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ON PIECEWISE MONOTONE FUNCTIONS
WITH HEIGHT BEING INFINITY

Hong Zhu', Lin Li"", Yingying Zeng? and Zhiheng Yu?

Abstract It is known that every piecewise monotone function with height
finity has a characteristic interval after finite times iteration, and then the
study of dynamics for such functions is able to be restricted to their character-
istic intervals, which becomes monotone case. To the opposite, the description
for piecewise monotone functions with height being infinity is much more com-
plicated since the theory of characteristic interval does not work anymore. In
this paper, we consider the problem of topological conjugacy for piecewise
monotone functions with height being infinity. Some necessary and sufficient
conditions are given for the existence of conjugacies between these functions.
Moreover, the height of infinity under composition is also discussed. The fact
shows a kind of symmetry for the height.
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1. Introduction

The complexity of iteration does not come from nonlinearity but arise from non-
monotonicity. A monotone function, no matter whether it is nonlinear, is as good as
a linear one by defining a homeomorphism, which are the same in topological sense.
In contrast, a non-monotonic continuous function has more than one monotone piece
and the number of monotone pieces may increase under iteration, which generates
complicated dynamical behaviors. Let I be a compact interval which can also be
the whole real line R. A continuous function F' : I — [ is said to be a piecewise
monotone function (abbreviated as PM function in [20,21]) which is also called
modal map [11,12] if F has finitely many non-monotone points or forts (or turning
points in [11,12]). Let PM(I,I) be the set of all PM functions mapping I into itself.
Furthermore, let S(F) be the set of all forts of F' and N(F') be the cardinality of
S(F). For each function F' € PM(I,I), it is known that the sequence (N(F"™))nen
is increasing, i.e., we have the following ascending relation

0=N(F°) <N(F)<N(F?)<---<NF")SNFE"™H... . neN (11

Thus, the number H(F) of F, which denotes the least integer k € N (exists or co
otherwise) such that N(F¥) = N(Fk*t1), is called the non-monotonicity height (or
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simply height) of F' (see [9]). The simplest case H (F') = 0 implies that F' is monotone
on the whole interval I. When H(F') = 1, there exists a closed maximal monotone
piece of I covering the range of F' and bounded by either forts or endpoint [21,
Lemma 2.4]. Such a closed interval is unique and called characteristic interval of
F, denoted by K(F). For the height greater than 1, namely H(F) =n > 1, it is
known that H(F™) =1 and F™ has a characteristic interval.

Generally speaking, the height is a measure of the dynamical complexity for
PM functions, which leads an important problem in the field of dynamical systems,
i.e., the question about topological relations among these functions. Let F,G €
PM(I,1). Recall that a homeomorphism (continuous function) ¢ : I — I satisfying
the conjugacy equation

po F(z) = Gop(x), zel, (1.2)

is said to be a topological conjugacy (semi-conjugacy) between F and G (F and G
are then called topologically conjugate (topologically semi-conjugate)). We use the
notation F' ~ G for the topological conjugate relation between F and G.

In 1966, Parry [15] proved the existence of a conjugacy between a topologi-
cally transitive PM function and a piecewise linear map. It is also known that
any unimodal map (a PM function with precisely one fort) is semi-conjugate to
a quadratic map [6]. Furthermore, by adding the smoothness on the given maps,
Melo and Strien [11] proved that any continuously differentiable PM function is
semi-conjugate to a polynomial with the same number of forts. More results about
semi-conjugacy, see references [1,3,13,14]. Another approach comes from Bald-
win [2], by applying the invariance of itineraries who presented a general classifi-
cation for PM functions via order-preserving conjugacy. Recently, regarding the
index of height and using the theory of characteristic interval, the third author
gave a complete classification for all PM functions with height being finite [8]. As
noted at the end of the paper [8], this method is unavailable for the functions with
height being infinity since they have no characteristic interval anymore even under
iteration. Therefore, an open problem raised naturally: Give a description of the
topological relations between PM functions with height being infinity.

In this paper, based on the above presented question, we first give necessary and
sufficient conditions for the existence of topological conjugacy for PM functions with
height being infinity under some regularity conditions in section 2. In section 3, a
topological relation between two cubic and two quintic polynomials (whose heights
are infinity) is discussed separately. In the last section, we consider the height of
infinity under composition, which shows a symmetry of such a height.

2. Topological relations on a finite interval

Let J := [a,b] for a,b € R be a compact interval. Then we have the following useful
lemmas.

Lemma 2.1 ([9]). Let F: J = R and G : o, f] = R be continuous functions such
that F(J) C [a, B]. Then

S(GoF)=8(F)U{ce (a,b): F(c) e S(G)}.

Lemma 2.2 ( [7]). Let F,G € PM(J,J) and F ~ G via a topological conjugacy
w:J = J. Then ¢ maps S(F)U{a,b} onto S(G) U {a,b}.
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Lemma 2.3 ( [7]). Let F,G € PM(J,J) and F ~ G via a topological conjugacy
o:J —J, then N(F*) = N(G*) for alli € N and H(F) = H(G).

Lemma 2.1 tells us the regularity of increasing number of forts under iteration
and Lemmas 2.2-2.3 show an equivalent relation between those forts and endpoints.
Now, we present an effective classification for the forts of all functions F' € PM(J, J)
with H(F) = oo as follows. For every n € N, define

Sp(F) :={z € S(F) : min,enF"(y) # z,Vy € (a,b)\S(F™)}.

Consequently, Soo (F) := S(F)\ U;en Si(F). It is clear that the set S, (F) is
able for n € N since #S(F) is finite, S,(F) C S(F™) and S;(F)(S;(F)
i # j. Moreover, Soo(F) # 0 if and only if H(F) = oc.

Proposition 2.1 ( [8]). Let F,G € PM(J,J) with H(F
via a topological conjugacy ¢ : J — J, then @ maps
n € NU {oo}.

count-

)=H(G)=o00. If F ~G
Sn(F) ontoS( ) for all

Proposition 2.1 presents a necessary condition for the existence of a topologi-
cal conjugacy between PM functions with height being infinity, which is a further
description of Lemma 2.2 and enables us to find the sufficient conditions.

For a given F € PM(J,J), note that each sequence {F~"(z)},en for every
x € Soo(F) is bounded. Then there exists a subsequence {F~"*(z)}ren that is
monotone and convergent. Let S(F') := {c1,c2,...,cn} and S(G) := {d1,ds, ...,dn}
with ¢ < ¢ < ... < ¢, and d; < dy < ... < d,. In order to illustrate the
construction of conjugacies easily, we first give the following hypotheses:

(H1) F(b) = b, {F~%(cy)}ien is strictly increasing and converges to b (Figure
1);

(Hz2) F(a) = a, {F~(c1)}ien is strictly decreasing and converges to a (Figure
2).

s ) y=Fe

a €y b

Figure 1. the case of (H1)

Without loss of generality, in what follows we only discuss under the hypothesis
(H1) since every function satisfying (Hs) is topologically conjugate to a function
fulfilling (H1) by ¢(z) = a+b—=z. In (H1) the strictly monotonicity of { F~(c,)}2,
implies that F([a,c,]) C [a,c¢p]. Then, the whole interval J is partitioned into
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b

y=F(x) ' e

Figure 2. the case of (Hz2)

infinitely many subintervals, namely,

J = [ab] = [a, ea) [ JUES [F~ (en), F~OFD ()] {0}
Then, we have the following results.

Theorem 2.1. Let F,G € PM(J,J) with H(F) = H(G) = oco. Assume that the
functions F,G satisfy (H1) (resp. (H2)). Then F is topologically conjugate to G
if and only if there exists an increasing homeomorphism ¢ : [a, c,] — [a,dy] (resp.
©o : [en,b] = [dn,b]) satisfying equation (1.2). Furthermore, any homeomorphism
po can be extended uniquely to a topological conjugacy between F and G.

Proof. Sufficiency. Assume that there exists an increasing homeomorphism ¢y :
[a,c,] = [a,dy] satisfying ¢o o F' = G o . By Proposition 2.1, we have

wolen) = dy. (2.1)

Then for each subinterval [F~ ( ), F=0HD (¢)],i = 0,1,2, ..., define an increasing
homeomorphism ¢; : [F~(c,,), F~V(c,)] — [G7(d,), G~V (d,)] by

pi(x) = G~ 0 g o F'H(2). (2.2)

Clearly, the functions ¢;s in (2.2) are well defined. Moreover, it follows from (2.1)-
(2.2) that

(P~ (en)) = G0 0 (e,) = G0V (dy),
@i+1(F_(i+1)(Cn)) =G "o wo(F(cn)) = G_(i+1)(dn)~
This implies that all those ;s are continuous at each junction. We further define
the function ¢ : J — J as
wo(x), € la,cy)
p(@) = q piz), we[F(c,), F-0H(c,)], i=0,1,2,..., (2:3)
b, T =b.
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Obviously, ¢ is strictly increasing on [a, b]. Moreover, we infer from (#;) and (2.3)
that

lim (x) = Tim i(F~"(c,)) = lim G™0HD(dy) = b= p(b),

z—b i—~400 i—+o00
which shows the continuity of ¢ on the whole interval J. Finally, it suffices to prove
that ¢ satisfies equation (1.2). Actually, for every z € [F~%(c,), F~0+D(¢,)] we
have

oo Fr) = G~ o g0 F*2 () = G0+ 0 G2 0 oo (a) = G o p(a).

Therefore, the function ¢ defined in (2.3) is a topological conjugacy between F' and
G, which is extended uniquely by the homeomorphism ¢g. The part of sufficiency
is proved.

Necessity. Assume that F' is topologically conjugate to G via an increasing
homeomorphism ¢ : J — J. According to Proposition 2.1 we get equality (2.1).
Let @0 = @Q[a,c,)- It suffices to prove that ¢q is a solution of equation (1.2) on
[a,cy]. In fact, for every = € [a, ¢,] we get F(x) € [a,¢y] and

Gowo(z) = Gop(x)=¢oF(z) =0 F(z)

Therefore, g is an increasing topological conjugacy between Fl, .. and Gq,q,]-
The whole proof is completed.

Remark 2.1. Note that the authors in [7] investigated a topological conjugate
relation for a class of PM functions with height being infinity, only those functions
whose graphs under the diagonal line, are considered there, which is a special case
of our Theorem 2.1.

Example 2.1. Consider two maps F' and G defined by

Sz+1, w0}, 2x+2, wx€0,}),
Flz):=4 22+ 3, z€[t,1), and G@):=( -lo+il ze[i,3),
%x*%7 xE[%,l], 1—52$7%, QSE[%,”,

respectively. One checks that S(F) = {§,3}, S1(F) = {3}, Seo(F) = {3} and
S(GQ) = {47 4} Sl( ) = {él} Seo(G) = {%} Clearly, F' and G satisfy condition

(H1), where ¢, = 5,d, = 2. Note that F[O 1] and G (3 are self-maps. It is easy

2’ 4

to Verify that H(F[O,%]) :H(G[O7%]) = 1, K( [0 75]) [8’2] and K(G[Q% ) [411,%]
Moreover, there exists an increasing homeomorphism H : [§,4] — [%, 2] defined

by H(z) := 2z + 5, which satisfies H o F(0) = G(0), H o F(3) = G(4) and
Ho F(3) = G(3). Hence, all conditions in [8, Lemma 2.1] are fulﬁlled7 and then
F[o,%] is topologically conjugate to G[O&]. Therefore, by Theorem 2.1 we conclude

that F' is topologically conjugate to G on [0, 1].

According to the proof of Theorem 2.1, we have the following result of a de-
creasing conjugacy.

Corollary 2.1. Let F,G € PM(J,J) with H(F) = H(G) = co. Assume that the
function F satisfies (H1) and G satisfies (Ha). Then F is topologically conjugate
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to G if and only if there exists a decreasing homeomorphism g : [a,c,] — [d1,b]
satisfying equation (1.2). Furthermore, any homeomorphism pg can be extended
uniquely to a topological conjugacy between F and G.

By Theorem 2.1 and Corollary 2.1, for those PM functions with two unique fixed
points a, b, we get the following results directly.

Corollary 2.2. Let F,G € PM(J,J) with H(F) = H(G) = oco. Assume that
F(a) = G(a) = a, F(b) = G(b) = b and F(z),G(z) > z for all z € (a,b) (resp.
F(z),G(x) < x for all € (a,b)) holds. Then F is topologically conjugate to G via
an increasing conjugacy if and only if there exists an increasing homeomorphism g :
[c1,b] = [d1,b] (resp. wo : [a,cn] = [a,dy]) satisfying equation (1.2). Furthermore,
any homeomorphism ¢g can be extended uniquely to a topological conjugacy between
Fand G.

Corollary 2.3. Let F,G € PM(J,J) with H(F) = H(G) = co. Assume that
F(a) = G(a) = a, F(b) = G(b) = b and F(z),G(x) > z for all x € (a,b) (resp.
F(z),G(x) <z for all x € (a,b)) holds. Then F is topologically conjugate to G via
a decreasing conjugacy if and only if there exists a decreasing homeomorphism g :
[c1,b] = [a,dy] (resp. ¢o : [a,cn] = [d1,b]) satisfying equation (1.2). Furthermore,
any homeomorphism ¢g can be extended uniquely to a topological conjugacy between
F and G.

Recall that each sequence {F~"(z)}nen for every x € So(F') has a subsequence
{F~™(x)}ien that is monotone and convergent. Choose a point zg € Soo(F') and
let x; := F~™i(x) for each ¢ € N. At the last part of this section, compared with
conditions (H1)-(Hz2) we put some regularities on such subsequences.

(H3) {i}ien is strictly increasing fulfilling i_1>i+mooa:,» =band F' () €[a, F~™ (z0)]

for j =0,1,2,... (Figure 3);
(Ha4) {x;}ien is strictly decreasing fulfilling lim z;=a and F7(xq) € [F~"(xq), b]

i——400
for j =0,1,2,... (Figure 4).

b

a X, X b
Figure 3. the case of (H3)
Theorem 2.2. Let F,G € PM(J,J) with H(F) = H(G) = co. Assume that the

functions F,G satisfy (Hz) (resp. (Ha)). Then F is topologically conjugate to
G if and only if there exists an increasing homeomorphism g : [a, F~"(x0)] —
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_______ Y y=F()

____________________________________

Figure 4. the case of (H4)

[a, G™™ (yo)] (resp. wo : [F~™(xq),b] = [G™™(yo),b]) for some xg € Soo(F),yo €
Soo(G) satisfying equation (1.2). Furthermore, any homeomorphism ¢y can be
extended uniquely to a topological conjugacy between F and G.

Proof. Sufficiency. Assume that there exists an increasing homeomorphism g :
[a, F7(zg)] — [a, G (yo)] satisfying ¢g o FF = G o ¢y. The other case that
o : [F'~" (x0),b] = [G™" (yo), b] can be proved similarly.

Since F7(xg) € [a, F~™ ()] for j = 0,1,2,..., it follows from Proposition 2.1
that

(PO(FJ(:EO)) :Gj(x())a] =0,1,2,... (24)

Then, define an increasing homeomorphism @; : [F~" (zg), F~ ™+ (x0)] = [G~™ (o),
G+ (yo)] by

@i(x) == G710 pg o F™MH (x). (2.5)
According to (2.4), it is easy to check that
@i(F " (z0)) = G oo B (F ™ (g)) = G oG (1) = G ()
since n;+1 — n; > 0. Moreover,
@i(F" 1 (@) = G 09 o F™MHH(FTH () = G (a0)

by (2.4) again. Hence, the functions ¢; in (2.5) is well defined for each i € N. By
the proof of Theorem 2.1, the function ¢ : I — I defined by

po(z), =€ la, " (x0))

o(x) = @i(x), =€ [F ™ (x0), F~ ™+ (20)], i=1,2,...,
b, T =b,

is a topological conjugacy between F' and G.
The part of necessity is obtained obviously. O
According to the proof of Theorem 2.2, we have the following result of a de-
creasing conjugacy.
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Corollary 2.4. Let F,G € PM(J,J) with H(F) = H(G) = oco. Assume that
the functions F,G satisfy (H3) and (Ha)), respectively. Then F is topologically
conjugate to G if and only if there exists an decreasing homeomorphism g :
[a, F~™ (x0)] = [G~™ (yo0),b] for some xo € Soo(F),y0 € Soc(G) satisfying equa-
tion (1.2). Furthermore, any homeomorphism pg can be extended uniquely to a
topological conjugacy between F' and G.

3. Topological relations on the whole real line

It is clear that every real polynomial is a PM function, which is defined on the whole
real line R into itself. Furthermore, we infer from [17, Theorem 1] that H(F) = oo
for all polynomials F' : R — R with odd degree greater than 2. In this section, we
mainly consider a topological classification for two kinds of polynomials, i.e., cubic
polynomials and quintic polynomials, separately.

Theorem 3.1. f(x) := azz®+ ax2® +a1x +ag is topologically conjugate to g(x) :=
b33 + bax? + bix + by via a conjugacy

U1x + Ug

h(z) .= —, (uw1x+ug,v1x+v9) =1, v 0
() T vy (u1 05 V1 0) =1, v #
if and only if
" :ag(a%—9a3) u :L%
0 27a3 ' 3ay’
where
—boas + 9vaszbs)k K1b K10
U0=< 202 + 33)1,u1=—12,v0: 12’01:H17a3b3>0’m€R
9a3b3 31)3 3as
or
Uu1a ask
Uy = ——2, vg = —2 vy = Ky, and uy is one of the real roots of equation
3&3 3a3
b3z + bakox® + (b1k3 — K2)x + boks = 0,
Ko € R.

Proof. Let v(z) := wiz + up and §(x) := viz + vo. Since (v(z),d(x)) = 1,
by [4, Chapter 12, pp.397-399], neither the resultant of As(z) and By(x) nor the
resultant of v(z) and d(x) vanishes, i.e.,

R = resultant(v(x),d(x), z) = ugvy — vouy # 0.

Consider the conjugation between f and g. One can compute

ﬁ3x3+£2x2+£1x+f/0 R3x3+]:22x2+]:31m+1%0
ot + Lot Dt ¥ Do _ g 0)) = p(f(ay) = ot tBor d Far b Ry
Lsx3 + Lox? 4+ Lix + Lg Rsx3 + Rox? + Rix + Ry

(3.1)

By [10, Lemma 3], the fractions on both sides are irreducible. On account of Ls =
v # 0 and R3 = agvy # 0, in order to simplify the calculation, we divide L
and R on the left and right sides of equation (3.1) respectively, and equate the
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corresponding coefficients of both sides of (3.1), which gives the following semi-
algebraic system
fi:= bovi’ + blulvf + bgufvl + bgu‘;’ - ulvf =0;
fo = —3agbovf1}2 — 2azbiuivivg — agbluQvf — (13[)211,%’02 — 2agbouiusv
— 3a3b3u%uQ + agulvf =0;
f3:= —3a3b0vlv§ - a3b1u1v§ — 2a3biugvive — 2a3bouiusve — a3b2u§v1
— 3a3b3u1u§ + alulv% =0;
fa:= fagbovg’ — agbluQvg - agbgugvg - a3b3u§ + aoulvf + uzvf = 0;
f5 := agvy — 3agve = 0;
fe = alvf - 3a3v§ = 0;
fr:= aovi’ — agvg’ + v%vz =0;
Ry 1= ugvy — vouy # 0;
Ro := aszbs # 0;
Rz :=wv1 # 0
denoted by PS. From which we expect to find a simplest algebraic relation among
coefficients a; s and b; s for f to be conjugate to g by eliminating ug, vg, w1 and v,

that are coefficients of h. Since it is usually difficult to eliminate variables from a
semi-algebraic system, we consider the following algebraic system

I/)\S::{fl :07f2:oaf3:07f4207f5:07f6207f7:07
1—7’9%1:0,1—39%2:0,1—&)%3:0}

in the ring Cla; s, b; s, ug, vo, u1,v1,1, s,t] instead because R; # 0, Ry # 0 and
R3 # 0 if and only if there exist 7, s,¢t € C such that 1 —rfR; =0, 1 — sR2 = 0 and
1 — M3 = 0. Thus, the problem is converted to compute the variety V(I) as done
in [1(), 18], where I := <f1, fg, f3, f47 f5, f@, f7, 1-— ’I‘Sﬁl, 1-— 59%2, 1-— ti)%,) Almlng at
the above polynomials in I, we use computer algebra system Singular to find minimal
associate primes of the obtained corresponding ideal with the routine minAssGTZ
(see [5]). Computations show that in our case there are no embedded components.
Furthermore, we get the conditions to guarantee the conjugation between f and g
which is shown in the presentation of our theorem and ug, u1, vg, v1 can be obtained
accordingly. This completes the whole proof. O
Using the same idea, we can also obtain

Theorem 3.2. A quintic polynomial f(x) := asz® + asx? + a3z + asx® + a1z + ag
is topologically conjugate to another one g(z) := bsx® +byx* +bzx3 +bax? +byx + b
via a homeomorphism

U1 + ug

h(z) = —, , =1, 0
(x) pap— (ur + wo, V12 + V) vy #
if and only if
4 3 4 3 2
as(ay — 625a a 2a 2a
@0 = <§125 1 S 5 2= e @ = 5ay’
ay as 25ag 5as
where
7'1(—&4[)4 + 25((1%[)2)%) T1b4 T1Q4
= , Ul =———, Vo= ——, U1 =71, asbs >0, TER
o 25(151)5 “ 5b5 vo 5a5 v 71, 4505 g
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or

Uy = 72572:4 , U] =ToTs, Vo= %::, v1 =Ty, and T3 is one of the real roots of equation
bsz® + byx? + b3a 4 boa® + (b — 1)z 4 by = 0,

5 € R.

Proof. The proof of this theorem is similar to that of Theorem 3.1. O

4. Height under composition

In the last section of this paper, we consider the non-monotonicity height of PM
functions under composition. Since the case of height 1 was investigated in [19], we
mainly discuss the height under composition equals to infinity as follows.

Before presenting the main results of this section, we need a useful lemma and
notation, as given in [19].

Lemma 4.1 ( [19]). Let F € PM(J,J). If there exists a subinterval J' C J such
that J' C F(J') and S(F)NintJ' # 0, then H(F) = co. Particularly, if F(J) = J,
then H(F) = oo.

For a given function F' € PM(J,J), the closed subinterval J" C .J is referred
to as a spanning interval of F if F(J") 2 J' and intJ' N S(F) # @ (see [19]). In
particular, J’ is called a unimodal interval if J' contains precisely one fort of F,
F(J") = J’ and no subinterval of J’ has these properties [11].

According to Lemma 4.1, we get the following results.

Theorem 4.1. Let F,G € PM(J,J). If the function F'oG has a spanning interval
J' C J, then H{Go F) = cc.

Proof. By reduction to absurdity, we assume that H(G o F') = n < oo for some
positive integer n. Define

Jo := (G o F)"(J). (4.1)

Clearly, the function G o F' is monotone on Jy, which implies that F and G is
strictly monotone on Jy and F(Jp), respectively. By the definition of spanning
interval, there exists a subinterval J' C J such that

FoG(J)=J and intJ'NnS(FoG)# 0.
Consequently,
S(G)NintJ #0 or S(F)NG(intJ") # 0. (4.2)
Note that
J C(FoG)""™(J)=Fo(GoF)"oG(J) C Fo(GoF)"(J)=F(Jy). (4.3)
Then, we further obtain that

F(intJy) = intF(Jy) and G(intJ') = intG(J") C int(G o F(Jp)) C intJy. (4.4)
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In view of (4.2), if S(G) NintJ’ # 0, then
S(G) N F(intJy) = S(G) NintF(Jo) 2 S(G) NintJ" # 0
by (4.3), and thus we infer from Lemma 2.1 that

S(Go F)nintJy = {S(F)U{c € (a,b) : F(c) € S(G)}} NintJy
D {ce(a,b): F(c) € S(G)} NintJy # 0.

This is a contradiction to the assumption that H(G o F') = n. For the other case,
i.e., S(F)NG(intJ") # () in (4.2), using Lemma 2.1 again, we have

S(Go F)NintJy 2 S(F)NintJy 2 S(F) N G(intJ") # 0

according to (4.4), a contradiction to the assumption of H(G o F) = n again.
Therefore, the proof is completed. O

Remark 4.1. Note that H(F o G) = oo if the function F' o G has a spanning
interval. Hence, Theorem 4.1 shows the symmetry of height being infinity.

Corollary 4.1. Let F,G € PM(J,J) and H(F) = H(G) = 1. If G(K(F)) =
K(G), F(K(@)) = K(F) and either S(G) NintK(F) # @ or S(F) NintK(G) # 0,
then H(F o G) = 0.

Proof. By the assumption, it is clear that F' o G|k (p) is a surjective self-map on
K(F). I S(G)NintK (F') # 0, we have S(FoG)NintK (F) # () by Lemma 4.1. Then
it follows from Lemma 4.1 again that H(F o G|k (p)) = oo, implying H(F o G) =
0o. In the other case that S(F) NintK(G) # 0, by a similar discussion we get
H(F o G) = oo by Theorem 4.1. O
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