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DYNAMICS OF A HIGH-ORDER NONLINEAR
FUZZY DIFFERENCE EQUATION∗

Changyou Wang1,†, Jiahui Li1 and Lili Jia2,†

Abstract This paper is concerned with the following high-order nonlinear
fuzzy difference system

xn+1 =
Axn−m

B + C
m∏
i=0

xn−i

, n = 0, 1, 2, · · · ,

where xn is a sequence of positive fuzzy numbers, the parameters and the initial
conditions x−m, x−m+1, · · · , x0 are positive fuzzy numbers, m is non-negative
integer. More accurately, our main purpose is to study the existence and
uniqueness of the positive solutions, the boundedness of the positive solutions,
the instability, local asymptotic stability and global asymptotic stability of the
equilibrium points for the above equation by using the iteration method, the
inequality skills, the mathematical induction, and the monotone boundedness
theorem. Moreover, some numerical examples to the difference system are
given to verify our theoretical results.

Keywords Fuzzy difference equation, boundedness, equilibrium point, asymp-
totic behavior.
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1. Introduction

Nonlinear difference equation which can be used in mathematical models describing
the real world phenomenon has been studied in the fields of population biology, eco-
nomics, probability theory, genetics, control engineering etc (see, e.g. [16,17,21]and
the references therein). At percent, the research of nonlinear difference equation has
been rapidly pushed forward, for a detail study of the theory of difference equations
see [1, 13,32].

Next, making a historical flash back for the equation we study in this paper,
firstly, we should mention that in paper [6], Cinar investigated the global behavior
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of all positive solutions of the following rational second-order difference equation

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, 2, · · · , (1.1)

where the xn is a sequence of real numbers and the initial values x0, x−1are positive
real numbers. Similarly, in paper [2], Bajo and Liz investigated the asymptotic
behavior and the stability properties of all solutions to the nonlinear second-order
difference equation

xn+1 =
xn−1

a+ bxnxn−1
, n = 0, 1, 2, · · · , (1.2)

for all values of the real parameters a, b and any initial conditions x0, x−1 ∈ R. In
addition, Shojaei, Saadati, and Adibi [25] investigated the stability and periodic
character of the following rational third-order difference equation

xn+1 =
αxn−2

β + γxnxn−1xn−2
, n = 0, 1, 2, · · · , (1.3)

where the parameters α, β, γ and the initial conditions x0, x−1, x−2 are real numbers.
Moreover, in 2017, Wang et al. [30] considered the following nonlinear high order
difference equation

xn+1 =
Axn−k

B + C
k∏
i=0

xn−i

, n = 0, 1, 2, · · · , (1.4)

where the initial conditions x−k, · · · , x0 are real numbers, the parameters A,B,C
are positive real numbers, and k is nonnegative integer. Firstly, a sufficient and
necessary condition for the existence and uniqueness of solutions for the initial value
problem (1.4) is given. And then the local stability, asymptotic behavior, periodicity
and oscillation of solutions for the system (1.4) are investigated. More related
difference equations readers also can refer to the references [7, 15,18,29,31,33].

In recent years, the study of difference equations has attracted more and more
attention from scholars. In paper [8], Clark and Kulenovic investigated the dynamics
of a system of rational difference equations

xn+1 =
xn

a+ c yn
, yn+1 =

yn
b+ d xn

, n = 0, 1, 2, · · · , (1.5)

where the parameters a, b, c, d are arbitrary positive real numbers, and the initial
conditions x0, y0 are arbitrary nonnegative real numbers. In addition, Zhang et
al. [39] studied the dynamics of a system of rational third-order difference equations

xn+1 =
xn−2

B + ynyn−1yn−2
, yn+1 =

yn−2
A+ xnxn−1xn−2

, n = 0, 1, 2, · · · , (1.6)

where the parameters A,B and the initial conditions are arbitrary positive num-
bers. Din et al. [12] investigated the dynamics of a system of fourth-order rational
difference equations

xn+1 =
αxn−3

β + γynyn−1yn−2yn−3
, yn+1 =

α1yn−3
β1 + γ1xnxn−1xn−2xn−3

, n = 0, 1, 2, · · · ,

(1.7)
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where the parametersα, β, γ, α1, β1, γ1 and the initial conditions are positive real
numbers.

On the other hand, as we know, a amount of difference equation models usually
be used to describe many practical problems [14,19,23], but the information of the
difference equation model to describe many practical problems is incomplete. In
view of the fact that the fuzzy set theory is a powerful tool for simulating uncertainty
and processing fuzzy or subjective information in mathematical models [34], it is
more meaningful to study the behavior of solutions of a class of fuzzy difference
systems where the parameters and initial values are fuzzy numbers, and the solution
is a sequence of fuzzy numbers (see, e.g., [22,26,27] and the references therein). As
the origin of the study of fuzzy difference equations, we must mention that in 1996,
Deeba et al. [10] studied the following first-order linear fuzzy difference equation

xn+1 = wxn + q, n = 0, 1, · · · , (1.8)

where xn is a sequence of fuzzy numbers and x0, q, w are fuzzy numbers, which
arise in population genetics. Moreover, Deeba and Korvin [9] studied the following
second-order linear fuzzy difference equation

Cn+1 = Cn − abCn−1 +m, n = 0, 1, · · · , (1.9)

where a, b, m, C0, C1 are fuzzy numbers and Cn is a sequence of fuzzy numbers.
The equation is a linearization of a nonlinear model that determines the level of
carbon dioxide in the blood.

Recently, Zhang et al. [37] study the existence, asymptotic behavior of the pos-
itive solutions of the following fuzzy nonlinear difference equation

xn+1 =
Axn + xn−1
B + xn−1

, n = 0, 1, 2, · · · , (1.10)

where {xn} is a sequence of positive fuzzy number, A,B and the initial conditions
x−1, x0 are positive fuzzy numbers. Moreover, in 2014, Zhang et al. [38] continuously
deal with the existence, the boundedness and the asymptotic behavior of the positive
solutions for a first order fuzzy Ricatti difference equation

xn+1 =
A+ xn
B + xn

, n = 0, 1, 2, · · · , (1.11)

where {xn} is a sequence of positive fuzzy numbers, A,B and the initial value x0
are positive fuzzy numbers.

More recently, in 2017, Wang et al. [28] consider the existence and uniqueness
of the positive solutions and the asymptotic behavior of the equilibrium points of
the following five-order fuzzy nonlinear difference equation

xn+1 =
Axn−1xn−2

D +Bxn−3 + Cxn−4
, n = 0, 1, 2, · · · , (1.12)

where {xn} is a sequence of positive fuzzy numbers, the initial conditions x−4, x−3,
x−2, x−1, x0 and the parameters A,B,C,D are positive fuzzy numbers. In 2018,
Zhang et al. [35] investigate the dynamical behavior of the following nonlinear fuzzy
logistic discrete time system

xn+1 = Axn(1̃− xn), n = 1, 2, · · · , (1.13)
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where parameter A, 1̃ and the initial condition x0 are positive fuzzy numbers. In
2019, Zhang et al. [36] consider the following discrete time Beverton-Holt model
with fuzzy uncertainty parameters

xn+1 =
Axn

1̃ +Bxn
, n = 1, 2, · · · , (1.14)

where xn is population at the nth generation, A denotes a productivity parameter,
and B controls the level of density dependence. Furthermore A, 1̃, B and the initial
value x0 are positive fuzzy numbers.

Inspired with the previous works, in this paper, we consider the dynamics of the
following nonlinear high-order fuzzy difference equation

xn+1 =
Axn−m

B + C
m∏
i=0

xn−i

, n = 0, 1, · · · , (1.15)

where the parameters A,B,C and the initial conditions x−m, · · · , x0 are positive
fuzzy numbers, m is positive integer.

This paper is arranged as follows. In Section 2, we give some definitions and
preliminary results. The main results and their proofs are given in Section 3. Fi-
nally, some numerical simulations are given in Section 4 to illustrate our theoretical
analysis.

2. Preliminaries and notations

For the convenience of the readers, we give the following definitions and preliminary
results, see ( [3–5,11,20,24])

Definition 2.1. For a set B we denote by B̄ the closure of B. We say that a
function A : R→ [0, 1] is a fuzzy number if the following conditions hold

(i) A is normal, i.e., there exists x ∈ R such that A(x) = 1;

(ii) A is a fuzzy convex set, i.e., A(tx1 +(1− t)x2) > min{A(x1), A(x2)}, ∀t ∈ [0, 1],
x1, x2 ∈ R;

(iii) A is upper semicontinuous on R;

(iv) A is compactly supported, i.e. supp A = ∪α∈(0,1][A]α = {x ∈ R : A (x) >0} is
compact.

For α ∈ (0, 1] the α− cuts of A on R is defined as [A]α = {x ∈ R : A (x) > α} .
It is clear that [A]α is a bounded closed interval in R, we say that a fuzzy number
A is positive if suppA ⊂ (0, ∞). It is obvious that if A is a positive real number
then A is a positive fuzzy number and [A]α = [A, A] , α ∈ (0, 1]. We say that A is
a trivial fuzzy number when A is a positive fuzzy number.

For u, ν ∈ Rf , [u]α = [ul, α, ur, α], [ν]α = [νl, α, νr, α], and λ ∈ R, the sum
µ + ν, the scalar product λµ, multiplication uν and division u

ν in the standard
interval arithmetic (SIA) setting are defined by

[µ+ ν]α = [µ]α + [ν]α, [λµ]α = λ [µ]α, ∀α ∈ [0, 1].

[uν]α =[min{ul,α, νl,α, ul,ανr,α, ur,ανl, α, ur,ανr,α},
max{ul,ανl,α, ul,ανr,α, ur, ανl, α, ur,ανr,α}],
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[
u

ν
]α =[min{ul,α

νl,α
,
ul,α
νr,α

,
ur,α
νl,α

,
ur,α
νr,α
},

max{ul,α
νl,α

,
ul,α
νr, α

,
ur,α
νl,α

,
ur,α
νr,α
}], 0 /∈ [ν]α.

Definition 2.2. Let u, v be fuzzy numbers with [u]α = [ul, α, ur, α], [ν]α =
[νl, α, νr, α], α ∈ [0, 1]. Then we define the metric on the fuzzy numbers set as
follows

D(u, v) = sup max {|ul, α − vl, α| , |ur, α − vr, α|} ,
where sup is taken for all α ∈ [0, 1]. Then (Rf , D) is a complete metric space. For
future use we define 0̂ ∈ Rf as

0̂(x) =

{
1, x = 0,

0, x 6= 0.

Thus
[0̂]α = [0, 0], 0 < α 6 1.

Lemma 2.1. Let Ix, Iy be some intervals of real numbers and let f : Ik+1
x ×I l+1

y →
Ix be continuously differentiable functions. Then for every set of initial conditions
(xi, yj) ∈ Ix × Iy, (i = −k, −k + 1, · · · , 0, j = −l, −l + 1, · · · , 0), the following
system of difference equations{

xn+1 = f(xn, xn - 1, · · · , xn - k, yn, yn - 1, · · · , yn - l),

yn+1 = g(xn, xn - 1, · · · , xn - k, yn, yn - 1, · · · , yn - l),
n = 0, 1, 2, · · · , (2.1)

has a unique solution { (xi,yj)} +∞, +∞
i=−k,j=−l.

Definition 2.3. A point (x̄, ȳ) ∈ Ix × Iy is called an equilibrium point of system
(2.1) if

x̄ = f(x̄, x̄, · · · , x̄, ȳ, ȳ, · · · , ȳ), ȳ = g (x̄.x̄, · · · , x̄, ȳ, ȳ, · · · , ȳ) .

That is, (xn, yn) = (x̄, ȳ) for n ≥ 0 is the solution of difference system (2.1), or
equivalently, (x̄, ȳ) is a fixed point of the vector map (f, g).

Definition 2.4. Assume that (x̄, ȳ) be an equilibrium point of the system (2.1).
Then, we have

(i) An equilibrium point (x̄, ȳ) is called locally stable if for every δ > 0 such that
for any initial conditions (xi, yi) ∈ Ix × Iy(i = −k, · · · , 0, j = −l, · · · , 0), with∑0
i=−k |xi − x̄| < δ,

∑0
j=−l |yj − ȳ| < δ, we have |xn − x̄| < ε, |yn − ȳ| < ε for any

n > 0;

(ii) An equilibrium point (x̄, ȳ) is called attractor if limn→∞xn = x̄ , limn→∞yn = ȳ
for any initial conditions (xi, yi) ∈ Ix × Iy(i = −k, · · · , 0, j = −l, · · · , 0);

(iii) An equilibrium point (x̄, ȳ) is called asymptotically stable if it is stable, and
(x̄, ȳ) is also attractor;

(iv) An equilibrium point (x̄, ȳ) is called unstable if it is not locally stable.

Definition 2.5. Let (x̄, ȳ) be an equilibrium point of the vector map
F = (f, xn, · · · , xn−k, g, yn, · · · , yn−l) where f and g are continuously differen-
tial functions at (x̄, ȳ). The linearized system of (2.1) about the equilibrium point
(x̄, ȳ) is Xn+1 = F (Xn) = Fj ·Xn, where Fj is the Jacobian matrix of the system
(2.1) about (x̄, ȳ) and Xn = (xn, · · · , xn−k, yn, · · · , yn−l)T .
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Definition 2.6. Let p, q, s, t be four nonnegative integers such that p+q = n, s+t =
m. Splitting x = (x1, x2, · · · , xn) into x = ([x]p, [x]q) and y = (y1, y2, · · · , ym)
into y = ([y]s, [y]t), where [x]σ denotes a vector with σ-components of x. We say
that the function f(x1, x2, · · · , xn, y1, y2, · · · , ym) possesses a mixed monotone
property in subsets Inx × Imy of Rn × Rm if f( [x]p, [x]q, [y]s, [y]t) is monotone
non-decreasing in each component of ([x]p, [y]s) and is monotone non-increasing in
each component of ([x]q, [y]t) for (x, y) ∈ Inx × Imy . In particular, if q = 0, t = 0,,
then it is said to be monotone non-decreasing in Inx × Imy .

Lemma 2.2. Assume that X(n + 1) = F (X(n)), n = 0, 1, · · · , is a system of
difference equations and X̄ is the equilibrium point of this system i.e., F (X̄) = X̄.
Then we have

(i) If all eigenvalues of the Jacobian matrix JF about X̄ lie inside the open unit disk
|λ| < 1, then X̄ is locally asymptoticddally stable.

(ii) If one of eigenvalues of the Jacobian matrix JF about X̄ has norm greater than
one, then X̄ is unstable.

Lemma 2.3. Assume that X(n + 1) = F (X(n)), n = 0, 1, · · · , is a system of
difference equations and X̄ is the equilibrium point of this system, the characteristic
polynomial of this system about the equilibrium point X̄ is P (λ) = a0λ

n+a1λ
n−1 +

· · · + an−1λ + an, with the real coefficients and a0 > 0. Then all roots of the
polynomial P(λ) lie inside the open unit disk |λ| < 1 if and only if

∆k > 0 for k = 1, 2, · · · , n,

where ∆k is the principal minor of order k of the n× n matrix

∆n =



a1 a3 a5 · · · 0

a0 a2 a4 · · · 0

0 a1 a3 · · · 0

...
...

...
. . .

...

0 0 0 · · · an


.

3. Main results

Firstly, we study the existence and uniqueness of the positive solutions of Eq. (1.15).

Theorem 3.1. Consider equation (1.15), suppose that A,B,C is positive fuzzy
number, then for every positive fuzzy numbers x−m, x−m+1, · · · , x0, there exists a
unique positive solution xn of Eq. (1.15) with initial values x−m, x−m+1, · · · , x0.

Proof. The proof is similar to Theorem 3.3 of [28], so we omit the proof of The-
orem 3.1.

In the following theorem we investigate the asymptotic behavior of the equilib-
rium point of Eq. (1.15).

If xn is the unique positive solution of Eq. (1.15) with the initial values x−m,
x−m+1, · · · , x0 such that [xn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, · · · , then we
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obtain that (Ln,α, Rn,α) satisfies the following ordinary difference equations

Ln+1,α =
Al,αLn−m,α

Br,α + Cr,α
m∏
i=0

Rn−i,α

, Rn+1,α =
Ar,αRn−m,α

Bl,α + Cl,α
m∏
i=0

Ln−i,α

, (3.1)

where α ∈ (0, 1], n = 0, 1, · · · .
In order to study the asymptotic behavior of Eq. (1.15), from (3.1), we will

consider the following systems of ordinary parametric difference equations

yn+1 =
A1yn−m

B2 + C2

m∏
i=0

zn−i

, zn+1 =
A2zn−m

B1 + C1

m∏
i=0

yn−i

, n = 0, 1, · · · , (3.2)

where the parameters A1, A2, B1, B2, C1, C2 are positive real constants and A1 6
A2, B1 6 B2, C1 6 C2, the initial values y−m, y−m+1, · · · , y0, z−m, z−m+1, · · · , z0
are also positive real constants and yi ≤ zi, i = −m, · · · , 0. From Theorem 3.1,
we know that the systems of ordinary parametric difference equations (3.2) has
a unique solution (yn, zn) for any initial values. Moreover, we can easily ob-
tain that the systems (3.2) has an equilibrium point X1 = (ȳ1, z̄1) = (0, 0). If
A1 = A2 = A > B = B1 = B2, C = C1 = C2, then Eq. (3.2) has another positive
equilibrium point X2

X2 = (ȳ2, z̄2) = (
m+1

√
A−B
C

,
m+1

√
A−B
C

).

Theorem 3.2. For the equilibrium point X1 of Eq. (3.2) , we have the following
results:

(i) if A1 < B2, A2 < B1, then the equilibrium point X1 is locally asymptotically
stable.

(ii) if A1 > B2 or A2 > B1, then the equilibrium point X1 is unstable.

Proof. Let F : (R+)m+2 → R+, H : (R+)m+2 → R+ be multivariate function
defined by

F (yn−m, zn−m, zn−m+1, · · · , zn) =
A1yn−m

B2 + C2

m∏
i=0

zn−i

,

H(zn−m, yn−m, yn−m+1, · · · , yn) =
A2zn−m

B1 + C1

m∏
i=0

yn−i

.

Thus, we have

Fyn−m =
A1

B2 + C2

m∏
i=0

zn−i

, Fzn−i = − A1C2yn−m

(B2 + C2

m∏
i=0

zn−i)
2

m∏
j=0,j 6=i

zn−j ,

Hzn−m
=

A2

B1 + C1

m∏
i=0

yn−i

, Hyn−i
= − A2C1zn−m

(B1 + C1

m∏
i=0

yn−i)
2

m∏
j=0,j 6=i

yn−j . (3.3)



Dynamics of a high-order nonlinear fuzzy . . . 411

Moreover, we can easily obtain that the linearized equations of the system (3.2)
about the equilibrium point X1 is

ϕn+1 = D1ϕn, (3.4)

where

φn =



yn
yn−1

...

yn−m

zn

zn−1

...

zn−m


, D1 =



0 0 0 · · · 0 A1

B2
0 · · · 0 0 0

1 0 0 · · · 0 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0 · · · 0 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1 0 0 · · · 0 0 0

0 0 0 · · · 0 0 0 · · · 0 0 A2

B1

0 0 0 · · · 0 0 1 · · · 0 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 0 0 0 · · · 0 1 0



.

The characteristic equation with Eq. (3.4) is

P (λ) = (λm +
A1

B2
)(λm +

A2

B1
).

In view of A1 < B2, A2 < B1, this shows that we have all |λ| < 1, from Lemma
2.2, we have that the equilibrium point X1 of (3.2) is locally asymptotically stable.
If A1 > B2 or A2 > B1, then at least one characteristic root |λ∗| > 1. Thus, the
equilibrium point X1 of Eq. (3.2) is unstable. The proof is completed.

Lemma 3.1. Let Ix, Iy be some intervals of real numbers and assume that f :
Ik+1
x × I l+1

y → Ix and g : Ik+1
x × I l+1

y → Iy be continuously differentiable functions
satisfying mixed monotone property. If there exits{

m0 6 min{x−k, · · · , x0, y−l, · · · , y0} 6 max{x−k, · · · , x0, y−l, · · · , y0} 6M0,

n0 6 min{x−k, · · · , x0, y−l, · · · , y0} 6 max{x−k, · · · , x0, y−l, · · · , y0} 6 N0,

such that{
m0 6 f([m0]p, [M0]q, [n0]s, [N0]t) 6 f([M0]p, [m0]q, [N0]s, [n0]t) 6M0,

n0 6 g([m0]p1 , [M0]q1 , [n0]s1 , [N0]t1) 6 g([M0]p1 , [m0]q1 , [N0]s1 , [n0]t1) 6 N0,

then there exit (m,M) ∈ [m0,M0]2 and (n,N) ∈ [n0, N0]2 satisfying{
M = f([M ]p, [m]q, [N ]s, [n]t), m = f([m]p, [M ]q, [n]s, [N ]t),

N = g([M ]p1 , [m]q1 , [N ]s1 , [n]t1), n = g([m]p1 , [M ]q1 , [n]s1 , [N ]t1).

Moreover, if m = M, n = N, then the equations (2.1) has a unique equilibrium
point (x̄, ȳ) ∈ [m0,M0]× [n0, N0] and every solution of (2.1) converges to (x̄, ȳ).
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Proof. The proof is similar to Theorem 3.8 of [28], so we omit the proof of Lemma
3.1.

Theorem 3.3. When m of system (3.2) is positive even numbers. If A1 = A2 <
B1 = B2, C1 = C2, then the equilibrium point X1 = (0, 0) of the system (3.2) is
global attractor for any initial conditions

( y−m, y−m+1, · · · , y0, z−m, z−m+1, · · · , z0) ∈ (0,∞)2m+2.

Proof. Since A1 = A2 = A < B1 = B2 = B, C1 = C2, then the system (3.2) is
changed to

yn+1 =
Ayn−m

B + C
m∏
i=0

zn−i

, zn+1 =
Azn−m

B + C
m∏
i=0

yn−i

, n = 0, 1, · · · .

Let (f, g) : (0,∞)m+1 × (0,∞)m+1 → (0,∞)× (0,∞) be a function defined by

f(yn−m,yn - m + 1, · · · , yn, zn−m, zn - m + 1, · · · , zn) =
Ayn−m

B + C
m∏
i=0

zn−i

,

g(yn−m,yn - m + 1, · · · ,yn,zn−m,zn - m + 1, · · · , zn) =
Azn−m

B + C
m∏
i=0

yn−i

,

we can easily see that the functions f and g possess a mixed monotone property in
subsets (0,∞)2m+2 of R2m+2. Let

P0 = Q0 = max{y−m, y - m + 1, · · · , y0, z−m, z - m + 1, · · · , z0},

and m+1

√
A−B
C < p0 = q0 < 0, we have

p0 6
Ap0

B + CQm+1
0

6
AP0

B + C qm+1
0

6 P0, q0 6
Aq0

B + CPm+1
0

6
AQ0

B + Cpm+1
0

6 Q0.

Thus, from the system (3.2) and Lemma 3.1, there exist p, P ∈ [p0, P0], q,Q ∈
[q0, Q0] satisfying

p =
Ap

B + CQm+1
, P =

AP

B + Cqm+1
, q =

Aq

B + CPm+1
, Q =

AQ

B + Cpm+1
.

Thus, we have

P = p = Q = q = 0.

It follows by Lemma 3.1 that the unique equilibrium point (0, 0) of the system (3.2)
is global attractor. The proof is therefore completed.

Theorem 3.4. If A1 = A2 = A > B1 = B2 = B, C1 = C2, then the positive
equilibrium point X2 of the system (3.2) is unstable.

Proof. From Eq. (3.3), we have that the linearized equation of Eq. (3.2) about
the equilibrium point X2 is

ϕn+1 = D2ϕn, (3.5)
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where

φn =



yn
yn−1

...

yn−m

zn

zn−1

...

zn−m


, D2 =



0 0 0 · · · 0 1 M · · · M M M

1 0 0 · · · 0 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0 · · · 0 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 1 0 0 · · · 0 0 0

M M M · · · M M 0 · · · 0 0 1

0 0 0 · · · 0 0 1 · · · 0 0 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 0 0 0 · · · 0 1 0



,

where M = 1− B
A . The characteristic equation with (3.5) is

P (λ) = λ2m − (1− B

A
)2[(λ2m−2 + 1) + 2(λ2m−3 + λ) + · · ·

+(m+ 1)(λ2m−m + λ2m−m−2) +mλ2m−m−1]− 2λm + 1,

from Lemma 2.3, we easily know

∆1 = (0) = 0, ∆2 =

 0 −2M2

1 −M2

 = 2M2 > 0,

∆3 =


0 −2M2 −4M2

1 −M2 −3M2

0 0 −2M2

 = −4M2 < 0,

thus, there is not all ∆k > 0, k = 1, 2, · · · , 2m, from Lemma 2.2 and Lemma
2.3, we obtain that the equilibrium point X̄2 is unstable, and then the proof is
completed.

Lemma 3.2. Let (yn, zn) be a positive solution of the system (3.2), if A1 6 A2 6
B1 6 B2, the positive solution of (3.2) is bounded.

Proof. If the following system of inequalities (3.6) are true, then the positive
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solution of the system (3.2) is bounded.

0 6 yn 6 (A1/B2)q+1y−m 6 y−m, if n = (m+ 1)q + 1,

0 6 yn 6 (A1/B2)q+1y−m+1 6 y−m+1, if n = (m+ 1)q + 2,

0 6 yn 6 (A1/B2)q+1y−m+2 6 y−m+2, if n = (m+ 1)q + 3,

...

0 6 yn 6 (A1/B2)q+1y0 6 y0, if n = (m+ 1)q + (m+ 1),

0 6 zn 6 (A2/B1)q+1z−m 6 z−m , if n = (m+ 1)q + 1,

0 6 zn 6 (A2/B1)q+1z−m+1 6 z−m+1, if n = (m+ 1)q + 2,

0 6 zn 6 (A2/B1)q+1z−m+2 6 z−m+2, if n = (m+ 1)q + 3,

...

0 6 zn 6 (A2/B1)q+1z0 6 z0, if n = (m+ 1)q + (m+ 1).

(3.6)

Now, we need prove the (3.6), the inequalities are obviously true for q = 0. Suppose
that inequalities are true for q = k > 1, i.e.,

0 6 yn 6 (A1/B2)k+1y−m 6 y−m, if n = (m+ 1)k + 1,

0 6 yn 6 (A1/B2)k+1y−m+1 6 y−m+1, if n = (m+ 1)k + 2,

0 6 yn 6 (A1/B2)k+1y−m+2 6 y−m+2, if n = (m+ 1)k + 3,

...

0 6 yn 6 (A1/B2)k+1y0 6 y0, if n = (m+ 1)k + (m+ 1),

0 6 zn 6 (A2/B1)k+1z−m 6 z−m , if n = (m+ 1)k + 1,

0 6 zn 6 (A2/B1)k+1z−m+1 6 z−m +1, if n = (m+ 1)k + 2,

0 6 zn 6 (A2/B1)k+1z−m+2 6 z−m +2, if n = (m+ 1)k + 3,

...

0 6 zn 6 (A2/B1)k+1z0 6 z0, if n = (m+ 1)k + (m+ 1).

Then, for q = k + 1 , one has

0 6 y(m+1)(k+1)+1 6
A1y(m+1)(k+1)−m

B2
=
A1y(m+1)k+1

B2

6 (A1/B2)k+2y−m 6 y−m,

0 6 y(m+1)(k+1)+2 6
A1y(m+1)(k+1)+1−m

B2
=
A1y(m+1)k+2

B2

6 (A1/B2)k+2y−m+1 6 y−m+1,

0 6 y(m+1)(k+1)+3 6
A1y(m+1)(k+1)+2−m

B2
=
A1y(m+1)k+3

B2

6 (A1/B2)k+2y−m+2 6 y−m+2,

...

0 6 y(m+1)(k+1)+(m+1) 6
A1y(m+1)(k+1)

B2
=
A1y(m+1)k+(m+1)

B2
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6 (A1/B2)k+2y0 6 y0,

0 6 z(m+1)(k+1)+1 6
A2z(m+1)(k+1)−m

B1
=
A2z(m+1)k+1

B1

6 (A2/B1)k+2z−m 6 z−m,

0 6 z(m+1)(k+1)+2 6
A2z(m+1)(k+1)+1−m

B1
=
A2z(m+1)k+2

B1

6 (A2/B1)k+2z−m+1 6 z−m+1,

0 6 z(m+1)(k+1)+3 6
A2z(m+1)(k+1)+2−m

B1
=
A2z(m+1)k+3

B1

6 (A2/B1)k+2z−m+2 6 z−m+2,

...

0 6 z(m+1)(k+1)+(m+1) 6
A2z(m+1)(k+1)

B1
=
A2z(m+1)k+(m+1)

B1

6 (A2/B1)k+2z0 6 z0.

By mathematical induction, the proof is completed.

Theorem 3.5. Consider the fuzzy difference system (1.15), where the parameters
A,B,C are positive fuzzy numbers, and the initial values xi, i = −m, · · · , 0 are
positive fuzzy numbers. If Al,α 6 Ar,α 6 Bl,α 6 Br,α, then every positive solution
of (1.15) is bounded.

Proof. Let xn be a positive solution of (1.15) with initial values xi, i = −m, · · · , 0,
such that [xn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, · · · hold, and A,B,C is positive
fuzzy numbers, thus

[A]α = [Al,α, Ar,α] , [B]α = [Bl,α, Br,α] , [C]α = [Cl,α, Cr,α] , α ∈ (0, 1].

From Theorem 3.1, (Ln,α, Rn,α), i = 1, 2, 3, · · · , α ∈ (0, 1] satisfies system (3.1).
From Lemma 3.5, we have that

L(m+1)q+i,α 6 L−m+(i−1),α, R(m+1)q+i,α 6 R−m+(i−1),α, i = 1, · · · , (m+ 1),

where q is a positive integer, i.e., there exist two positive real numbers µ, ν such
that 0 6 Ln,α 6 µ, 0 6 Rn,α 6 ν for all n = 0, 1, 2, · · · , where µ = max{L−m,α,
L−m+1,α, · · · , L0,α}, and ν = max{R−m,α, R−m+1,α}, · · · , R0,α}. The proof is com-
pleted.

Theorem 3.6. Consider the fuzzy difference system (1.15), where the parameters
A,B,C are positive fuzzy numbers, and the initial values xi, i = −m, · · · , 0 are
positive fuzzy numbers. if Al,α < Ar,α < Bl,α < Br,α , then the equilibrium point
[0̂]α = [0, 0] of the system (1.15) is global asymptotically stable.

Proof. From Theorem 3.2, if Al,α < Ar,α < Bl,α < Br,α, it is easily to see
that the equilibrium point [0̂]α = [0, 0] of the difference equation (1.15) is locally
asymptotically stable. From Theorem 3.5, we know that every positive solution
xn is bounded. Now, it is sufficient to prove that xn is decreasing. For the system
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(3.1), one has

Ln+1,α =
Al,αLn−m,α

Br,α + Cr,α
m∏
i=0

Rn−i,α

6
Al,αLn−m,α

Br,α
< Ln−m,α.

This implies that L(m+1)n+1,α < L(m+1)n−m,α and L(m+1)n+(m+1),α < L(m+1)n,α.

Hence, the subsequences
{
L(m+1)n+1,α

}
,
{
L(m+1)n+2,α

}
, · · · ,

{
L(m+1)n+(m+1),α

}
are decreasing, i.e., the sequence {Ln,α} is decreasing. Similarly, we have

Rn+1,α =
Ar,αRn−m,α

Bl,α + Cl,α
m∏
i=0

Ln−i,α

6
Ar,αRn−m,α

Bl,α
< Rn−m,α.

This implies that R(m+1)n+1,α < R(m+1)n−m,α and R(m+1)n+(m+1),α < R(m+1)n,α.

Hence, the subsequences
{
R(m+1)n+1,α

}
,
{
R(m+1)n+2,α

}
, · · · ,

{
R(m+1)n+(m+1),α

}
are decreasing, i.e., the sequence {Rn,α} is decreasing. Hence, from the mono-
tone boundedness theorem and Eq. (1.15), we have lim

n→∞
Ln,α = lim

n→∞
Rn,α = 0,

i.e., lim
n→∞

xn = 0̂. The proof is completed.

4. Numerical Simulation

In this section some numerical examples are given in order to confirm the results
of the previous sections and support our theoretical discussions. These examples
represents different types of the asymptotically behavior of solutions for the fuzzy
difference system (1.15).
Example 4.1. when m = 1, we consider the following fuzzy difference equation

xn+1 =
Axn−1

B + Cxnxn−1
, n = 0, 1, 2, · · · , (4.1)

where A,B,C are positive fuzzy numbers. From Theorem 3.6, we take

A = [A1, A2] = [3 + 2α, 8− 3α], B = [B1, B2] = [12 + 2α, 15− α],

C = [C1, C2] = [4 + 4α, 9− α], α ∈ (0, 1].

We also denote the initial conditions x−1 = [1 + 4α, 7− 2α], x0 = [2 + 5α, 8− α] .
From Eq. (4.1), it results in a coupled system of difference equation with parameter
α

Ln+1 =
Al,αLn−1,α

Br,α + Cr,αRn−1,α
,

Rn+1,α =
Ar,αRn−1,α

Bl,α + Cl,αLn−1,α
, α ∈ (0, 1], n = 0, 1, 2, · · · . (4.2)

It is easy to see that Al,α < Br,α, Ar,α < Bl,α for α ∈ (0, 1], namely, the
conditions of Theorem 3.6 are satisfied. So from Theorem 3.6, we have that the
trivial solution x = 0̂ of Eq. (4.1) is global asymptotically stable with respect to D
as n→∞ (see Figure 1-4).
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Figure 1. The dynamics of system (4.2). Figure 2. The solution of system (4.2) when
α = 0.

Figure 3. The solution of system (4.2) when
α = 0.5.

Figure 4. The solution of system (4.2) when
α = 1.

Example 4.2. When m = 5 we consider the following fuzzy difference equation

xn+1 =
Axn−5

B + Cxnxn−1xn−2xn−3xn−4xn−5
, n = 0, 1, 2, · · · , (4.3)

where the parameters A,B,C and the initial conditions are positive fuzzy numbers.
From Theorem 3.6, we take

A = [5 + 3α, 11− 3α], B = [13 + 3α, 18− 2α], C = [3 + 2α, 9− 4α],

x0 = [1 + 7α, 13− 5α], x−1 = [2 + 5α, 12− 5α], x−2 = [3 + 4α, 11− 4α],

x−3 = [4 + 3α, 10− 3α], x−4 = [5 + 2α, 9− 2α], x−5 = [6 + α, 8− α], α ∈ (0, 1].

From Eq. (4.3), it results in a coupled system of difference equation with parameter

Ln+1 =
Al,αLn−5,α

Br,α + Cr,α
5∏
i=0

Rn−i,α

,

Rn+1,α =
Ar,αRn−5,α

Bl,α + Cl,α
5∏
i=0

Ln−i,α

, α ∈ (0, 1], n = 0, 1, 2, · · · . (4.4)
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Similarly, we have Al,α < Br,α, Ar,α < Bl,α for α ∈ (0, 1], so from Theorem 3.6,

we have that the trivial solution x = 0̂ of (4.3) is global asymptotically stable with
respect to D as n→∞(see Figure 5-8).

Figure 5. The dynamics of system (4.4). Figure 6. The solution of system (4.4) when
α = 0.

Figure 7. The solution of system (4.4) when
α = 0.5.

Figure 8. The solution of system (4.4) when
α = 1.

5. Conclusion

In this paper, we have dealt with the dynamics behavior for a class of high-order
nonlinear fuzzy difference equation. Firstly, the existence and uniqueness of the
positive fuzzy solutions for the Eq. (1.15) is proved. Secondly, we also obtain some
conditions to ensure the nonzero equilibrium points of the corresponding ordinary
difference equations (3.2) is unstable or locally asymptotically stable by using lin-
earization method. Moreover, it is proved that If Al,α 6 Ar,α 6 Bl,α 6 Br,α, then
every positive solution of system (1.15) is bounded when the parameters A,B,C
and the initial values xi, i = −m, · · · , 0 are positive fuzzy numbers. Finally, we find
that ifAl,α < Ar,α < Bl,α < Br,α, then the equilibrium point [0̂]α = [0, 0] of the
system (1.15) is global asymptotically stable when the parameters A,B,C,D and
the initial values xi, i = −m, · · · , 0 are positive fuzzy numbers. In particular, some
examples are given to illustrate the effectiveness of the obtained results. In addi-
tion, the obtained sufficient conditions are very simple and provide some flexibility
for the application and analysis of nonlinear fuzzy difference equations.
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