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ON PIECEWISE MONOTONE FUNCTIONS
WITH HEIGHT BEING INFINITY

Hong Zhu1, Lin Li1,†, Yingying Zeng2 and Zhiheng Yu3

Abstract It is known that every piecewise monotone function with height
finity has a characteristic interval after finite times iteration, and then the
study of dynamics for such functions is able to be restricted to their character-
istic intervals, which becomes monotone case. To the opposite, the description
for piecewise monotone functions with height being infinity is much more com-
plicated since the theory of characteristic interval does not work anymore. In
this paper, we consider the problem of topological conjugacy for piecewise
monotone functions with height being infinity. Some necessary and sufficient
conditions are given for the existence of conjugacies between these functions.
Moreover, the height of infinity under composition is also discussed. The fact
shows a kind of symmetry for the height.
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1. Introduction
The complexity of iteration does not come from nonlinearity but arise from non-
monotonicity. A monotone function, no matter whether it is nonlinear, is as good as
a linear one by defining a homeomorphism, which are the same in topological sense.
In contrast, a non-monotonic continuous function has more than one monotone piece
and the number of monotone pieces may increase under iteration, which generates
complicated dynamical behaviors. Let I be a compact interval which can also be
the whole real line R. A continuous function F : I → I is said to be a piecewise
monotone function (abbreviated as PM function in [20, 21]) which is also called
modal map [11,12] if F has finitely many non-monotone points or forts (or turning
points in [11,12]). Let PM(I, I) be the set of all PM functions mapping I into itself.
Furthermore, let S(F ) be the set of all forts of F and N(F ) be the cardinality of
S(F ). For each function F ∈ PM(I, I), it is known that the sequence (N(Fn))n∈N
is increasing, i.e., we have the following ascending relation

0 = N(F 0) ≤ N(F ) ≤ N(F 2) ≤ · · · ≤ N(Fn) ≤ N(Fn+1) · · · , n ∈ N. (1.1)

Thus, the number H(F ) of F , which denotes the least integer k ∈ N (exists or ∞
otherwise) such that N(F k) = N(F k+1), is called the non-monotonicity height (or
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simply height) of F (see [9]). The simplest case H(F ) = 0 implies that F is monotone
on the whole interval I. When H(F ) = 1, there exists a closed maximal monotone
piece of I covering the range of F and bounded by either forts or endpoint [21,
Lemma 2.4]. Such a closed interval is unique and called characteristic interval of
F , denoted by K(F ). For the height greater than 1, namely H(F ) = n > 1, it is
known that H(Fn) = 1 and Fn has a characteristic interval.

Generally speaking, the height is a measure of the dynamical complexity for
PM functions, which leads an important problem in the field of dynamical systems,
i.e., the question about topological relations among these functions. Let F,G ∈
PM(I, I). Recall that a homeomorphism (continuous function) φ : I → I satisfying
the conjugacy equation

φ ◦ F (x) = G ◦ φ(x), x ∈ I, (1.2)

is said to be a topological conjugacy (semi-conjugacy) between F and G (F and G
are then called topologically conjugate (topologically semi-conjugate)). We use the
notation F ∼ G for the topological conjugate relation between F and G.

In 1966, Parry [15] proved the existence of a conjugacy between a topologi-
cally transitive PM function and a piecewise linear map. It is also known that
any unimodal map (a PM function with precisely one fort) is semi-conjugate to
a quadratic map [6]. Furthermore, by adding the smoothness on the given maps,
Melo and Strien [11] proved that any continuously differentiable PM function is
semi-conjugate to a polynomial with the same number of forts. More results about
semi-conjugacy, see references [1, 3, 13, 14]. Another approach comes from Bald-
win [2], by applying the invariance of itineraries who presented a general classifi-
cation for PM functions via order-preserving conjugacy. Recently, regarding the
index of height and using the theory of characteristic interval, the third author
gave a complete classification for all PM functions with height being finite [8]. As
noted at the end of the paper [8], this method is unavailable for the functions with
height being infinity since they have no characteristic interval anymore even under
iteration. Therefore, an open problem raised naturally: Give a description of the
topological relations between PM functions with height being infinity.

In this paper, based on the above presented question, we first give necessary and
sufficient conditions for the existence of topological conjugacy for PM functions with
height being infinity under some regularity conditions in section 2. In section 3, a
topological relation between two cubic and two quintic polynomials (whose heights
are infinity) is discussed separately. In the last section, we consider the height of
infinity under composition, which shows a symmetry of such a height.

2. Topological relations on a finite interval
Let J := [a, b] for a, b ∈ R be a compact interval. Then we have the following useful
lemmas.

Lemma 2.1 ( [9]). Let F : J → R and G : [α, β] → R be continuous functions such
that F (J) ⊆ [α, β]. Then

S(G ◦ F ) = S(F ) ∪ {c ∈ (a, b) : F (c) ∈ S(G)}.

Lemma 2.2 ( [7]). Let F,G ∈ PM(J, J) and F ∼ G via a topological conjugacy
φ : J → J . Then φ maps S(F ) ∪ {a, b} onto S(G) ∪ {a, b}.
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Lemma 2.3 ( [7]). Let F,G ∈ PM(J, J) and F ∼ G via a topological conjugacy
φ : J → J , then N(F i) = N(Gi) for all i ∈ N and H(F ) = H(G).

Lemma 2.1 tells us the regularity of increasing number of forts under iteration
and Lemmas 2.2-2.3 show an equivalent relation between those forts and endpoints.
Now, we present an effective classification for the forts of all functions F ∈ PM(J, J)
with H(F ) = ∞ as follows. For every n ∈ N, define

Sn(F ) := {x ∈ S(F ) : minn∈NF
n(y) ̸= x,∀y ∈ (a, b)\S(Fn)}.

Consequently, S∞(F ) := S(F )\
⋃

i∈N Si(F ). It is clear that the set Sn(F ) is count-
able for n ∈ N since #S(F ) is finite, Sn(F ) ⊂ S(Fn) and Si(F )

⋂
Sj(F ) = ∅ if

i ̸= j. Moreover, S∞(F ) ̸= ∅ if and only if H(F ) = ∞.

Proposition 2.1 ( [8]). Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. If F ∼ G
via a topological conjugacy φ : J → J , then φ maps Sn(F ) onto Sn(G) for all
n ∈ N ∪ {∞}.

Proposition 2.1 presents a necessary condition for the existence of a topologi-
cal conjugacy between PM functions with height being infinity, which is a further
description of Lemma 2.2 and enables us to find the sufficient conditions.

For a given F ∈ PM(J, J), note that each sequence {F−n(x)}n∈N for every
x ∈ S∞(F ) is bounded. Then there exists a subsequence {F−nk(x)}k∈N that is
monotone and convergent. Let S(F ) := {c1, c2, ..., cn} and S(G) := {d1, d2, ..., dn}
with c1 < c2 < ... < cn and d1 < d2 < ... < dn. In order to illustrate the
construction of conjugacies easily, we first give the following hypotheses:

(H1) F (b) = b, {F−i(cn)}i∈N is strictly increasing and converges to b (Figure
1);

(H2) F (a) = a, {F−i(c1)}i∈N is strictly decreasing and converges to a (Figure
2).

Figure 1. the case of (H1)

Without loss of generality, in what follows we only discuss under the hypothesis
(H1) since every function satisfying (H2) is topologically conjugate to a function
fulfilling (H1) by φ(x) = a+b−x. In (H1) the strictly monotonicity of {F−i(cn)}∞i=0

implies that F ([a, cn]) ⊂ [a, cn]. Then, the whole interval J is partitioned into
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Figure 2. the case of (H2)

infinitely many subintervals, namely,

J = [a, b] = [a, cn)
⋃

∪+∞
i=0 [F

−i(cn), F
−(i+1)(cn)]

⋃
{b}.

Then, we have the following results.

Theorem 2.1. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that the
functions F,G satisfy (H1) (resp. (H2)). Then F is topologically conjugate to G
if and only if there exists an increasing homeomorphism φ0 : [a, cn] → [a, dn] (resp.
φ0 : [cn, b] → [dn, b]) satisfying equation (1.2). Furthermore, any homeomorphism
φ0 can be extended uniquely to a topological conjugacy between F and G.

Proof. Sufficiency. Assume that there exists an increasing homeomorphism φ0 :
[a, cn] → [a, dn] satisfying φ0 ◦ F = G ◦ φ0. By Proposition 2.1, we have

φ0(cn) = dn. (2.1)

Then for each subinterval [F−i(cn), F
−(i+1)(cn)], i = 0, 1, 2, ..., define an increasing

homeomorphism φi : [F
−i(cn), F

−(i+1)(cn)] → [G−i(dn), G
−(i+1)(dn)] by

φi(x) := G−(i+1) ◦ φ0 ◦ F i+1(x). (2.2)

Clearly, the functions φis in (2.2) are well defined. Moreover, it follows from (2.1)-
(2.2) that

φi(F
−(i+1)(cn)) = G−(i+1) ◦ φ0(cn) = G−(i+1)(dn),

φi+1(F
−(i+1)(cn)) = G−(i+2) ◦ φ0(F (cn)) = G−(i+1)(dn).

This implies that all those φis are continuous at each junction. We further define
the function φ : J → J as

φ(x) :=


φ0(x), x ∈ [a, cn)

φi(x), x ∈ [F−i(cn), F
−(i+1)(cn)], i = 0, 1, 2, ...,

b, x = b.

(2.3)
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Obviously, φ is strictly increasing on [a, b]. Moreover, we infer from (H1) and (2.3)
that

lim
x→b

φ(x) = lim
i→+∞

φi(F
−(i+1)(cn)) = lim

i→+∞
G−(i+1)(dn) = b = φ(b),

which shows the continuity of φ on the whole interval J . Finally, it suffices to prove
that φ satisfies equation (1.2). Actually, for every x ∈ [F−i(cn), F

−(i+1)(cn)] we
have

φ ◦ F (x) = G−(i+1) ◦ φ0 ◦ F i+2(x) = G−(i+1) ◦Gi+2 ◦ φ0(x) = G ◦ φ(x).

Therefore, the function φ defined in (2.3) is a topological conjugacy between F and
G, which is extended uniquely by the homeomorphism φ0. The part of sufficiency
is proved.

Necessity. Assume that F is topologically conjugate to G via an increasing
homeomorphism φ : J → J . According to Proposition 2.1 we get equality (2.1).
Let φ0 := φ[a,cn]. It suffices to prove that φ0 is a solution of equation (1.2) on
[a, cn]. In fact, for every x ∈ [a, cn] we get F (x) ∈ [a, cn] and

G ◦ φ0(x) = G ◦ φ(x) = φ ◦ F (x) = φ0 ◦ F (x).

Therefore, φ0 is an increasing topological conjugacy between F[a,cn] and G[a,dn].
The whole proof is completed.

Remark 2.1. Note that the authors in [7] investigated a topological conjugate
relation for a class of PM functions with height being infinity, only those functions
whose graphs under the diagonal line, are considered there, which is a special case
of our Theorem 2.1.

Example 2.1. Consider two maps F and G defined by

F (x) :=


6
5x+ 1

4 , x ∈ [0, 1
8 ),

− 2
5x+ 9

20 , x ∈ [ 18 ,
1
2 ),

3
2x− 1

2 , x ∈ [ 12 , 1],

and G(x) :=


2
5x+ 2

5 , x ∈ [0, 1
4 ),

− 1
5x+ 11

20 , x ∈ [ 14 ,
3
4 ),

12
5 x− 7

5 , x ∈ [ 34 , 1],

respectively. One checks that S(F ) = { 1
8 ,

1
2}, S1(F ) = { 1

8}, S∞(F ) = { 1
2} and

S(G) = { 1
4 ,

3
4}, S1(G) = { 1

4}, S∞(G) = { 3
4}. Clearly, F and G satisfy condition

(H1), where cn = 1
2 , dn = 3

4 . Note that F[0, 12 ]
and G[0, 34 ]

are self-maps. It is easy
to verify that H(F[0, 12 ]

) = H(G[0, 34 ]
) = 1, K(F[0, 12 ]

) = [ 18 ,
1
2 ] and K(G[0, 34 ]

) = [ 14 ,
3
4 ].

Moreover, there exists an increasing homeomorphism H : [ 18 ,
1
2 ] → [ 14 ,

3
4 ] defined

by H(x) := 2
3x + 7

30 , which satisfies H ◦ F (0) = G(0), H ◦ F ( 18 ) = G( 14 ) and
H ◦ F ( 12 ) = G( 34 ). Hence, all conditions in [8, Lemma 2.1] are fulfilled, and then
F[0, 12 ]

is topologically conjugate to G[0, 34 ]
. Therefore, by Theorem 2.1 we conclude

that F is topologically conjugate to G on [0, 1].

According to the proof of Theorem 2.1, we have the following result of a de-
creasing conjugacy.

Corollary 2.1. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that the
function F satisfies (H1) and G satisfies (H2). Then F is topologically conjugate
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to G if and only if there exists a decreasing homeomorphism φ0 : [a, cn] → [d1, b]
satisfying equation (1.2). Furthermore, any homeomorphism φ0 can be extended
uniquely to a topological conjugacy between F and G.

By Theorem 2.1 and Corollary 2.1, for those PM functions with two unique fixed
points a, b, we get the following results directly.

Corollary 2.2. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that
F (a) = G(a) = a, F (b) = G(b) = b and F (x), G(x) > x for all x ∈ (a, b) (resp.
F (x), G(x) < x for all x ∈ (a, b)) holds. Then F is topologically conjugate to G via
an increasing conjugacy if and only if there exists an increasing homeomorphism φ0 :
[c1, b] → [d1, b] (resp. φ0 : [a, cn] → [a, dn]) satisfying equation (1.2). Furthermore,
any homeomorphism φ0 can be extended uniquely to a topological conjugacy between
F and G.

Corollary 2.3. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that
F (a) = G(a) = a, F (b) = G(b) = b and F (x), G(x) > x for all x ∈ (a, b) (resp.
F (x), G(x) < x for all x ∈ (a, b)) holds. Then F is topologically conjugate to G via
a decreasing conjugacy if and only if there exists a decreasing homeomorphism φ0 :
[c1, b] → [a, dn] (resp. φ0 : [a, cn] → [d1, b]) satisfying equation (1.2). Furthermore,
any homeomorphism φ0 can be extended uniquely to a topological conjugacy between
F and G.

Recall that each sequence {F−n(x)}n∈N for every x ∈ S∞(F ) has a subsequence
{F−ni(x)}i∈N that is monotone and convergent. Choose a point x0 ∈ S∞(F ) and
let xi := F−ni(x0) for each i ∈ N. At the last part of this section, compared with
conditions (H1)-(H2) we put some regularities on such subsequences.

(H3) {xi}i∈N is strictly increasing fulfilling lim
i→+∞

xi=b and F j(x0)∈ [a, F−n1(x0)]

for j = 0, 1, 2, ... (Figure 3);
(H4) {xi}i∈N is strictly decreasing fulfilling lim

i→+∞
xi=a and F j(x0)∈ [F−n1(x0), b]

for j = 0, 1, 2, ... (Figure 4).

Figure 3. the case of (H3)

Theorem 2.2. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that the
functions F,G satisfy (H3) (resp. (H4)). Then F is topologically conjugate to
G if and only if there exists an increasing homeomorphism φ0 : [a, F−n1(x0)] →
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Figure 4. the case of (H4)

[a,G−n1(y0)] (resp. φ0 : [F−n1(x0), b] → [G−n1(y0), b]) for some x0 ∈ S∞(F ), y0 ∈
S∞(G) satisfying equation (1.2). Furthermore, any homeomorphism φ0 can be
extended uniquely to a topological conjugacy between F and G.

Proof. Sufficiency. Assume that there exists an increasing homeomorphism φ0 :
[a, F−n1(x0)] → [a,G−n1(y0)] satisfying φ0 ◦ F = G ◦ φ0. The other case that
φ0 : [F−n1(x0), b] → [G−n1(y0), b] can be proved similarly.

Since F j(x0) ∈ [a, F−n1(x0)] for j = 0, 1, 2, ..., it follows from Proposition 2.1
that

φ0(F
j(x0)) = Gj(x0), j = 0, 1, 2, .... (2.4)

Then, define an increasing homeomorphism φi : [F
−ni(x0), F

−ni+1(x0)] → [G−ni(y0),
G−ni+1(y0)] by

φi(x) := G−ni+1 ◦ φ0 ◦ Fni+1(x). (2.5)

According to (2.4), it is easy to check that

φi(F
−ni(x0)) = G−ni+1 ◦φ0◦Fni+1(F−ni(x0)) = G−ni+1 ◦Gni+1−ni(x0) = G−ni(x0)

since ni+1 − ni > 0. Moreover,

φi(F
−ni+1(x0)) = G−ni+1 ◦ φ0 ◦ Fni+1(F−ni+1(x0)) = G−ni+1(x0)

by (2.4) again. Hence, the functions φi in (2.5) is well defined for each i ∈ N. By
the proof of Theorem 2.1, the function φ : I → I defined by

φ(x) :=


φ0(x), x ∈ [a, F−n1(x0))

φi(x), x ∈ [F−ni(x0), F
−ni+1(x0)], i = 1, 2, ...,

b, x = b,

is a topological conjugacy between F and G.
The part of necessity is obtained obviously.
According to the proof of Theorem 2.2, we have the following result of a de-

creasing conjugacy.
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Corollary 2.4. Let F,G ∈ PM(J, J) with H(F ) = H(G) = ∞. Assume that
the functions F,G satisfy (H3) and (H4)), respectively. Then F is topologically
conjugate to G if and only if there exists an decreasing homeomorphism φ0 :
[a, F−n1(x0)] → [G−n1(y0), b] for some x0 ∈ S∞(F ), y0 ∈ S∞(G) satisfying equa-
tion (1.2). Furthermore, any homeomorphism φ0 can be extended uniquely to a
topological conjugacy between F and G.

3. Topological relations on the whole real line
It is clear that every real polynomial is a PM function, which is defined on the whole
real line R into itself. Furthermore, we infer from [17, Theorem 1] that H(F ) = ∞
for all polynomials F : R → R with odd degree greater than 2. In this section, we
mainly consider a topological classification for two kinds of polynomials, i.e., cubic
polynomials and quintic polynomials, separately.

Theorem 3.1. f(x) := a3x
3+a2x

2+a1x+a0 is topologically conjugate to g(x) :=
b3x

3 + b2x
2 + b1x+ b0 via a conjugacy

h(x) :=
u1x+ u0

v1x+ v0
, (u1x+ u0, v1x+ v0) = 1, v1 ̸= 0

if and only if

a0 =
a2(a

2
2 − 9a3)

27a23
, a1 =

a22
3a3

,

where

u0 =
(−b2a2 + 9

√
a3b3)κ1

9a3b3
, u1 = −κ1b2

3b3
, v0 =

κ1a2
3a3

, v1 = κ1, a3b3 > 0, κ1 ∈ R

or

u0 =
u1a2
3a3

, v0 =
a2κ2

3a3
, v1 = κ2, and u1 is one of the real roots of equation

b3x
3 + b2κ2x

2 + (b1κ
2
2 − κ2

2)x+ b0κ
3
2 = 0,

κ2 ∈ R.

Proof. Let ν(x) := u1x + u0 and δ(x) := v1x + v0. Since (ν(x), δ(x)) = 1,
by [4, Chapter 12, pp.397-399], neither the resultant of A2(x) and B2(x) nor the
resultant of ν(x) and δ(x) vanishes, i.e.,

R1 := resultant(ν(x), δ(x), x) = u0v1 − v0u1 ̸= 0.

Consider the conjugation between f and g. One can compute

L̂3x
3 + L̂2x

2 + L̂1x+ L̂0

Ľ3x3 + Ľ2x2 + Ľ1x+ Ľ0

= g(h(x)) = h(f(x)) =
R̂3x

3 + R̂2x
2 + R̂1x+ R̂0

Ř3x3 + Ř2x2 + Ř1x+ Ř0

. (3.1)

By [10, Lemma 3], the fractions on both sides are irreducible. On account of Ľ3 =
v31 ̸= 0 and Ř3 = a3v1 ̸= 0, in order to simplify the calculation, we divide Ľ3

and Ř on the left and right sides of equation (3.1) respectively, and equate the
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corresponding coefficients of both sides of (3.1), which gives the following semi-
algebraic system

f1 := b0v
3
1 + b1u1v

2
1 + b2u

2
1v1 + b3u

3
1 − u1v

2
1 = 0;

f2 := −3a3b0v
2
1v2 − 2a3b1u1v1v2 − a3b1u2v

2
1 − a3b2u

2
1v2 − 2a3b2u1u2v1

− 3a3b3u
2
1u2 + a2u1v

2
1 = 0;

f3 := −3a3b0v1v
2
2 − a3b1u1v

2
2 − 2a3b1u2v1v2 − 2a3b2u1u2v2 − a3b2u

2
2v1

− 3a3b3u1u
2
2 + a1u1v

2
1 = 0;

f4 := −a3b0v
3
2 − a3b1u2v

2
2 − a3b2u

2
2v2 − a3b3u

3
2 + a0u1v

2
1 + u2v

2
1 = 0;

f5 := a2v1 − 3a3v2 = 0;

f6 := a1v
2
1 − 3a3v

2
2 = 0;

f7 := a0v
3
1 − a3v

3
2 + v21v2 = 0;

R1 := u0v1 − v0u1 ̸= 0;

R2 := a3b3 ̸= 0;

R3 := v1 ̸= 0;

denoted by P̃S. From which we expect to find a simplest algebraic relation among
coefficients ai s and bi s for f to be conjugate to g by eliminating u0, v0, u1 and v1,
that are coefficients of h. Since it is usually difficult to eliminate variables from a
semi-algebraic system, we consider the following algebraic system

P̂S :={f1 = 0, f2 = 0, f3 = 0, f4 = 0, f5 = 0, f6 = 0, f7 = 0,

1− rR1 = 0, 1− sR2 = 0, 1− tR3 = 0}

in the ring C[ai s, bi s, u0, v0, u1, v1, r, s, t] instead because R1 ̸= 0, R2 ̸= 0 and
R3 ̸= 0 if and only if there exist r, s, t ∈ C such that 1− rR1 = 0, 1− sR2 = 0 and
1 − tR3 = 0. Thus, the problem is converted to compute the variety V (I) as done
in [16,18], where I := ⟨f1, f2, f3, f4, f5, f6, f7, 1− rR1, 1− sR2, 1− tR3⟩. Aiming at
the above polynomials in I, we use computer algebra system Singular to find minimal
associate primes of the obtained corresponding ideal with the routine minAssGTZ
(see [5]). Computations show that in our case there are no embedded components.
Furthermore, we get the conditions to guarantee the conjugation between f and g
which is shown in the presentation of our theorem and u0, u1, v0, v1 can be obtained
accordingly. This completes the whole proof.

Using the same idea, we can also obtain

Theorem 3.2. A quintic polynomial f(x) := a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0
is topologically conjugate to another one g(x) := b5x

5+b4x
4+b3x

3+b2x
2+b1x+b0

via a homeomorphism

h(x) :=
u1x+ u0

v1x+ v0
, (u1x+ u0, v1x+ v0) = 1, v1 ̸= 0

if and only if

a0 =
a4(a

4
4 − 625a35)

3125a45
, a1 =

a44
125a35

, a2 =
2a34
25a25

a3 =
2a24
5a5

,

where

u0 =
τ1(−a4b4 ± 25(a35b

3
5)

1
4 )

25a5b5
, u1 = −τ1b4

5b5
, v0 =

τ1a4
5a5

, v1 = τ1, a5b5 > 0, τ ∈ R
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or

u0=
τ2τ3a4
5a5

, u1=τ2τ3, v0=
τ2a4
5a5

, v1=τ2, and τ3 is one of the real roots of equation

b5x
5 + b4x

4 + b3x
3 + b2x

2 + (b1 − 1)x+ b0 = 0,

τ2 ∈ R.

Proof. The proof of this theorem is similar to that of Theorem 3.1.

4. Height under composition
In the last section of this paper, we consider the non-monotonicity height of PM
functions under composition. Since the case of height 1 was investigated in [19], we
mainly discuss the height under composition equals to infinity as follows.

Before presenting the main results of this section, we need a useful lemma and
notation, as given in [19].

Lemma 4.1 ( [19]). Let F ∈ PM(J, J). If there exists a subinterval J ′ ⊆ J such
that J ′ ⊆ F (J ′) and S(F )∩ intJ ′ ̸= ∅, then H(F ) = ∞. Particularly, if F (J) = J ,
then H(F ) = ∞.

For a given function F ∈ PM(J, J), the closed subinterval J ′ ⊆ J is referred
to as a spanning interval of F if F (J ′) ⊇ J ′ and intJ ′ ∩ S(F ) ̸= ∅ (see [19]). In
particular, J ′ is called a unimodal interval if J ′ contains precisely one fort of F ,
F (J ′) = J ′ and no subinterval of J ′ has these properties [11].

According to Lemma 4.1, we get the following results.

Theorem 4.1. Let F,G ∈ PM(J, J). If the function F ◦G has a spanning interval
J ′ ⊂ J , then H(G ◦ F ) = ∞.

Proof. By reduction to absurdity, we assume that H(G ◦ F ) = n < ∞ for some
positive integer n. Define

J0 := (G ◦ F )n(J). (4.1)

Clearly, the function G ◦ F is monotone on J0, which implies that F and G is
strictly monotone on J0 and F (J0), respectively. By the definition of spanning
interval, there exists a subinterval J ′ ⊆ J such that

F ◦G(J ′) = J ′ and intJ ′ ∩ S(F ◦G) ̸= ∅.

Consequently,

S(G) ∩ intJ ′ ̸= ∅ or S(F ) ∩G(intJ ′) ̸= ∅. (4.2)

Note that

J ′ ⊆ (F ◦G)n+1(J) = F ◦ (G ◦ F )n ◦G(J) ⊆ F ◦ (G ◦ F )n(J) = F (J0). (4.3)

Then, we further obtain that

F (intJ0) = intF (J0) and G(intJ ′) = intG(J ′) ⊆ int(G ◦ F (J0)) ⊆ intJ0. (4.4)
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In view of (4.2), if S(G) ∩ intJ ′ ̸= ∅, then

S(G) ∩ F (intJ0) = S(G) ∩ intF (J0) ⊇ S(G) ∩ intJ ′ ̸= ∅

by (4.3), and thus we infer from Lemma 2.1 that

S(G ◦ F ) ∩ intJ0 = {S(F ) ∪ {c ∈ (a, b) : F (c) ∈ S(G)}} ∩ intJ0

⊇ {c ∈ (a, b) : F (c) ∈ S(G)} ∩ intJ0 ̸= ∅.

This is a contradiction to the assumption that H(G ◦ F ) = n. For the other case,
i.e., S(F ) ∩G(intJ ′) ̸= ∅ in (4.2), using Lemma 2.1 again, we have

S(G ◦ F ) ∩ intJ0 ⊇ S(F ) ∩ intJ0 ⊇ S(F ) ∩G(intJ ′) ̸= ∅

according to (4.4), a contradiction to the assumption of H(G ◦ F ) = n again.
Therefore, the proof is completed.

Remark 4.1. Note that H(F ◦ G) = ∞ if the function F ◦ G has a spanning
interval. Hence, Theorem 4.1 shows the symmetry of height being infinity.

Corollary 4.1. Let F,G ∈ PM(J, J) and H(F ) = H(G) = 1. If G(K(F )) =
K(G), F (K(G)) = K(F ) and either S(G) ∩ intK(F ) ̸= ∅ or S(F ) ∩ intK(G) ̸= ∅,
then H(F ◦G) = ∞.

Proof. By the assumption, it is clear that F ◦G|K(F ) is a surjective self-map on
K(F ). If S(G)∩intK(F ) ̸= ∅, we have S(F ◦G)∩intK(F ) ̸= ∅ by Lemma 4.1. Then
it follows from Lemma 4.1 again that H(F ◦ G|K(F )) = ∞, implying H(F ◦ G) =
∞. In the other case that S(F ) ∩ intK(G) ̸= ∅, by a similar discussion we get
H(F ◦G) = ∞ by Theorem 4.1.
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