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Abstract We study the asymptotic behavior of solutions for a nonclassical
diffusion equation with polynomial growth condition of arbitrary order p ≥ 2
on bounded domain Ω ⊂ RN with smooth boundary ∂Ω. Firstly, the existence
and uniqueness of weak solution are obtained in the time-dependent space Ht

with the norm depending on time t explicitly. Then we establish the existence,
regularity and asymptotic structure of the time-dependent global attractor.
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1. Introduction

In this paper, we are concerned with the following nonclassical diffusion equation
with time-dependent coefficient :

ut − ε(t)4ut −4u+ λu+ f(u) = g, x ∈ Ω, t > τ,

u|∂Ω = 0, t > τ,

u(x, τ) = uτ , x ∈ Ω,

(1.1)

where the unknown variable u = u(x, t) : Ω × [τ,∞) → R, λ > 0, τ ∈ R and g ∈
H−1(Ω). Let ε(t) be a decreasing bounded function satisfying

lim
t→+∞

ε(t) = 0. (1.2)

In particular, there is constant L > 0 such that

sup
t∈R

(|ε(t)|+ |ε′(t)|) ≤ L. (1.3)

The nonlinear function f ∈ C1(R) with f(0) = 0 satisfies the polynomial growth
condition of arbitrary order

γ1|s|p − β1 ≤ f(s)s ≤ γ2|s|p + β2, p ≥ 2, (1.4)
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and the dissipation condition

f ′(s) ≥ −l, (1.5)

where γi, βi (i = 1, 2) and l are positive constants. Let F (s) =
∫ s

0
f(y)dy, then

from (1.4), there is constants γ̃i, β̃i > 0 (i = 1, 2) such that

γ̃1|s|p − β̃1 ≤ F (s) ≤ γ̃2|s|p + β̃2. (1.6)

As an important mathematical model, the nonclassical diffusion equation has
been used to describe several physical phenomena, such as heat conduction, solid
mechanics, non-Newtonian flows, see [1, 14, 23] and the reference and therein.

Therefore, when ε is a positive constant independent of time t in Eq. (1.1),
this kind of equation has been studied by many researchers and several excellen-
t results have been obtained in the recent twenty years, see [2–5, 7, 12, 16, 27–
30, 33, 34, 36, 38] and the references therein. In particular, by using the decompo-
sition technique, Xiao [33] obtained the existence of global attractor for the non-
classical diffusion equation with subcritical nonlinearity in H1

0 (Ω). Sun and Yang
[28] considered the dynamical behavior of the nonclassical diffusion equations with
critical nonlinearity for both autonomous and non-autonomous cases, they obtained
not only the existence of global attractor when the time-independent forcing term
belongs to H−1(Ω), but also the existence of a uniform attractor and exponential
attractor when the time-dependent forcing term is translation bounded instead of
translation compact. Later, Xie et al. [34] studied the existence of global attrac-
tor of the nonclassical diffusion equation in H1(RN ). The method they used is the
method of Asymptotic Contractive Semigroup, which was introduced by themselves.

Provided that ε is a positive decreasing function vanishing at infinity, very few
people study the problem (1.1) in the time-dependent space. Note that the time-
dependent space mentioned, which the norm of the space depends on the time
explicitly, is very important. Since the norm of space depends on time t explicitly,
the considered problem is still non-autonomous even when the forcing term g is
independent of t. If not, the time-dependent coefficient leads to the lose of the
dissipation of the natural energy as t→ ±∞, which affects the existence of absorbing
set in the general sense. So, in order to avoid this obstacle, Plinio et al. [24]
first introduced the concept of the time-dependent global attractor in the time-
dependent space. Until 2013, Conti et al. [10] applied other condition, that is,
the invariance was replaced by the minimality in this concept of the attractor. By
using the decomposition technique, they showed the existence of the time-dependent
global attractor for wave equation. Recently, some authors have extensively studied
the corresponding results for wave equations Berger equation and plate equations,
see [9, 15, 17, 19–22] and the references therein. Especially, Meng et al. [21]
introduced a technical method (contractive function) for verifying compactness of
the process. They got the existence of the time-dependent global attractor for wave
equation. As for the nonclassical diffusion equation, Ding and Liu [11] proved the
existence of time-dependent global attractor for (1.1) by using the decomposition
technique, where the forcing term g ∈ L2(Ω) (Ω ⊂ R3). Using the same method, Ma
et al. [18] investigated the existence, regularity and asymptotic structure of time-
dependent global attractor, when the forcing term g ∈ H−1(Ω) (Ω ⊂ RN , N ≥ 3)
and the nonlinearity f satisfies the more weaker condition than [31]. Compared
to the above mentioned equations, the related results of the nonclassical diffusion
equation in the time-dependent space are not abundant.
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Inspired by [11, 18, 21, 24, 31] we continue discussing the asymptotic behavior
for the Eq. (1.1). It is worth noting that the nonlinearity f satisfies critical or
subcritical growth conditions about the above articles. The problem (1.1) with the
nonlinearity of polynomial growth condition in the space Ht has not been studied,
except by us. Even more interesting, when ε is positive constant, the result of (1.1)
can be reduced to the previous result (from [27]). Besides, the existence and unique-
ness of weak solution for the partial differential equation in such time-dependent
space have not been explicitly proved until now. Thus, a natural problem is: can
we get the asymptotic behavior of the problem (1.1) with any space dimension N
in Ht when nonlinearity f satisfies the polynomial growth of arbitrary order and
g ∈ H−1(Ω)?

In order to answer the above problem, we need to overcome two obstacles. In
the Eq. (1.1), the presence of the term −ε(t)4ut makes it different from the usual
reaction diffusion equation (i.e., ε(t) ≡ 0). For instance, the reaction diffusion
equation has some smoothing property: although the initial data only belongs to
a weaker topological space, the solution will belong to a stronger topological space
with the higher regularity. Consequently, for the problem (1.1), we can not use the
compact Sobolev embedding to verify the asymptotic compactness. On the other
hand, we can not understand its dynamics in the standard semigroup framework
because the coefficient ε(t) of −4ut depends on the time t, which makes the problem
more complex. For this purpose, we will go on our this problem.

The rest of the paper is organized as follows. Sect.2 is devoted to notations
of function spaces involved, standard conclusions and some abstract results for
the time-dependent global attractor. In Sect.3, we will prove the existence and
uniqueness of solution. It is mentioned that the problem is a non-autonomous case
because of the space norm depending on time. Hence, based on the existence result
of the solution, we get a process generated by a weak solution. In Sect.4, we show the
existence of the time-dependent attractor by contractive function method. In Sect.5,
the uniform boundedness of the time-dependent attractor is obtained. Finally,
combining with the estimates of Sect.5, we study the limit relation between the
time-dependent attractor for this nonclassical diffusion equation and the (classical)
global attractor for the reaction diffusion equation with the same conditions.

For the sake of convenience, we choose C as the positive constant depending on
the subscript which may be different from line to line or in the same line throughout
the paper.

2. Preliminaries

Firstly, we give some spaces and corresponding norms used in the following paper.
Without loss of generality, the norm in Lp(Ω) (p ≥ 1) is denoted as ‖ · ‖Lp(Ω).
Especially, set H = L2(Ω), the scalar product and norm on H are denoted as (·, ·)
and ‖ · ‖ respectively. Recall that A = −4, the Laplacian with Dirichlet boundary
conditions, is a positive operator on H with domain H2(Ω) ∩ H1

0 (Ω). Then, we
introduce the family of Hilbert spaces Hs = D(As/2), ∀s ∈ R, with the standard
inner products and norms, respectively,

(·, ·)D(As/2) = (·, ·)s = (As/2·, As/2·), ‖ · ‖s = ‖As/2 · ‖.

In particular, H−1 = H−1(Ω), H0 = H, H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).
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Now, for any t ∈ R, −1 ≤ s ≤ 1, we have the spacesHst with the time-dependent
norm

‖u‖2Hst = ‖u‖2s + ε(t)‖u‖2s+1,

where the symbol s is always omitted whenever zero. Especially,

‖u‖2Ht = ‖u‖2 + ε(t)‖u‖21.

Here, the dual space of X is denoted as X∗.

Secondly, we give some notations and recall some standard conclusions (see,
[13, 26]). For every t ∈ R, let Xt be a family of normed spaces, we introduce the
R−ball of Xt

BXt(R) = {u ∈ Xt : ‖u‖2Xt ≤ R}.

We denote the Hausdorff semi-distance of two (nonempty) sets B, C ⊂ Xt by

distXt(B,C) = sup
x∈B

inf
y∈C
‖x− y‖Xt .

We also focus on the particular, case of a process {U(t, τ)}t≥τ acting on a family
of spaces {Zt}t∈R, endowed with the product norm

‖x‖2Zt = ‖x‖2X + ξ(t)‖x‖2Y ,

where ξ(t) is a function. Let Πt : Zt → X be the projection. Accordingly, if Jt ⊂ Zt,
then ΠtJt = {x ∈ X : x ∈ Jt}. And if J = {Jt}t∈R, then ΠJ = {ΠtJt}t∈R.

Lemma 2.1 (Aubin-Lions Lemma). Assume that X,B and Y are three Banach
spaces with X ↪→↪→ B and B ↪→ Y . Let fn be bounded in Lp([0, T ], B) (1 ≤ p <∞).
If fn satisfies

(i) fn is bounded in Lp([0, T ], X);

(ii) ∂fn
∂t is bounded in Lp([0, T ], Y ).

Then, fn relatively compact in Lp([0, T ], B).

Lemma 2.2. Assume that X,B and Y are three Banach spaces with X ↪→↪→ B and
B ↪→ Y . Let fn be bounded in L∞(0, T ;X) and ∂fn

∂t is bounded in Lp(0, T ;Y ) (p >
1). Then, fn is relatively compact in C(0, T ;B).

Finally, we recall some abstrsct results about the theory of the time-dependent
global attractor, see [10, 21, 22, 24] for more details.

Definition 2.1. Let {Xt}t∈R be a family of normed spaces. A process is a two-
parameter family of mappings {U(t, τ) : Xτ → Xt, t ≥ τ ∈ R} with properties

(i) U(τ, τ) = Id is the identity on Xτ , τ ∈ R;

(ii) U(t, s)U(s, τ) = U(t, τ), ∀ t ≥ s ≥ τ .

Definition 2.2. A family D = {Dt}t∈R of bounded sets Dt ⊂ Xt is called uniformly
bounded if there exist a constant R > 0 such that Dt ⊂ BXt(R), ∀ t ∈ R.
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Definition 2.3. A time-dependent absorbing set for the process {U(t, τ)}t≥τ is a
uniformly bounded family B = {Bt}t∈R with the following property: for every R >
0 there exists a t0 such that

τ ≤ t− t0 ⇒ U(t, τ)BXτ (R) ⊂ Bt.

Definition 2.4. The time-dependent global attractor for {U(t, τ)}t≥τ is the small-
est family A = {At}t∈R such that

(i) each At is compact in Xt;

(ii) A is pullback attracting, i.e. it is uniformly bounded and the limit

lim
τ→−∞

distXt(U(t, τ)Dτ , At) = 0

holds for every uniformly bounded family D = {Dt}t∈R and every fixed t ∈ R.

Definition 2.5. We say A = {At}t∈R is invariant if

U(t, τ)Aτ = At, ∀ t ≥ τ.

Definition 2.6. We say that a process {U(t, τ)}t≥τ in a family of normed spaces
{Xt}t∈R is pullback asymptotically compact if and only if for any fixed t ∈ R,
bounded sequence {xn}∞n=1 ⊂ Xτn and any {τn}∞n=1 ⊂ R−t with τn → −∞ as
n→∞, sequence {U(t, τn)xn}∞n=1 has a convergent subsequence, where R−t = {τ :
τ ∈ R, τ ≤ t}.

Definition 2.7. Let {U(t, τ)}t≥τ be a process in a family of Banach spaces {Xt}t∈R.
Then U(·, ·) has a time-dependent global attractor A = {At}t∈R satisfying At =⋂
s≤t

⋃
τ≤s

U(t, τ)Bτ if and only if

(i) {U(t, τ)}t≥τ has a pullback absorbing family B = {Bt}t∈R;

(ii) {U(t, τ)}t≥τ is pullback asymptotically compact.

Definition 2.8. Let {Xt}t∈R be a family of Banach spaces and C = {Ct}t∈R be a
family of uniformly bounded subsets of {Xt}t∈R. We call a function ψtτ (·, ·), defined
on Xt×Xt, a contractive function on Cτ×Cτ if for any fixed t ∈ R and any sequence
{xn}∞n=1 ⊂ Cτ , there is a subsequence {xnk}∞n=1 ⊂ {xn}∞n=1 such that

lim
k→∞

lim
l→∞

ψtτ (xnk , xnl) = 0.

Theorem 2.1. Let {U(t, τ)}t≥τ be a process {Xt}t∈R and has a pullback absorbing
family B = {Bt}t∈R. Moreover, assume that for any ε > 0 there exists T (ε) ≤
t, ψtT ∈ C(BT ) such that

‖U(t, T )x− U(t, T )y‖Xt ≤ ε+ ψtT (x, y), ∀x, y ∈ BT ,

for any fixed t ∈ R. Then {U(t, τ)}t≥τ is pullback asymptotically compact.

In order to prove the asymptotic structure of the time-dependent global attrac-
tors for the process {U(t, τ)}t≥τ , we also need the following results.

Theorem 2.2. A function z : t 7→ z(t) ∈ Xt is a complete bounded trajecto-
ries of {U(t, τ)}t≥τ if and only if
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(i) sup
t∈R
‖z(t)‖Xt <∞;

(ii) z(t) = U(t, τ)z(τ), ∀t ≥ τ, τ ∈ R.
Theorem 2.3. Let A = {At}t∈R be the time-dependent global attractor of
{U(t, τ)}t≥τ . If A is invariant, then At = {z(t) ∈ Xt : z CBT of U(t, τ)}. Accord-
ingly, we can write

A = {z : t→ z(t) ∈ Xt with z CBT of U(t, τ)}.

Theorem 2.4. For any sequence zn = (xn, yn) of the complete bounded trajectory
of the process {U(t, τ)}t≥τ and any tn → +∞, there exists a complete bounded
trajectory w of the semigroup {S(t)}t≥0 and any s ∈ R for which

‖xn(s+ tn)− w(s)‖X → 0

as n→ +∞ up to a subsequence. Then

lim
t→+∞

distX (ΠtAt, A∞) = 0.

3. Existence and uniqueness of solution

First we shall give the definition of a weak solution.

Definition 3.1. The function u = u(x, t) defined in Ω× [τ, T ] is said to be a weak
solution for the problem (1.1) if for any T > τ , u ∈ C([τ, T ],Ht) and u also satisfies
the initial data u(τ) = uτ ∈ BHτ (R0) ⊂ Hτ . Furthermore, the following identity
hold

(ut, v) + ε(t)(∇ut,∇v) + (∇u,∇v) + λ(u, v) + (f(u), v) = (g, v),

for a.e. [τ, T ].

We are now ready to state the existence and uniqueness of the weak solution for
the problem (1.1).

Theorem 3.1. Assume that (1.2)-(1.6) hold and g ∈ H−1(Ω), then for any initial
data uτ ∈ BHτ (R0) ⊂ Hτ and any τ ∈ R, there exists a unique solution u for
the problem (1.1) such that u ∈ C(τ, T ;Ht) for all fixed T > τ . Furthermore, the
solution depends on the initial data continuously in Ht.

Proof. The existence of solution for the problem (1.1) can be obtained by Faedo-
Galerkin method [6, 13, 25]. We know that {ωk}∞k=1 which consists of the eigen-
functions of A = −4 with Dirichlet boundary value in H1 is a standard orthogonal
basis of H and is also an orthogonal basis in H1. The corresponding eigenvalues are
denoted by 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞ with Aωk = λkωk, ∀k ∈ N. We
will finish our proof through the following steps.
• Faedo-Galerkin scheme.

Given an integerm, we denote by Pm the projection on the subspace span{ω1, · · · ,
ωm} inH1

0 (Ω). For every fixedm, we look for a function um(t)=Pmu=Σmk=1a
k
m(t)ωk,

where akm satisfies (umt , ωk) + (ε(t)Aumt , ωk) + (Aum, ωk) + λ(um, ωk) + (f(um), ωk) = (g, ωk),

akm(τ) = (uτ , ωk).

(3.1)
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Exploiting the standard existence theory for ordinary differential equations,
there exists a continuous solution um(t) of the problem (3.1) on an interval [τ, T ].
• Energy estimates.

Multiplying the first equation of (3.1) by akm and summing from 1 to k, we have

d

dt
(‖um‖2+ε(t)‖um‖21)+(2−ε′(t))‖um‖21+2λ‖um‖2+2(f(um), um)=2(g, um). (3.2)

It follows from (1.4), Hölder’s inequality and Young’s inequality that

(f(um), um) ≥ γ1

∫
Ω

|um|pdx− β1|Ω|, (3.3)

and

(g, um) ≤ ‖g‖2−1 +
1

4
‖um(t)‖21. (3.4)

Together with (3.2)-(3.4), we get

d

dt
(‖um‖2 + ε(t)‖um‖21) + (

3

2
− ε′(t))‖um‖21 + 2λ‖um‖2 + 2γ1

∫
Ω

|um|pdx

≤2‖g‖2−1 + 2β1|Ω|. (3.5)

Due to the properties of ε(t), (1.2) and (1.3), then for t ∈ R,

(1− ε′(t))‖um‖21 ≥ ‖um‖21 ≥
ε(t)

L
‖um‖21.

Choosing σ = min{ 1
L , 2λ} (L, λ > 0), we arrive at

d

dt
(‖um‖2 + ε(t)‖um‖21) + σ(‖um‖2 + ε(t)‖um‖21) +

1

2
‖um‖21 + 2γ1

∫
Ω

|um|pdx

≤2‖g‖2−1 + 2β1|Ω|. (3.6)

By Gronwall’s lemma, we have

‖um‖2+ε(t)‖um‖21 ≤ e−σ(t−τ)(‖um(τ)‖2+ε(τ)‖um(τ)‖21)+
2

σ
(‖g‖2−1+β1|Ω|). (3.7)

In addition, integrating from τ to t on both sides of (3.6), we yields∫ t

τ

‖um(s)‖21ds+ 2γ1

∫ t

τ

∫
Ω

|um(s)|pdxds

≤‖um(τ)‖2 + ε(τ)‖um(τ)‖21 + 2(t− τ)(‖g‖2−1 + β1|Ω|). (3.8)

Hence, by (3.7) and (3.8), we infer that

{um}∞m is bounded in L∞([τ, T ],Ht)) ∩ L2([τ, T ],H1) ∩ Lp([τ, T ], Lp(Ω)), (3.9)

for all T > τ . In virtue of (1.4),∫ t

τ

∫
Ω

|f(um(s))|qdxdt ≤ Cq,γ2
∫ t

τ

‖um(s)‖pLp(Ω)ds+ Cq,β2,|Ω|,t−τ
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where 1
p + 1

q = 1. Hence, we find that

{f(um)}∞m=1 is bounded in Lq([τ, T ], Lq(Ω)) for all T > τ. (3.10)

Next, we need to achieve uniform estimate for the time derivatives.
Multiplying the first equation of (3.1) by ∂ta

k
m and summing from 1 to k, we

get

d

dt
(
1

2
‖um‖21 +

λ

2
‖um‖2 +

∫
Ω

F (um)dx−
∫

Ω

gumdx)+‖umt ‖2 +ε(t)‖umt ‖21 = 0. (3.11)

Let

E(t) =
1

2
‖um‖21 +

λ

2
‖um‖2 +

∫
Ω

F (um)dx−
∫

Ω

gumdx.

Applying (1.6), (3.4) and embedding inequality (c > 0 is embedding constant), we
have

E(t) ≥ 1

4
‖um‖21 +

λ

2
‖um‖2 + γ̃1‖um‖pLp(Ω) − β̃1|Ω| − ‖g‖2−1

≥ 1

4
‖um‖21 + γ̃1‖um‖pLp(Ω) − β̃1|Ω| − ‖g‖2−1,

(3.12)

E(t) ≤ 3

4
‖um‖21 +

λ

2
‖um‖2 + γ̃2‖um‖pLp(Ω) + β̃2|Ω|+ ‖g‖2−1

≤ Cλ,γ̃2,c(‖um‖21 + ‖um‖pLp(Ω)) + β̃2|Ω|+ ‖g‖2−1.
(3.13)

Integrating from s to t at the sides of (3.11), we obtain that

E(t) ≤ E(s).

Then, integrating over [t, t+ 1] about variable s, we know

E(t) ≤
∫ t+1

t

E(s)ds. (3.14)

It follows from (3.13) and (3.14) that

E(t) ≤ Cλ,γ̃2,c
∫ t+1

t

(‖um(s)‖21 + ‖um(s)‖pLp(Ω))ds+ β̃2|Ω|+ ‖g‖2−1. (3.15)

By (3.7), (3.8), (3.12) and (3.15), there exists R > 0 such that

‖um‖21 + ‖um‖pLp(Ω) ≤ R. (3.16)

Integrating from τ to T about (3.11), we can get∫ T

τ

‖umt (s)‖2 + ε(s)‖umt (s)‖21ds = E(τ)− E(T ). (3.17)

From (3.7) and (3.13), we have the following conclusion

E(τ) ≤ Cλ,γ̃2,c,R + β̃2|Ω|+ ‖g‖2−1, (3.18)

for any uτ ∈ BHτ (R0) and all T > τ .
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Hence, it follows from (3.12), (3.17) and (3.18) that∫ T

τ

(‖umt ‖2 + ε(s)‖umt ‖21)ds ≤ Cλ,γ̃2,c,R + (β̃1 + β̃2)|Ω|+ 2‖g‖2−1. (3.19)

In view of (3.19),

{umt }∞m=1 is bounded in L2([τ, T ],Ht). (3.20)

Then, we consider the limiting process of (3.1) as m→∞.
• Existence of solution.

Step 1. By (3.9), (3.10) and (3.20), we get that there exists u ∈ L∞([τ, T ],Ht)∩
L2([τ, T ],H1) ∩ Lp([τ, T ], Lp(Ω)), χ ∈ Lq([τ, T ], Lq(Ω)), ut ∈ L2([τ, T ],Ht) for all
T > τ and a subsequence of {um}∞m=1 (still denote as {um}∞m=1) such that

um → u weak-star in L∞([τ, T ],Ht)), (3.21)

um → u weakly in L2([τ, T ],H1), (3.22)

um → u weakly in Lp([τ, T ], Lp(Ω)), (3.23)

f(um)→ χ weakly in Lq([τ, T ], Lq(Ω)), (3.24)

umt → ut weakly in L2([τ, T ],Ht). (3.25)

Combining (3.8) with (3.19) and applying Lemma 2.1 (Aubin-Lions Lemma),
we find that there exists a subsequence of {um}∞m=1 (still denote as {um}∞m=1) such
that

um → u in L2([τ, T ], L2(Ω)).

As a result,

um → u, a.e. in Ω× [τ, T ]. (3.26)

Next, we claim χ = f(u). Indeed, it follows from (3.26) and the continuity of f that

f(um)→ f(u), a.e. in Ω× [τ, T ].

In addition, we have

umt −unt −ε(t)4(umt −unt )−4(um−un)+λ(um−un)+f(um)−f(un) = 0. (3.27)

Multiplying the equation (3.27) by (um − un) and integrating on Ω, we know that

d

dt

(
‖um − un‖2 + ε(t)‖um − un‖21

)
+ (2− ε′(t))‖um − un‖21

=− 2λ‖um − un‖2 − (f(um)− f(un), 2(um − un)). (3.28)

It follows from (1.5) and the monotony of ε(t) that

d

dt

(
‖um − un‖2 + ε(t)‖um − un‖21

)
≤ 2l(‖um − un‖2 + ε(t)‖um − un‖21).

By Gronwall’s lemma, we have

‖um − un‖2Ht ≤ e
2l(t−τ)‖um(τ)− un(τ)‖2Hτ . (3.29)
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That is
{um}∞m=1 is a Cauchy sequence in C([τ, T ],Ht).

Therefore, by the uniqueness of the limit, we conclude that

um → u uniformly in C([τ, T ],Ht), for all T > τ.

Thus, we have
u ∈ C([τ, T ],Ht). (3.30)

At the same time, when m→∞, um(τ)→ uτ in Ht.
Step 2. Set a text function v(t) = ΣNk=1a

k
m(t)ωk ∈ C1([τ, T ],Ht) for fixed N̄ .

Choosing m ≥ N̄ , multiplying the first equation of (3.1) by akm, summing from 1 to
N̄ and integrating from τ to T , we can see∫ T

τ

[(umt , v) + ε(t)(∇umt ,∇v)]dt+

∫ T

τ

(∇um,∇v)dt

+

∫ T

τ

λ(um, v)dt+

∫ T

τ

(f(um), v)dt

=

∫ T

τ

(g, v)dt. (3.31)

Then, applying (3.21)-(3.25) and (3.31), by passing to the limit, we conclude that
u satisfies ∫ T

τ

[(ut, v) + ε(t)(∇ut,∇v)]dt+

∫ T

τ

(∇u,∇v)dt

+

∫ T

τ

λ(u, v)dt+

∫ T

τ

(f(u), v)]dt

=

∫ T

τ

(g, v)dt. (3.32)

Due to the arbitrariness of T , for any v ∈ Ht, a.e. [τ, T ],

(ut, v) + ε(t)(∇ut,∇v) + (∇u,∇v) + λ(u, v) + (f(u), v) = (g, v). (3.33)

Step 3. We next prove u(τ) = uτ . By (3.30), we know that u ∈ C([τ, T ],Ht),
which makes u(τ) meaningful. Choosing function v(t) ∈ C1([τ, T ],Ht) with v(T ) =
0 in (3.32), we have

−
∫ T

τ

[(u, vt)− ε(t)(∇ut,∇v)]dt+

∫ T

τ

(∇u,∇v)dt

+

∫ T

τ

λ(u, v)dt−
∫ T

τ

(f(u), v)dt

=

∫ T

τ

(g, v)dt+ (u(τ), v(τ)). (3.34)

Similarly, it follows from (3.31) that

−
∫ T

τ

[(um, vt)− ε(t)(∇umt ,∇v)]dt+

∫ T

τ

(∇um,∇v)dt
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+

∫ T

τ

λ(um, v)dt+

∫ T

τ

(f(um), v)dt

=

∫ T

τ

(g, v)dt+ (um(τ), v(τ)). (3.35)

Owing to um(τ)→ uτ as m→∞, we deduce from (3.35) that

−
∫ T

τ

[(u, vt)− ε(t)(∇ut,∇v)]dt+

∫ T

τ

(∇u,∇v)dt

+

∫ T

τ

λ(u, v)dt+

∫ T

τ

(f(u), v)dt

=

∫ T

τ

(g, v)dt+ (uτ , v(τ)). (3.36)

According to (3.34), (3.36) and the arbitrariness of v(τ), we get

u(τ) = uτ . (3.37)

So, the existence of solution follows from (3.30), (3.33) and (3.37).
• Uniqueness of solution.

Let u1, u2 are two solutions of the problem (1.1) with the initial data u1
τ , u

2
τ ,

respectively. We define ū(t) = u1(t)−u2(t), then ū(t) satisfies the following equation

ūt − ε(t)4ūt −∆ū+ λū+ f(u1)− f(u2) = 0

with initial data

ū(x, τ) = ūτ = u1
τ − u2

τ .

Repeating the arguments used in the proof of (3.29), we can obtain that

‖u1 − u2‖2Ht ≤ e
2l(t−τ)‖u1

τ − u2
τ‖2Hτ ,

which implies the uniqueness and continuous dependence of solution on initial value.

According to Theorem 3.1, we can define a continuous process {U(t, τ)}t≥τ by

U(t, τ) : Hτ → Ht, t ≥ τ ∈ R

acting as U(t, τ)uτ = u(t).

4. The time-dependent global attractor

In this subsection, we first consider a time-dependent absorbing family for the so-
lution process to prove the existence of the time-dependent global attractor.

Theorem 4.1. Assume that (1.2)-(1.4) hold, g ∈ H−1(Ω). For any uτ ∈BHτ (R0) ⊂
Hτ , there exists R1 > 0 such that B = {Bt}t∈R = {BHt(R1)}t∈R is a time-
dependent absorbing family in Ht for the process {U(t, τ)}t≥τ corresponding to the
problem (1.1).
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Proof. Multiplying the equation (1.1) by 2u and repeating the arguments used in
the proof of (3.6), we get

d

dt
(‖u‖2 + ε(t)‖u‖21) + σ(‖u‖2 + ε(t)‖u‖21) +

1

2
‖u‖21 + 2γ1

∫
Ω

|u|pdx

≤2‖g(x)‖2−1 + 2β1|Ω|. (4.1)

Let E1(t) = ‖u‖2 + ε(t)‖u‖21, then

d

dt
E1(t) + σE1(t) ≤ 2‖g(x)‖2−1 + 2β1|Ω|. (4.2)

By Gronwall’s lemma, we see that

E1(t) ≤ e−σ(t−τ)E(τ) +
2

σ
(‖g(x)‖2−1 + β1|Ω|),

that is,
‖u‖2 + ε(t)‖u‖21 ≤ R1

for any t ≥ t1 = τ + 2
σ ln E1(τ)

R1
, where R1 = 4

σ (‖g(x)‖2−1 + β1|Ω|) and σ is given in
Theorem 3.1.

So, Bt = {u ∈ Ht : ‖u(t)‖2 + ε(t)‖u(t)‖21 ≤ R1} is a time-dependent absorbing
set in Ht for the solution process {U(t, τ)}t≥τ . The proof is finished.

Next, we will show that the process {U(t, τ)}t≥τ corresponding to the problem
(1.1) is pullback asympotically compact by using the method of the contractive
function.

Theorem 4.2. Assume that (1.2), (1.3) and (1.5) hold. Then the process
{U(t, τ)}t≥τ of the problem (1.1) is pullback asymptotic compact in Ht.

Proof. Let un, um be the corresponding two solutions of the problem (1.1) with
initial data unτ , umτ ∈ BHτ (R0), respectivly. For the sake of convenience, we denote
w(t) = un(t)− um(t), then w(t) satisfies the following equation

wt − ε(t)4wt −4w + λw + f(un)− f(um) = 0, t > τ, (4.3)

with
w(x, T1) = wT1

= unT1
− umT1

.

Multiplying the equation (4.3) by w and repeating the arguments used in the
proof of (3.29), we can get

d

dt

(
‖w‖2 + ε(t)‖w‖21

)
+
ε(t)

L
‖w‖21 + 2λ‖w‖2 ≤ 2l‖w‖2. (4.4)

Let E2(t) = ‖w‖2 + ε(t)‖w‖21, then

d

dt
E2(t) + σE2(t) ≤ 2l‖w‖2. (4.5)

Integrating from s to t at both sides of (4.4), we obtain that

E2(t) ≤ E2(s) + 2l

∫ t

s

‖w(r)‖2dr. (4.6)
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Similarly, integrating from T1 to t at both sides of (4.5), we have∫ t

T1

E2(r)dr ≤ 1

σ
E2(T1) +

2l

σ

∫ t

T1

‖w(r)‖2dr. (4.7)

Then, integrating over [T1, t] about variable s at both sides of (4.6), we find that

(t− T1)E2(t) ≤
∫ t

T1

E2(r)dr + 2l

∫ t

T1

∫ t

s

‖w(r)‖2drds. (4.8)

Combing with (4.7) and (4.8), we have

E2(t) ≤ E2(T1)

σ(t− T1)
+

2l

σ(t− T1)

∫ t

T1

‖w(r)‖2dr +
2l

t− T1

∫ t

T1

∫ t

s

‖w(r)‖2drds,

that is,

‖w‖2 + ε(t)‖w‖21 ≤
E2(T1)

σ(t− T1)
+ ψtT1

(unT1
, umT1

). (4.9)

For any fixed ε > 0 and some fixed t, set t > T1 such that t− T1 enough large,
E2(T1)
σ(t−T1) ≤ ε. Next, we only need to verify ψtT1

∈ C(BT1
) for each fixed T1. In fact,

if uk is solution of the problem (1.1) with initial data ukτ ∈ BHτ (R0). Using the
same arguments of Theorem 3.1, we know that ukt ∈ L2([T1, t],Ht). In addition, we
have uk ∈ L2([T1, t], H

1
0 (Ω)). Hence, according to Aubin-Lions lemma, there exists

a convergent subsequence of uk (denoted as uki) such that

lim
i→∞

lim
j→∞

∫ t

T1

‖uki(r)− ukj (r)‖2dr = 0. (4.10)

At the same time, for some fixed t,
∫ t
s
‖uki(r)− ukj (r)‖2dr, (s ∈ [τ, t]) is bounded.

According to the Lebesgue dominated convergence theorem, we know

lim
i→∞

lim
j→∞

∫ t

T1

∫ t

s

‖uki(r)− ukj (r)‖2drds = 0. (4.11)

Together with (4.10) and (4.11), we infer that ψtT1
∈ C(BT1). Thus,

‖U(t, T1)|unT1
− U(t, T1)umT1

‖ ≤ ε+ ψtT1
(umT1

, umT1
).

Consequently, by Theorem 2.1, the process {U(t, τ)}t≥τ is pullback asymptotic
compact in Ht. The proof is finished.

Thus, we gain the following result.

Theorem 4.3. Assume that the conditions (1.2)-(1.6) hold, then the process U(t, τ) :
Hτ → Ht generated by the problem (1.1) has an invariant time-dependent global at-
tractor A = {At}t∈R.

Proof. It follows from Theorem 4.1 and Theorem 4.2 that the problem (1.1) exists
a unique time-dependent global attractor A = {At}t∈R. So the proof is completed.

Remark 4.1. Since A is invariant, it follows from Theorem 2.3 that

A = {u : t 7→ u(t) ∈ Ht with u CBT of U(t, τ)}.
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5. Regularity of the attractor

In what follows, we use the idea from [8, 32, 35] to study the regularity of the
time-dependent global attractor.

Theorem 5.1. Assume that (1.2)-(1.2) hold, g ∈ H−1(Ω). Then {At}t∈R is bound-
ed in H1

t .

Proof. Since L2(Ω) ↪→ H−1(Ω) is dense, for every g ∈ H−1(Ω) and any η > 0,
there exists a gη ∈ L2(Ω) such that

‖g − gη‖H−1(Ω) < η. (5.1)

Now, fix τ ∈ R, we split the solution U(t, τ)uτ = u(t) with uτ ∈ Aτ into the
sum

U(t, τ)uτ = U0(t, τ)uτ + U1(t, τ)uτ ,

where U0(t, τ)uτ = v(t), U1(t, τ)uτ = y(t) solve the following equations, respective-
ly, 

vt + ε(t)Avt +Av + λv = g − gη, x ∈ Ω,

v|∂Ω = 0, t ≥ τ,

v(x, τ) = uτ (x), τ ∈ R,

(5.2)

and 
yt + ε(t)Ayt +Ay + λy + f(u) = gη, x ∈ Ω,

y|∂Ω = 0, t ≥ τ,

y(x, τ) = 0, τ ∈ R.

(5.3)

According to Theorem 4.1 and (5.1), we know

‖U0(t, τ)uτ‖2Ht ≤ e
−σ(t−τ)‖uτ‖2Ht +

η2

σ
. (5.4)

Multiplying the equation (5.3) by Ay and integrating on Ω, we get

d

dt
(‖y‖21 + ε(t)‖y‖22)− ε′(t)‖y‖22 + 2‖y‖22 + 2λ‖y‖21 = −2(f(u), Ay) + 2(gη, Ay).

It follows from (1.5) and Young’s inequality that

− (f(u), Ay) = −(f(u)− f(0), Ay) ≤ l2‖u‖2 +
1

4
‖y‖22, (5.5)

and

|(gη, Ay)| ≤ ‖gη‖2 +
1

4
‖y‖22. (5.6)

Combining with (5.5) and (5.6), we arrive at

d

dt
(‖y‖21 + ε(t)‖y‖22) + (1− ε′(t))‖y‖22 + 2λ‖y‖21 ≤ 2l2‖u‖2 + 2‖gη‖2.
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Further, it follows from Theorem 4.1 that

d

dt
(‖y‖21 + ε(t)‖y‖22) + σ(‖y‖21 + ε(t)‖y‖22) ≤ 2l2R1 + 2‖gη‖2. (5.7)

By Gronwall’s lemma, we conclude that

‖y‖21 + ε(t)‖y‖22 ≤
2

σ
(l2R1 + ‖gη‖2),

that is,

sup
t≥τ
‖U1(t, τ)uτ‖2H1

t
≤ R2, (5.8)

where R2 = 2
σ (l2R1 + ‖gη‖2).

For any t ∈ R, thanks to (5.4) and (5.8), and then

distHt(At,BH1
t
(R2)) = distHt(U(t, τ)Aτ ,BH1

t
(R2)) ≤ Ce−σ1(t−τ) → 0, τ → −∞,

where σ1 > 0,

BH1
t
(R2) = {u(t) ∈ H1

t : ‖u(t)‖2H1
t
≤ R2}.

Hence, At ⊆ BH1
t
(R2), that is, the time-dependent global attractor {At}t∈R is

bounded in H1
t . The proof is completed.

6. Asymptotic regularity of the attractors

In this subsection, We investigate the relationship between the time-dependent glob-
al attractor of {U(t, τ)}t≥τ and the global attractor of the limit equation formally
corresponding to (1.1) when t→ +∞.

If ε(t) ≡ 0 in (1.1), we obtain the following classical reaction-diffusion equation
ut −4u+ λu+ f(u) = g(x), x ∈ Ω,

u|∂Ω = 0, t > τ,

u(x, τ) = uτ (x), x ∈ Ω.

(6.1)

Under the conditions (1.2), (1.4), (1.5) and (1.6), it is well known that the prob-
lem (6.1) has an unique solution u(t). At the same time, it generates a continuous
semigroup {S(t)}t≥0 (see [37]) acting on the space H associated with the prob-
lem (6.1), such that u(t) = S(t)uτ . Further, {S(t)}t≥0 admits the (classical) global
attractor A∞ in H. In addition, we also know that, for any fixed t ∈ R,

A∞ = {z(t) : R→ H with z CBT of S(t)}.

Now, we establish the asymptotic regularity of the time-dependent global at-
tractors A = {At}t∈R of the process {U(t, τ)}t≥τ generated by (1.1) and the global
attractor A∞ of the semigroup {S(t)}t≥0 generated by (6.1). To prove this result, we
first need the following lemmas.
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Lemma 6.1. Assume that (1.2)-(1.6) hold, g ∈ H−1(Ω). Then there exists
R3, R4 > 0 such that the solution of the problem (1.1) with intial data uτ ∈ BHτ (R0)
satisfies

sup
uτ∈Aτ

sup
t>τ

(‖u‖21 + ε(t)‖u‖22) ≤ R3, (6.2)

and ∫ ∞
τ

‖ut(s)‖2dt ≤ R4. (6.3)

Proof. Note that we can easily verify (6.2) by using Theorem 5.1. We use the
same argument of (3.19), then (6.3) holds.

Lemma 6.2. Assume that (1.2)-(1.6) hold, g ∈ H−1(Ω). For any sequence {un}∞n=1

of CBT for the process {U(t, τ)}t≥τ associated with (1.1) and any tn → +∞ (n→
+∞), there exists a CBT z of the semigroup {S(t)}t≥τ associated with (6.1) such
that for every T2 > 0,

sup
t∈[−T2,T2]

‖un(t+ tn)− z(t)‖ → 0. (6.4)

Proof. Firstly, according to (6.2) and (6.3), for every T2 > 0, uτ ∈ Aτ , we have the
boundedness of the sequence un(·+tn) in L∞([−T2, T2],H1) and the sequence unt (·+
tn) in L2([−T2, T2],H), respectively. Then, it follows from the embedding inequality
that unt (·+ tn) is bounded in L2([−T2, T2], H−1(Ω)). Therefore, by Lemma 2.2, we
find that un(·+ tn) is relatively compact in C([−T2, T2],H). Then, there exists the
function z in H such that un(t+ tn)→ z(t) holds in the sense of (6.4). Especially,
z ∈ C(R,H). In addition, there exists M > 0, such that

sup
t∈R
‖z‖ ≤M. (6.5)

Next, we show that z solves (6.1). Set

vn(t) = un(t+ tn), εn(t) = ε(t+ tn),

and we rewrite (1.1) for vn in the form

vnt = εn(t)4vnt +4vn − λvn + f(vn) + g(x).

Indeed, for every fixed T2 > 0, there exists H-valued function ϕ supported on
(−T2, T2) such that∫ T2

−T2

εn(t)(4vn, ϕ)dt = −
∫ T2

−T2

ε′n(t)(4vn, ϕ)dt+

∫ T2

−T2

εn(t)(4vnt , ϕt)dt.

Using Lemma 6.1, we have

|
∫ T2

−T2

εn(t)(4vnt , ϕ)dt |=
∫ T2

−T2

√
εn(t)

√
εn(t)‖4vn‖‖ϕt‖dt

+

∫ T2

−T2

ε′n(t)√
εn(t)

εn(t)‖4vn‖‖ϕ‖dt

≤CR3,c

∫ T2

−T2

√
εn(t)dt+ CR3,c

∫ T2

−T2

ε′n(t)√
εn(t)

dt



Asymptotic dynamic of . . . 461

≤CR3,c(
√
εn(T2)−

√
εn(−T2))+CR3,c,T2

sup
t∈[−T2,T2]

√
εn(t).

Since
lim

n→+∞
sup

t∈[−T2,T2]

εn(t) = 0,

we get

lim
n→+∞

∫ T2

−T2

εn(t)(4vnt , ϕ)dt = 0.

Moreover, it follows from (1.4) and (6.4) that

4vn − λvn + f(vn)→4z − λz + f(z),

in the topology of L∞([−T2, T2], H−1(Ω)). So, the convergence

vnt (t)→ zt(t),

holds in the distributional sense. Thus, we obtain the equality

zt −4z + λz = f(z) + g.

Consequently, z is the solution of the problem (6.1). Combining with (6.5), we
find that z is a CBT of the semigroup {S(t)}t≥τ . The proof is finished.

Then, we get immediately the following result by Lemma 2.4.

Theorem 6.1. If the process {U(t, τ)}t≥τ has an invariant time-dependent global
attractor, then

lim
t→∞

distH(ΠtAt, A∞) = 0.
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