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EXISTENCE OF PERIODIC AND KINK
WAVES IN A PERTURBED DEFOCUSING

MKDV EQUATION∗

Hong Li1,†, Lilin Ma2 and Mei Liu1

Abstract In this paper, we consider the existence of periodic and kink wave
solutions of a perturbed defocusing mKdV equation. Based on geometric sin-
gular perturbation theory, Chebyshev criteria and bifurcation theory of dy-
namic system, the wave speed conditions for the periodic and kink solutions
are given. The monotonicity of the wave speed is proved, and moreover the
upper and lower bounds of the limiting wave speeds are obtained. The unique-
ness of the periodic waves is established by showing that the Abelian integrals
form a Chebyshev set. In addition, there is no coexistence of one periodic and
one solitary waves. The proof process does not need any explicit expression of
the original defocusing mKdV periodic wave or kink wave solutions.

Keywords Defocusing mKdV equation, traveling wave, Abelian integral,
Chebyshev system.
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1. Introduction
Traveling wave solution is an important type of solutions for nonlinear wave equa-
tions. Many nonlinear wave equations have a number of different traveling wave
solutions. However, the traveling wave solution is very sensitive to external influ-
ences [1]. In practice, there are often small external perturbations. In order to
simulate these small perturbations, the perturbed terms are often added to the
wave equation to generate the perturbed nonlinear wave equation.

In this paper, we consider the perturbed defocusing mKdV equation

ψt − ψ2ψx + ψxxx + ε(qψxx + r(ψψx)x + sψxxxx) = 0, (1.1)

where q, r, s are constants and ε > 0 is a perturbation parameter. When ε = 0, the
equation is a defocusing mKdV equation. System (1.1) is more complex than the
defocusing mKdV equation, and some methods [6, 9, 10] for finding exact solutions
usually do not work. In recent years, the existence of many kinds of traveling
wave solutions for some perturbed wave equations have been obtained by using the
geometric singular perturbation theory [7, 8, 12,13].
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Recently, Chen et al. [3] considered the perturbed defocusing mKdV equation

ψt − ψ2ψx + ψxxx + ε(ψxx + ψxxxx) = 0. (1.2)

It is proved that kink waves and periodic waves exist when ε is small enough.
Compared with Eq.(1.2), Eq.(1.1) contains the nonlinear term (ψψx)x due to the
Marangoni effect, describing the opposite to the Bénard convection. Sun et al. [15]
showed that the existence of traveling wave solutions for the perturbed mKdV
equation is related to the Marangoni effect, but is it the same for the perturbed
defocusing mKdV equation? What about the existence of traveling wave solutions?
Is there coexistence? In this paper, we study these problems and give the necessary
and sufficient conditions for the existence of traveling wave solutions.

In order to study traveling wave solutions of Eq.(1.1), we set

ψ(x, t) = ψ(ξ), ξ = x+ ct, (1.3)

where c(c > 0) is the wave speed.
Substituting (1.3) into system (1.1), it is reduced to

cψ′(ξ)− ψ2ψ′(ξ) + ψ′′′(ξ) + ε(qψ′′(ξ) + r(ψψ′(ξ))′ + sψ′′′′(ξ)) = 0. (1.4)

Integrating (1.4) with respect to ξ and omitting the integral constant, we get

cψ − ψ3

3
+ ψ′′(ξ) + ε(qψ′(ξ) + rψψ′(ξ) + sψ′′′(ξ)) = 0. (1.5)

After transformation ξ =
√

1
c τ and ψ =

√
3cϕ, Eq.(1.5) is transformed into

ϕ(τ)− ϕ3(τ) + ϕ′′(τ) +
ε√
c
(qϕ′(τ) + r

√
3cϕϕ′(τ) + scϕ′′′(τ)) = 0, (1.6)

which has an equivalent form
dϕ

dτ
= y,

dy

dτ
= −ϕ+ ϕ3 − ε√

c
(qϕ′(τ) + r

√
3cϕϕ′(τ) + scϕ′′′(τ)). (1.7)

(1.6)ε=0 has an equivalent form

dϕ

dτ
= y,

dy

dτ
= −ϕ+ ϕ3, (1.8)

which is a Hamiltonian system and the Hamiltonian function is

H(ϕ, y) = −y
2

2
− ϕ2

2
+
ϕ4

4
. (1.9)

It is easy to see that system (1.8) has three equilibrium points at E0(0, 0), E1(1, 0)
and E2(−1, 0). E0 is a center , E1 and E2 are saddle points. For the phase portrait
H(ϕ, y) = h, there are a family of closed orbits surrounding the center E0 when
h ∈ (− 1

4 , 0) and a heteroclinic orbit to E1 and E2 enclosing the closed orbits when
h = − 1

4 . (see Figure 1).
The remaining part is organized as follows. In Section 2, we present some

perturbation theories and derive a special form of Abelian integral for periodic and
kink waves. In Section 3, the monotonicity of Abelian integral ratio is analyzed and
the range of its value is obtained. In section 4, we state and prove our main result.
This paper ends with a brief conclusion.
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Figure 1. Phase portraits of Eq. (1.8) on the (ϕ, y) plane.

2. Perturbation Analysis
Lemma 2.1 (Fenichel Criteria). Consider the system

ẋ = g1(x, y, ε), ẏ = εg2(x, y, ε), (2.1)

where x ∈ Rl, y ∈ Rm, 0 < ε ≪ 1 is a real parameter, g1 and g2 are c∞ on the
set V × I, where V ∈ Rl+m and I is an open interval containing zero. Assume
that for ε = 0, system (2.1) has a compact normally hyperbolic manifold M0 which
is contained in the set g1(x, y, 0) = 0. The manifold M0 is said to be normally
hyperbolic if the linearization of (2.1) at each point in M0 has exactly dim(M0)
eigenvalues on the imaginary axis. Then for any 0 < r < +∞, there exists a
manifold Mε such that the following conclusions hold.

(i) Mε is locally invariant under the flow of (2.1);
(ii) Mε is Cr in x, y and ε;

(iii) Mε = {(x, y)|x = hε(y)} for any Cr function hε and y in some compact set
K;

(iv) There exist locally invariant stable and unstable manifolds W s(Mε), Wu(Mε),
that lie within O(ε) of, and are diffeomorphic to W s(M0) and Wu(M0).

In order to study the dynamical behavior of the perturbed system (1.7) , we
express it as

dϕ

dτ
= y,

dy

dτ
= v, εs

√
c
dv

dτ
= −ϕ+ ϕ3 − v − ε√

c
(qy + r

√
3cϕy), (2.2)

which is the slow system. Letting σ = τ
ε , the system(2.2) is converted to the fast

system
dϕ

dσ
= εy,

dy

dσ
= εv, s

√
c
dv

dσ
= −ϕ+ ϕ3 − v − ε√

c
(qy + r

√
3cϕy). (2.3)

For ε > 0, two systems (2.2) and (2.3) are equivalent. Let

M0 = {(ϕ, y, v) ∈ R3|v = −ϕ+ ϕ3}
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which is a 2-dimensional critical manifold of the slow system (2.2). The Jacobian
matrix of the fast system (2.3) restricted to M0 is

0 0 0

0 0 0

1
s
√
c
(3ϕ2 − 1) 0 − 1

s
√
c

 ,

which has three eigenvalues λ1 = λ2 = 0, λ3 = − 1
s
√
c
. The number of eigenvalues

on the imaginary axis is exactly equal to the dimension of M0, This implies that
M0 is a normal hyperbolic. According to Lemma (2.1), if ε > 0 is sufficiently small,
there is an invariant manifold Mε for the slow system (2.2)

Mε = {(ϕ, y, v) ∈ R3|v = −ϕ+ ϕ3 + ζ(ϕ, y, ε)},

where ζ(ϕ, y, ε) depends smoothly on ε and satisfies ζ(ϕ, y, 0) = 0. Therefore, we
can let ζ(ϕ, y, ε) = εζ1(ϕ, y) + O(ε2). Substituting it into the third equation of
the slow system (2.2), we can get ζ1(ϕ, y) = −s

√
c(3ϕ2 − 1)y − qy√

c
−

√
3rϕy. The

dynamics of the slow system (2.2) will be

dϕ

dτ
= y,

dy

dτ
= −ϕ+ ϕ3 + ε[−s

√
c(3ϕ2 − 1)y − qy√

c
−

√
3rϕy] +O(ε2). (2.4)

Now we can check the existence of periodic orbits by the following methods.
For h ∈ (− 1

4 , 0), H(ϕ, y) = h defines a period orbit Γh of system (1.9). Let (a, 0)
denote the intersection of Γh and the negative ϕ-axis. Let (ϕ(τ), y(τ)) be a solution
to system (2.4) with (ϕ(0), y(0)) = (a, 0), then τ1 and τ2(τ2 < 0 < τ1) exist so that

y(τ) > 0 for 0 < τ < τ1, y(τ1) = 0

and
y(τ) < 0 for τ2 < τ < 0, y(τ2) = 0.

Then we can define a function

Φ(a, c, ε) =

∫ τ1

τ2

Ḣ(ϕ, y)dτ

and

Ḣ(ϕ, y) =
∂H

∂ϕ

dϕ

dτ
+
∂H

∂y

dy

dτ
=

ε√
c
y2(sc(3ϕ2 − 1) + q +

√
3crϕ) +O(ε2).

The system (2.4) has a periodic solution passing through (a, 0) if and only if
Φ(a, c, ε) = 0. Since Φ(a, c, 0) = 0, we have

Φ(a, c, ε) = εΦ̃(a, c, ε) =
ε√
c
(

∫ τ1

τ2

(sc(3ϕ2 − 1) + q +
√
3crϕ)y2dτ +O(ε)).

Let

Φ̃0(a, c) = lim
ε→0

Φ̃(a, c, ε) =
1√
c

∫ τ1

τ2

(sc(3ϕ2 − 1) + q +
√
3crϕ)ydϕ. (2.5)
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The existence of periodic wave of Eq.(1.6) depends on whether the Abelian integral
Φ̃0(a, c) has zero points.The condition for the limit speed c0 of a periodic orbit is
Φ̃0(a, c0) = 0.

For h = − 1
4 , H(ϕ, y) = h defines a heteroclinic orbit Γ− 1

4
of system (1.9). We

can define a similar function for the heteroclinic orbit as

Ψ(c, ε) =

∫ 0

−∞
Ḣ(ϕ, y)dτ +

∫ +∞

0

Ḣ(ϕ, y)dτ.

Here the first part is the integral along with a solution (ϕ(τ), y(τ)) on the one
dimensional unstable manifold of the saddle point E2(−1, 0) with y(τ) > 0 for
−∞ < τ < 0 and y(0) =

√
2
2 . The second part is the integral along the stable man-

ifold. Ψ̃(c, ε) and Ψ̃0(c) are similar to the case of periodic solutions. Consequently,
we get

Ψ̃0(c) =
1√
c

∮
Γ− 1

4

(sc(3ϕ2 − 1) + q +
√
3crϕ)ydϕ. (2.6)

Therefore the condition for the limit speed c0 of a heteroclinic orbit is Ψ̃0(c0) = 0.

3. Analysis by the Abelian integral theory
Let

Ji(h) =

∮
Γh

ϕiydϕ, i = 0, 1, 2. (3.1)

According to the symmetry, we know J1(h) = 0 for h ∈ (− 1
4 , 0).

Then Φ̃0(a, c) =
1√
c
((q − sc)J0(h) + 3scJ2(h)).

Lemma 3.1. For h ∈ (− 1
4 , 0), J

′
0(h) < 0 and J0(h) > 0.

Proof. By y2 = −ϕ2 + ϕ4

2 − 2h, we have

J ′
0(h) =

∮
Γh

−dϕ
y

= −
∫ T (h)

0

dτ = −T (h) < 0,

where T (h) is the period of the periodic orbit Γh for h ∈ (− 1
4 , 0).

J0(0) = lim
h→0

∮
Γh

ydϕ = lim
h→0

∫ T (h)

0

y2dτ = 0.

Because J0(h) is strictly monotonically decreasing, so J0(h)>0 for h∈(− 1
4 , 0).

By Lemma 3.1 and Φ̃0(a, c) = 0, we know the existence of periodic wave of
Eq.(1.6) depends on whether (3J2

J0
(h)− 1)sc+ q = 0 has zero points.

Through some simple integral operations, we have

J0(−
1

4
) =

4
√
2

3
, J2(−

1

4
) =

4
√
2

15
. (3.2)

Let α(h) be the a non-negative real root of −ϕ2

2 + ϕ4

4 = h, where 0 ≤ α(h) < 1.
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Lemma 3.2. lim
h→0

J2(h)
J0(h)

= 0.

Proof. lim
h→0

J2(h)
J0(h)

= lim
h→0

∫ α(h)

−α(h)
ϕ2ydϕ∫ α(h)

−α(h)
ydϕ

= lim
ϕ→0

ϕ2 = 0.

In general, it is very complicated to prove the monotonicity of Abelian integral
ratio (Carr, Chow and hale [2], and chow and Sanders [4]), and sometimes it is
difficult to find an appropriate analysis method. In fact, this kind of proof can be
transformed into proving that a group of Abelian integral has Chebyshev property
[11]. In this way, the problem can be solved by pure algebra [14]. For completeness,
the following definitions are introduced:

Definition 3.1. Let j0, j1, ..., jn−1 be analytic functions on a real open interval K.

(i) {j0, j1, ..., jn−1} is a Chebyshev system (abbreviated T-system) on K if any
nontrivial linear combination

k0j0 + k1j1 + ...+ kn−1jn−1 = 0

has at most n− 1 isolated zeros on K .
(ii) An ordered set of n functions {j0, j1, ..., jn−1} is called a complete Chebyshev

system (abbreviated CT-system) on K if {j0, j1, ..., jr−1} is a T-system for
each r = 1, ..., n. Moreover it is an extended complete Chebyshev system
(abbreviated ECT-system) if any nontrivial linear combination

k0j0 + k1j1 + ...+ kr−1jr−1 = 0

has at most r − 1 zeros on K counted with multiplicities.
(iii) The Wronskian of {j0, j1, ..., jn−1} at x ∈ K is

W [j0, j1, ..., jn−1](x) =

∣∣∣∣∣∣∣∣∣∣∣∣

j0(x) j1(x) ... jn−1(x)

j′0(x) j′1(x) ... j′n−1(x)

... ... ... ...

jn−1
0 (x) jn−1

1 (x) ... jn−1
n−1(x)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Lemma 3.3 (see [5]). {j0, j1, ..., jn−1} is an ECT-system on K if and only if, for
each r = 1, ..., n,

W [j0, j1, ..., jr−1](x) ̸= 0

for all x ∈ K.

For Eq.(1.9) H(ϕ, y) = −y2

2 + A(ϕ), where A(ϕ) = −ϕ2

2 + ϕ4

4 , there exists a
punctured neighborhood w of the origin foliated by ovals Γh ⊂ {H(ϕ, y) = h| −
1
4 < h < 0}. We call them period annulus and the projection of w on the ϕ−axis
is (−1, 1). Obviously ϕA′(ϕ) < 0 for any ϕ ∈ (−1, 1)\{0} and A(ϕ) have even
multiplicity at ϕ = 0. Then, there exists an analytical function z(ϕ) such that
A(ϕ) = A(z(ϕ)) for ϕ ∈ (−1, 1), where z(ϕ) is the involution associated to A.
Factorizing A(ϕ)−A(z) gives 1

4 (ϕ−z)(ϕ+z)(ϕ
2+z2−2). Therefore, the involution

z(ϕ) = −ϕ and z′(ϕ) = −1. If we restrict ϕ ∈ (−1, 0), then 0 < z(ϕ) < 1.
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For the Abelian integral

Ji(h) =

∮
Γh

fi(ϕ)ydϕ, h ∈ (−1

4
, 0),

where i = 0, 1, 2 and f0(ϕ) = 1, f1(ϕ) = ϕ, f2(ϕ) = ϕ2. We define the criterion
function

gi(ϕ) :=
fi(ϕ)

A′(ϕ)
− fi(z(ϕ))

A′(z(ϕ))
, i = 0, 1, 2.

Then, we have Lemma 3.4.

Lemma 3.4 (see [5]). Under the above assumption, {J0, J2} is an ECT system on
(− 1

4 , 0) if {g0, g2} is an ECT system on (−1, 0) or (0, 1).

Lemma 3.5. {J0, J2} is an ECT-system.

Proof. Based on the previous discussion, we know that we only need to prove
{g0, g2}is ECT-system. By Maple, we have:

g0 = − (ϕ− z)(ϕ2 + ϕz + z2 − 1)

ϕ(ϕ− 1)(ϕ+ 1)z(z − 1)(z + 1)
,

W [g0, g2] = − (ϕ− z)3q1(ϕ, z)

ϕ2(ϕ− 1)2(ϕ+ 1)2z2(z − 1)2(z + 1)2
,

where q1(ϕ, z) = 2ϕ3z + 3ϕ2z2 + 2ϕz3 + z2 + ϕ2 − 1 and z = −ϕ.
Because z = −ϕ, study whether g0 has zero solutions as long as studies whether

the following equations (3.3)

z = −ϕ, ϕ2 + ϕz + z2 − 1 = 0, (3.3)

have roots for −1 < ϕ < 0 < z < 1. After simple calculation, it is not difficult to
get g0 ̸= 0 for ϕ ∈ (−1, 0). Similarly, we can get W [g0, g2] ̸= 0 for ϕ ∈ (−1, 0).

By Lemma 3.3, we know that {g0, g2} is ECT system for ϕ ∈ (−1, 0). Then we
can conclude that {J0, J2} is ECT-system by Lemma 3.4.

Lemma 3.6. For h ∈ [− 1
4 , 0),

J2(h)
J0(h)

monotonously decreases from 1
5 to 0.

Proof. By Lemma 3.5, we have shown that {J0, J2} is an extended Chebyshev
system, and therefore, J2(h)

J0(h)
is monotonic on (− 1

4 , 0), By Lemma 3.2 and Eq.(3.2),
we have lim

h→− 1
4

J2(h)
J0(h)

= 1
5 and lim

h→0

J2(h)
J0(h)

= 0. So, J2(h)
J0(h)

monotonously decreases from
1
5 to 0 on [− 1

4 , 0).

4. Main Result
For the perturbed defocusing mKdV equation (1.1), we have the following results
about the traveling wave propagating with speed c(c > 0) from left to right.

Theorem 4.1. If q
s > 0, for any sufficiently small ε > 0,

(i) The perturbed defocusing mKdV equation (1.1) has only one isolated periodic
traveling wave

ψ =
√
3cϕ(τ, ε, h, c(ε, h)) (c > 0)
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in a sufficiently small neighborhood of Γh, where ϕ(τ, ε, h, c) is a solution of
Eq.(1.6) and

lim
ε→0

c(ε, h) = c0(h),
q

s
< c0(h) <

5

2

q

s
.

(ii) The perturbed defocusing mKdV equation (1.1) have kink, anti-kink waves

ψ = ±
√
3cϕ(τ, ε, 0, c(ε, 0)) (c > 0)

in a sufficiently small neighborhood of Γ− 1
4
, where ϕ(τ, ε, 0, c) is a solution of

Eq.(1.6) and
lim
ε→0

c(ε, 0) =
5q

2s
.

Proof. By Eq.(2.5) and Eq.(2.6), we can get the limit speed

c0(h) =
q

s

1

1− 3J2

J0
(h)

. (4.1)

For h ∈ (− 1
4 , 0),

∂

∂c
Φ̃(a(h), c0(h), 0) =

sJ0(h)

2c0(h)
√
c0(h)

(c0(h)(3
J2
J0

(h)− 1)− q

s
).

For h = − 1
4 ,

∂

∂c
Ψ̃(c0(−

1

4
), 0) =

sJ0(− 1
4 )

2c0(− 1
4 )
√
c0(− 1

4 )
(c0(−

1

4
)(3

J2
J0

(−1

4
)− 1)− q

s
).

By Lemma 3.6, we have ∂
∂c Φ̃(a(h), c0, 0) < 0 and ∂

∂c Ψ̃(c0(− 1
4 ), 0) < 0. We can solve

the equation Φ̃ = 0 and Ψ̃ = 0 by the implicit function theorem. That is, there
exists a unique smooth function c(ε, h) = c0(h)+O(ε) makes Φ̃0(a(h), c)+O(ε) = 0

and a unique smooth function c(ε,− 1
4 ) = c0(− 1

4 ) +O(ε) makes Ψ̃0(c) +O(ε) = 0.
By Lemma 3.6, and Eq.(4.1), we can get the range of the limit speed c0(h) for

one isolated periodic traveling wave is q
s ≤ c0(h) <

5
2
q
s and the limit speed for kink,

anti-kink waves is c0(− 1
4 ) =

5q
2s .

Remark 4.1. The existence of periodic waves and kink waves of the system (1.1)
is independent of the Marangoni effect parameter r.

Remark 4.2. System (1.1) can not possess the coexistence phenomenon of periodic
and kink waves.

5. Conclusions
In this paper, we study the existence of periodic traveling wave solutions and kink
wave solutions for the perturbed defocusing mKdV equation (1.1). The uniqueness
of periodic wave is established, that is, the system does not have multiple periodic
solutions. We also find that there is no coexistence of periodic solution and kink
solution. Chebyshev criterion is used to transform the analysis of the ratio of
Abelian integral into an algebraic problem, and then Sturm’s theory is used to
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solve the problem with the help of the function RealRootCounting in maple. When
the degree of Hamiltonian function of the unperturbed evolution equation is higher,
this method is superior to Picard-Fuchs equation method. This method is also
useful in the study of other types of wave equations. The wave speed conditions for
the existence of periodic solutions and kink solutions are given, which are necessary
and sufficient conditions.
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