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Abstract This paper studies traveling wave solutions of three modified Camassa-
Holm equations posed by Anco and Recio in 2019. The corresponding traveling
system is a singular system of second class. The bifurcations of traveling wave
solutions in the parameter space are investigated from a dynamical systems
theoretical point of view. The existence of solitary wave solution, periodic
wave solution and so-called M -shape-solution are proved.

Keywords Solitary wave solution, M -shape-wave solution, periodic wave so-
lution, bifurcation, modified Camassa-Holm equation.

MSC(2010) 34C37, 34C23, 74J30, 58Z05.

1. Introduction
In 2006, Qiao Zhijun [10] proposed the following new completely integrable wave
equation

ut − uxxt + 3u2ux − u3x = (4u− 2uxx)uxuxx + (u2 − u2x)uxxx, (1.1)

namely,
mt +mx(u

2 − u2x) + 2m2ux = 0, m = u− ux. (1.2)

This equation is derived from the two dimensional Euler equation. The author
proved that (1.1) has Lax pair and bi-Hamiltonian structures. In addition, the
author found so called “W/M”-shape-peaks solitons and claimed that there exist
no smooth solitons for this integrable water wave equation. In 2009, by using
the method of dynamical systems, Li and Zhang [9] showed that there exists a
smooth solitary solution of equation (1.1) when some parameter conditions are
satisfied. In addition, they explained why so called “W/M”-shape-peaks solitons
can be created and gave the determined parameter conditions and exact explicit
parametric representations for all solitary wave solutions of equation (1.1).

More recently, in Anco and Recio [4], a general family of peakon equations is
introduced, involving two arbitrary functions of the wave amplitude and the wave
gradient, in which one-parameter subfamilies of the CH-mCH Hamiltonian family
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are explored. The authors suggested to study the following “family of Hamiltonian
multi-peakon equations”

mt + uxf1(u
2 − u2x)m+ [uf1(u

2 − u2x) + g1(u
2 − u2x))m]x = 0, (1.3)

which involves two arbitrary functions f1 and g1 of u2 − u2x.
Two subfamilies represent nonlinear generalizations of the mCH equation given

by
mt + ((u2 − u2x)

pm)x = 0, m = u− uxx, p ≥ 1 (1.4)
and

mt + (u2 − u2x)
p−1)uxm+ [u(u2 − u2x)

p−1)m]x = 0, p ≥ 1. (1.5)
A unified generalization of these two subfamilies is

mt+aux(u
2−u2x)

1
2km+[au(u2−u2x)

1
2km+b((u2−u2x)

1
2 (k+1)m]x = 0, k ≥ 0. (1.6)

By putting k = 2p − 2, b = 0, a = 1 in the three-parameter family (1.6), we obtain
the one-parameter family of generalized CH equation (1.5). Taking a = 0, b = 1, k =
2p− 1, equation (1.6) becomes equation (1.4).

The authors in [4] stated that “in the case of the p = 2 generalized mCH equa-
tion (1.4), the peakon and anti-peakon can form a bound pair which has a maximum
finite separation in the asymptotic past and future.” Unfortunately, they did not
study the corresponding traveling wave systems of equations (1.4), (1.5) and (1.6).
In this paper, we consider the bifurcations problems of the solutions of the corre-
sponding traveling wave systems of equations (1.4), (1.5) and (1.6) depending on
the parameters of systems.

To study the traveling wave solutions of equations (1.4), (1.5) and (1.6), setting
u(x, t) = u(x− ct) ≡ ϕ(ξ), where ξ = x− ct and c is the wave speed. Substituting
it into (1.4), (1.5) and (1.6) and integrating the obtained equations once, we obtain

[(ϕ2 − ϕ2ξ)
p − c]ϕξξ = ϕ(ϕ2 − ϕ2ξ)

p − cϕ+ g, (1.7)

[ϕ(ϕ2 − ϕ2ξ)
p−1 − c]ϕξξ =

1

2p
(ϕ2 − ϕ2ξ)

p + ϕ2(ϕ2 − ϕ2ξ)
p−1 − cϕ+ g, (1.8)

and

[aϕ(ϕ2 − ϕ2ξ)
1
2k + b(ϕ2 − ϕ2ξ)

1
2 (k+1) − c]ϕξξ

=g − cϕ+
a

k + 2
(ϕ2 − ϕ2ξ)

1
2k+1 + aϕ2(ϕ2 − ϕ2ξ)

1
2k + bϕ(ϕ2 − ϕ2ξ)

1
2 (k+1), (1.9)

where g is an integral constant. For equation (1.7), we suppose that g ̸= 0. Other-
wise, (1.7) becomes a linear equation. Equations (1.7), (1.8) and (1.9) are respec-
tively equivalent to the planar dynamical systems

dϕ

dξ
= y,

dy

dξ
=

[c− (ϕ2 − y2)p]ϕ− g

c− (ϕ2 − y2)p
, (1.10)

dϕ

dξ
= y,

dy

dξ
=

− 1
2p (ϕ

2 − y2)p − ϕ2(ϕ2 − y2)p−1 + cϕ− g

c− ϕ(ϕ2 − y2)p−1
(1.11)

and

dϕ

dξ
= y,

dy

dξ
=
g−cϕ+ a

k+2 (ϕ
2−y2) 1

2k+1+aϕ2(ϕ2 − y2)
1
2k+bϕ(ϕ2−y2) 1

2 (k+1)

aϕ(ϕ2 − y2)
1
2k+b(ϕ2 − y2)

1
2 (k+1) − c

.

(1.12)
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System (1.10), (1.11) and (1.12) have the first integrals, respectively,

H1(ϕ, y) =
1

p+ 1
(ϕ2 − y2)p+1 + cy2 − cϕ2 + 2gϕ = h, (1.13)

H2(ϕ, y) =
1

p
ϕ(ϕ2 − y2)p + cy2 − cϕ2 + 2gϕ = h, (1.14)

and

H3(ϕ, y) =
2a

k + 2
ϕ(ϕ2 − y2)

1
2k+1 +

2b

k + 3
(ϕ2 − y2)

1
2 (k+3) + cy2

+
a

k + 2

∫
(ϕ2 − y2)

1
2k+1dϕ− 1

2
cϕ2 + gϕ = h, (1.15)

where the calculation of integral
∫
(ϕ2 − y2)

1
2k+1dϕ can use the recursive formula

as follows:∫
(ϕ2 − y2)

1
2k+1dϕ =

1

k + 3

[
ϕ(ϕ2 − y2)

1
2k+1 − (k + 2)y2

∫
(ϕ2 − y2)

1
2kdϕ

]
.

(1.16)
Clearly, for c > 0, on the curves c − (ϕ2 − y2)p = 0, c − ϕ(ϕ2 − y2)p−1 = 0 and
aϕ(ϕ2 − y2)

1
2k + b(ϕ2 − y2)

1
2 (k+1) − c = 0, respectively, systems (1.10), (1.11) and

(1.12) are discontinuous. Such systems are called a singular traveling wave systems
of the second class defined by Li [6] and Li and Chen [7].

We notice that equation (1.1) has the same singular traveling wave system as
(1.10) with p = 1 (see Li and Zhang [9]), namely,

dϕ

dξ
= y,

dy

dξ
=

[c− ϕ2 + y2]ϕ− g

c− ϕ2 + y2
. (1.17)

with the first integral

H1(ϕ, y) =
1

2
(c− ϕ2 + y2)2 + 2gϕ = h. (1.18)

In addition, when p = 1, system (1.11) becomes the traveling wave system of
Camassa-Holm equation as follows:

dϕ

dξ
= y,

dy

dξ
=

−y2 + 3ϕ2 − 2cϕ+ 2g

2(ϕ− c)
, (1.19)

with the first integral

H2(ϕ, y) = (ϕ− c)y2 − ϕ3 + cϕ2 − 2gϕ = h. (1.20)

The bifurcations and exact solutions of system (1.19) can be seen in Li [6]. So that,
in this paper, for equation (1.5), we only consider the case p ≥ 2.

This paper is organized as follows. In section 2, we discuss the bifurcations
of phase portraits of systems (1.10), (1.11) and (1.12) depending on the changes
of parameter g when c > 0 is fixed. In section 3 and section 4, we investigate
the existence of solitary wave solution, periodic wave solutions and M -shape wave
solutions of equations (1.4), (1.5) and (1.6).
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2. Bifurcation of phase portraits of systems (1.10),
(1.11) and (1.12)

In this paper, we always assume that c > 0, g > 0, and p is a positive integer.
2.1 We first consider all possible phase portraits of system (1.10). It is known

that system (1.11) has the same invariant curve solutions as the associated regular
system:

dϕ

dζ
= y[c− (ϕ2 − y2)p],

dy

dζ
= ϕ[c− (ϕ2 − y2)p]− g, (2.1)

where dξ = [c− (ϕ2 − y2)p]dζ, for c− (ϕ2 − y2)p ̸= 0. Denote that f1(ϕ) = ϕ2p+1 −

cϕ+ g, f ′1(ϕ) = (2p+1)ϕ2p − c. Thus, when ϕ = ∓ϕ̃0 = ∓
(

c
2p+1

) 1
2p

, f ′1(∓ϕ̃0) = 0.

The equilibrium points Ej(zj , 0) of system (2.1) satisfy f1(zj) = 0. Write that
fa = f1(−ϕ̃0) = g+ 2pc

2p+1 ϕ̃0, fb = f1(ϕ̃0) = g− 2pc
2p+1 ϕ̃0. It is easy to show for a fixed

c > 0, the following fact holds.

(1) When g > 2pc
2p+1 ϕ̃0 = 2p

(
c

2p+1

)1+ 1
2p

, f1(ϕ) only has a negative zero z1 <

−c
1
2p < −ϕ̃0 < 0;
(2) When g = 2pc

2p+1 ϕ̃0, f1(ϕ) has one simple zero z1 < −c
1
2p < −ϕ̃0 < 0 and a

double zero z23 = ϕ̃0;
(3) When 0 < g < 2pc

2p+1 ϕ̃0, f1(ϕ) has three simple zeros: z1 < −c
1
2p < −ϕ̃0 <

0 < z2 < ϕ̃0 < z3 < c
1
2p .

Let M(zj , 0) be the coefficient matrix of the linearized system of (2.1) at an
equilibrium point Ej(zj , 0). We have

J(zj , 0) = detM(zj , 0) = −f ′1(zj)(z
2p
j − c). (2.2)

By the theory of planar dynamical systems (see [5,7,8]), for an equilibrium point of
a planar integral system, if J < 0, then the equilibrium point is a saddle point; If
J > 0, then it is a center point; if J = 0 and the Poincaré index of the equilibrium
point is 0, then this equilibrium point is a cusp.

We write that hj = H1(zj , 0), j = 1, 2, 3 where H1 is given by (1.13).
Obviously, we see from (2.2) that when g > 2pc

2p+1 ϕ̃0, the unique equilibrium
point E1(z1, 0) of system (2.1) is a saddle point. When 0 < g < 2pc

2p+1 ϕ̃0, the
point E3(z3, 0) is a center; E1(z1, 0) and E2(z2, 0) are saddle points. When g =

g∗ = 1
2

(
h2 +

p
p+1c

1+ 1
p

)
c−

1
2p , the homoclinic orbit defined by H1(ϕ, y) = h2 to

the saddle point E2(z2, 0) passes through the point Es(c
1
2p , 0). By using the above

result to do qualitative analysis, with the change of the parameter g, we have the
bifurcations of phase portraits of (2.1) shown in Fig.1. We also draw the graph
of the hyperbola (ϕ2 − y2)p − c = 0 in every phase portrait in order to show the
position of the singular curve.

When g < 0, the bifurcations of phase portraits of system (1.10) are just the
reflections of Fig.1 with respect to the y−axis. Therefore, we only need to discuss
the case g > 0.

2.2 We next consider all possible phase portraits of system (1.11). System (1.11)
has the same invariant curve solutions as the associated regular system:
dϕ

dζ
= y[c−ϕ(ϕ2− y2)p−1],

dy

dζ
= − 1

2p
(ϕ2− y2)p−ϕ2(ϕ2− y2)p−1+ cϕ− g, (2.3)
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(a) g > 2pc
2p+1 ϕ̃0 (b) g = 2pc

2p+1 ϕ̃0 (c) g∗ < g < 2pc
2p+1 ϕ̃0

(d) g = g∗ (e) 0 < g < g∗

Figure 1. The bifurcations of phase portraits of system (1.10) for a fixed c > 0, p ≥ 1.

where dξ = [c− ϕ(ϕ2 − y2)p−1]dζ, for c− ϕ(ϕ2 − y2)p−1 ̸= 0.
Write that f2(ϕ) =

(
1 + 1

2p

)
ϕ2p − cϕ + g, f ′2(ϕ) = (2p + 1)ϕ2p−1 − c. Thus,

when ϕ = ϕ̂0 =
(

c
2p+1

) 1
2p−1

, f ′2(ϕ̂0) = 0, f2(ϕ̂0) = g −
(
1− 1

2p

)
cϕ̂0.

The equilibrium points Ej(zj , 0) of system (2.3) satisfy f2(zj) = 0. It is easy to
show for a fixed c > 0, the following fact holds.

(1) When g >
(
1− 1

2p

)
cϕ̂0 =

(
2p− 1

2p

)(
c

2p+1

)1+ 1
2p−1

, f2(ϕ) has no real zero;

(2) When g =
(
1− 1

2p

)
cϕ̂0, f2(ϕ) has a double zero z12 = ϕ̂0;

(3) When 0 ≤ g <
(
1− 1

2p

)
cϕ̂0, f2(ϕ) has two simple zeros: 0 ≤ z1 < ϕ̂0 <

z2 < c
1

2p−1 .
Let M(zj , 0) be the coefficient matrix of the linearized system of (2.3) at an

equilibrium point Ej(zj , 0). We have

J(zj , 0) = detM(zj , 0) = −f ′2(zj)(z
2p−1
j − c). (2.4)

We write that hj = H2(zj , 0), j = 1, 2 where H2 is given by (1.14).
We see from (2.4) that when 0 < g <

(
1− 1

2p

)
cϕ̂0, the point E1(z1, 0) is a saddle

point; E2(z2, 0) is a center point. When g = g∗∗ = 1
2

[
h1 +

(
1− 1

p

)
c1+

2
2p−1

]
c−

1
2p−1 ,

the homoclinic orbit defined by H2(ϕ, y) = h1 to the saddle point E1(z1, 0) passes
through the point Es(c

1
2p−1 , 0).
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By using the above result to do qualitative analysis, with the change of the
parameter g, we have the bifurcations of phase portraits of system (1.11) shown in
Fig.2. We also draw the graph of the hyperbola ϕ(ϕ2 − y2)p−1 − c = 0 in every
phase portrait in order to show the position of the singular curve.

(a) g =
(
1 − 1

2p

)
cϕ̂0 (b) g∗∗ < g <

(
1 − 1

2p

)
cϕ̂0 (c) g = g∗∗

(d) 0 < g < g∗∗ (e) g = 0

Figure 2. The bifurcations of phase portraits of system (1.11) for a fixed c > 0, p ≥ 2.

2.3 We now consider all possible phase portraits of system (1.12). System (1.1)
has the same invariant curve solutions as the associated regular system:

dϕ

dζ
= y[aϕ(ϕ2 − y2)

1
2k + b(ϕ2 − y2)

1
2 (k+1) − c],

dy

dζ
= g1 − cϕ+

a

k + 2
(ϕ2 − y2)

1
2k+1 + aϕ2(ϕ2 − y2)

1
2k + bϕ(ϕ2 − y2)

1
2 (k+1),

(2.5)

where dξ = [aϕ(ϕ2 − y2)
1
2k + b(ϕ2 − y2)

1
2 (k+1) − c]dζ, for aϕ(ϕ2 − y2)

1
2k + b(ϕ2 −

y2)
1
2 (k+1) − c ̸= 0.
Write that f3(ϕ) =

(
a

k+2 + a+ b
)
ϕk+2−cϕ+g, f ′3(ϕ) = (a+(k+2)(a+b))ϕk+1−

c. Thus, when a + (k + 2)(a + b) > 0, if ϕ = ϕ̄0 =
(

c
a+(k+2)(a+b)

) 1
k+1

, f ′3(ϕ̄0) =

0, f3(ϕ̄0) = g −
(
1− 1

k+2

)
cϕ̄0.

The equilibrium points Ej(zj , 0) of system (2.5) satisfy f3(zj) = 0. It is easy to
show for a fixed c > 0, the following fact holds.

(1) When g >
(
1− 1

k+2

)
cϕ̄0, f3(ϕ) has no positive real zero;
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(2) When g =
(
1− 1

k+2

)
cϕ̄0, f3(ϕ) has a positive double real zero z23 = ϕ̄0;

(3) When 0 ≤ g <
(
1− 1

k+2

)
cϕ̄0, f3(ϕ) has two positive simple zeros: 0 < z2 <

ϕ̄0 < z3 <
(

c
a+b

) 1
k+1

.

Let M(zj , 0) be the coefficient matrix of the linearized system of (2.3) at an
equilibrium point Ej(zj , 0). We have

J(zj , 0) = detM(zj , 0) = −f ′3(zj)[(a+ b)zk+1
j − c]. (2.6)

We write that hj = H3(zj , 0), j = 2, 3 where H3 is given by (1.15).
By using the above result to do qualitative analysis, with the change of the

parameter g, we have the bifurcations of phase portraits of system (2.5) like Fig.2
when k is even number. When k is a odd number, the bifurcations of phase portraits
of system (2.5) like Fig.1.

Notice that when g = g∗∗∗, the homoclinic orbit defined by H3(ϕ, y) = h2
contacts to a branch of singular curve aϕ(ϕ2 − y2)

1
2k + b(ϕ2 − y2)

1
2 (k+1) − c = 0,

where g∗∗∗ is a solution of H3(ϕ̄0, 0) = h2.

3. The solitary wave solutions determined by the
homocinic orbits of systems (1.10), (1.11) and (1.12)

It well know that a smooth homoclinic orbit of a traveling system gives rise to a
solitary wave solution of the corresponding nonlinear wave equation. We always
assume that c > 0 and is fixed.

We know from section 2 that for systems (1.10), (1.11) and (1.12), when con-

ditions g∗ < g < 2p
(

c
2p+1

)1+ 1
2p

, g∗∗ < g <
(
1− 1

2p

)
cϕ̂0 and g∗∗∗ < g <(

1− 1
k+2

)
cϕ̄0 hold, respectively. Then, the homoclinic orbits defined by H1(ϕ, y) =

h2, H2(ϕ, y) = h1 and H3(ϕ, y) = h2 have no intersection points with the one of
three singular curves, respectively (see Fig.1 (c) and Fig.2 (b)). Thus, we immedi-
ately obtain the following conclusion.

Theorem 3.1. Assume that c > 0 is fixed.

(i) When g∗ < g < 2p
(

c
2p+1

)1+ 1
2p , equation (1.4) has a smooth solitary wave

solution given by the homoclinic orbit of system (1.10) defined by H1(ϕ, y) = h2. In
addition, equation (1.4) has a family of smooth periodic wave solutions defined by
the closed branch of H1(ϕ, y) = h, h ∈ (h3, h2) (see Fig.1 (c)).

(ii) When g∗∗ < g <
(
1− 1

2p

)
cϕ̂0, equation (1.5) has a smooth solitary wave

solution given by the homoclinic orbit of system (1.11) defined by of H2(ϕ, y) = h1.
In addition, equation (1.5) has a family of smooth periodic wave solutions defined
by the closed branch of H2(ϕ, y) = h, h ∈ (h2, h1) (see Fig.2 (b)).

(iii) g∗∗∗ < g <
(
1− 1

k+2

)
cϕ̄0, equation (1.6) has a smooth solitary wave

solution given by the homoclinic orbit of system (1.12) defined by of H3(ϕ, y) = h2.
In addition, equation (1.6) has a family of smooth periodic wave solutions defined
by the closed branch of H3(ϕ, y) = h, h ∈ (h3, h2) (see Fig.2 (b)).
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For p = 1, to find the exact explicit parametric representation of solitary wave
solution, we have from (1.18) that

y2 = ϕ2 ±
√
h− 4gϕ− c. (3.1)

The signs ± before the term
√
h− 4gϕ are dependent with the interval of ϕ. Let

ψ2 = h− 4gϕ, i.e., ϕ = 1
4g (h− ψ2). Then, we obtain

y2 =
1

16g2
[ψ4 − 2hψ2 ± 16g2ψ + (h2 − 16g2c)]. (3.2)

Under the condition g∗ < g < 2c
3

√
c
3 , for ϕ ∈ (ϕ2,

√
c), we need to take + before

the term 16g2ψ. By the first equation of (1.17), corresponding to the homoclinic
orbit defined by H1(ϕ, y) = h2, we have

ψdψ√
ψ4 − 2h2ψ2 + 16g2ψ + (h22 − 16g2c)

= −1

2
dξ. (3.3)

Denote that (c − ϕ2)2 + 4gϕ − h2 = (ϕ − ϕ2)
2(ϕ − ϕM )(ϕ − ϕ3), where ϕ3 <

ϕ2 < ϕM . The point (ϕM , 0) is the intersection point of the homoclinic orbit to
(ϕ2, 0) of system (1.10) with the positive ϕ−axis. Thus, we have ψ4 − 2h2ψ

2 +
16g2ψ+(h22−16g2c) = (ψ−ψ1)

2(ψ−ψm)(ψ−ψ3), where ψ1 =
√
h2 − 4gϕ2, ψm =√

h2 − 4gϕM , ψ3 = −
√
h2 − 4gϕ3. By introducing a parametric variable χ and

integrating (3.3), we obtain

ψ(χ) = ψ1 −
2(ψ1 − ψm)(ψ1 − ψ3)

(ψm − ψ3) cosh(
√
(ψ1 − ψm)(ψ1 − ψ3)χ)− (2ψ1 − ψm − ψ3)

,

ξ(χ) = −2

[
ψ1χ+ ln

(
2
√

(ψ − ψm)(ψ − ψ3) + 2ψ − (ψm − ψ3)

ψm − ψ3

)]
.

(3.4)

Thus, we have the following exact explicit parametric representations of smooth
solitary solution of equation (1.3)(see [6], [9]):

ϕ(χ) =
1

4g
(1− ψ2(χ)),

ξ(χ) = −2

[
ψ1χ+ ln

(
2
√

(ψ − ψm)(ψ − ψ3) + 2ψ − (ψm − ψ3)

ψm − ψ3

)]
.

(3.5)

For p ≥ 2, because we can not explicitly solve the exact y from H(ϕ, y) = h2 given
by (1.13), therefore, we can not give the exact solitary wave solutions of equation
(1.4).

4. The M-shape traveling wave solutions determined
by the homocinic orbit of sysems (1.10), (1.11) and
(1.12)

In this section, we assume that 0 < g < g∗, 0 < g < g∗∗ and 0 < g < g∗∗∗,
respectively. We notice that unlike the case of there exists a singular straight line
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in the book [5], for system sysems (1.10), (1.11) with p ≥ 2 and (1.12), the curves
(ϕ2−y2)p−c = 0, ϕ(ϕ2−y2)p−1−c = 0 and aϕ(ϕ2−y2) 1

2k+b(ϕ2−y2) 1
2 (k+1)−c = 0

are not the solutions of system (1.10), (1.11) and (1.12), respectively. For every fixed
c > 0, when 0 < g < g∗ , 0 < g < g∗∗ and 0 < g < g∗∗∗ hold, respectively, there exist
uncountable infinite many periodic orbits and a homoclinic orbit of system (1.10),
(1.11) and (1.12), which are transversely intersecting with an open branch of the
above three singular curves (see Fig.1 (e) and Fig.2 (d)). These phase portraits
Fig.1 (e) of system (2.1) and Fig.2 (d) of systems (2.3) are redrown in the left of
Fig.3, while the vector fields defined by systems (1.10), (1.11) have been represented
in the right of Fig.3. Obviously, the vector fields defined by systems (1.10) and (2.1)
(or syetams (1.11) and (2.3)) are different (see Fig.3).

Figure 3. The graph of (ϕ2 − y2)p − c = 0 and the vector fields defined by (2.1) and (1.10)

The curves c− (ϕ2 − y2)p = 0 is the infinite isocline of the vector field of system
(2.1). When ζ is varied along the homoclinic orbit defined by H(ϕ, y) = h2, the
vector field of system (2.1) has the same direction, as shown in left of Fig.2. On
the left-hand side of a branch of the curve c− (ϕ2 + y2)p = 0 in the first quadrant,
one has dϕ

dζ = y[c − (ϕ2 − y2)p] > 0, dydζ = −g + ϕ[c − (ϕ2 + y2)p] > 0. On the
right-hand side of the hyperbola (ϕ2 − y2)p − c = 0 in the first quadrant, one has
dϕ
dζ = y[c − (ϕ2 − y2)p] < 0, dydζ = −g + ϕ[c − (ϕ2 + y2)p] < 0. Corresponding to
the homoclinic orbit of system (1.10) (see Fig.4 (a)), we have the M−shape wave
profile as Fig.4 (b).

Similarly, we can discuss the vector fields for systems (1.11) and (2.3), (1.12)
and (2.5).

Differing from system (2.1), for system (1.10), the hyperbola (ϕ2 − y2)p − c = 0
is a singular curve of the vector field of the system. Here, consider the case of
ϕ > 0. Clearly, on both the left-hand and the right-hand sides of the hyperbola
(ϕ2 − y2)p − c = 0, when ξ is varied along the loop orbit defined by H1(ϕ, y) = h2,
the vector field of system (1.10) has a different direction, as shown in the right of
Fig.3. In fact, on the right-hand side of the hyperbola (ϕ2−y2)p− c = 0 in the first
quadrant, one has dϕ

dξ = y > 0, dydξ = −g+ϕ[c−(ϕ2−y2)]
c−(ϕ2−y2)p > 0. This implies that the loop

orbit of system (1.10) defined by H1(ϕ, y) = h2 consists of three breaking solutions
of system (1.10) (see Fig.5).
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(a) Homoclinic orbit of system (2.1)

0.5

1

1.5

2

2.5

–30 –20 –10 0 10 20 30
(b) The M-shape solitary wave of
system (2.1)

Figure 4. M−shape wave solution of system (2.1) in the (ξ, ϕ)−plane when 0 < g < g∗.

The above statement is also holds for the systems (2.3) and (1.11).

Figure 5. The M-shape wave consisting of three breaking waves of equation (1.4)

When p = 1 in system (1.10), the exact parametric representation of M -shape
wave solution had been given in Li [6] and Li and Zhang [9].

To sum up, we has the following conclusion.

Theorem 4.1. Assume that c > 0 is fixed.
(i) When 0 < g < g∗, equation (1.4) has an M-shape wave solution defined by

a branch of the level curves H1(ϕ, y) = h2, which consists of three breaking wave
solutions.

(ii) When 0 < g < g∗∗, equation (1.5) has a M-shape wave solution defined by
a branch of the level curves H2(ϕ, y) = h1, which consists of three breaking wave
solutions.

(iii) When 0 < g < g∗∗∗, equation (1.6) has a M-shape wave solution defined
by a branch of the level curves H3(ϕ, y) = h2, which consists of three breaking wave
solutions.

We see from the discussion of this section that for the singular travelling wave
systems of the second class, the dynamics of the orbits are different from the singular
travelling wave systems of the first class. Because every singular curve intersects
an orbit of the singular travelling wave systems of the second class only in a few
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isolated points, so that in systems (1.10) and (2.1), the variables ξ and ζ have the
same ¡°time scale¡±. The singular curves make the direction of vector field defined
by the singular travelling wave systems of the second class swiftly change. It derives
new breaking wave solutions. Equation (1.4), (1.5) with p ≥ 2 and (1.6) have no
peakon solution in the sense of peakon in Camassa-Holm equation. Therefore, a lot
new traveling wave models with peakons for the equations posed by [1]-[4] need to
be studied.
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