 − c33c66)
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Figure 4. Compartmental diagram for the mathematical model. The dashed lines indicate the trans-
mission paths for disease between sub-populations.

Table 2. Values selected for the parameters.

Parameters Estimated values per day Source

r12 4.47× 10−4 [1]
d3, d4, d5 8.86× 10−3 [1]
d7, d8 5.00× 10−3 [1]
d6 8.86× 10−3 [1]
b6 6.60× 10−2 [1]

c33, c44, c55 5.11× 10−7 [1]
c77, c88 7.00× 10−8 [1]
c66 2.50× 10−7 [1]
b3 6.00× 10−2 [1]
r54 2.50× 10−2 [1]
t39 1.05× 10−9 [19]
γm 0.696 [19]
γp 2.6 [19]
d9 2 [19]
d10 1 [19]
b7 1.20× 10−2 [1]
t710 2.0× 10−6 Estimated
t110 2.23× 10−7 Estimated
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