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NEW PRECONDITIONED GAOR METHODS
FOR BLOCK LINEAR SYSTEM ARISING

FROM WEIGHTED LINEAR LEAST SQUARES
PROBLEMS∗
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Abstract In this paper, new preconditioned GAOR methods are proposed
for solving a class of 2 × 2 block structure linear systems arising from the
weighted linear least squares problems. Comparison theorems are derived.
Comparison results show that the convergence rates of the new preconditioned
GAOR methods are better than those of the preconditioned GAOR methods in
the previous literatures whenever these methods are convergent. A numerical
example is given to confirm our theoretical results.
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1. Introduction
In this paper, we consider the 2× 2 block structure linear systems of the form

Hy = f, y, f ∈ Rn, (1.1)

where

H =

 Ip −B U

L Iq − C


is a nonsingular matrix with B = (bij) ∈ Rp×p, C = (cij) ∈ Rq×q, L = (lij) ∈ Rq×p,
U = (uij) ∈ Rp×q, and p+ q = n. The linear system (1.1) arises from the solution
of the weighted linear least squares problem [14,15]

min
w∈Rn

(Aw − b)TW−1(Aw − b),

where A ∈ Rn×n, b ∈ Rn and W ∈ Rn×n is a symmetric positive definite matrix.
The weighted linear least squares problem has many scientific applications, a typical

†The corresponding author. Email: wguangbin750828@sina.com (G. Wang)
1College of Mathematics and Statistics, Northwest Normal University, 730070,
Lanzhou, China

2Department of Mathematics, Qingdao Agricultural University, 266109, Qing-
dao, China

∗The authors were supported by the Natural Science Foundation of China (No.
11861059), Natural Science Foundation of Northwest Normal University (No.
NWNU-LKQN-17-5) and the Science and Technology Program of Shandong
Colleges (J16LI04).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20190164


New preconditioned GAOR methods 657

source is the parameter estimation in mathematical modelling, see [4, 13, 15] for
details. Here and elsewhere in the paper, Ik denotes the identity matrix with
dimension k.

Many classical iterative methods for solving the linear system (1.1) have been
studied by many authors, see for example [3, 10, 14, 15]. To avoid the inverses of
the matrices Ip − B and Iq − C, Yuan and Jin [15] proposed the generalized AOR
(GAOR) method for solving the linear system (1.1). Splitting the coefficient matrix
H of the linear system (1.1) as

H =

 Ip 0

0 Iq

−

 0 0

−L 0

−

B −U

0 C

 ,

the GAOR method is defined by [15]

y(k+1) = Lωγy
(k) + ωg, k = 0, 1, 2, · · · , (1.2)

where

Lωγ =

 Ip 0

γL Iq

−1 (1− ω)In + (ω − γ)

 0 0

−L 0

+ ω

B −U

0 C


=

 (1− ω)Ip + ωB −ωU

ω(γ − 1)L− ωγLB (1− ω)Iq + ωC + ωγLU

 (1.3)

is the iteration matrix and

g =

 Ip 0

−γL Iq

 f

with real parameters ω ̸= 0 and γ. Darvishi and Hessari [3] studied the convergence
of the GAOR method when the coefficient matrix H is a diagonally dominant
matrix.

It is known that the smaller the spectral radius of the iteration matrix Lωγ ,
the faster the GAOR method converges. For improving the convergent rate of the
corresponding iterative method, preconditioning techniques are used [2]. Especially,
we consider the following equivalent left preconditioned linear system of (1.1)

PHy = Pf, (1.4)

where P ∈ Rn×n, called the left preconditioner, is nonsingular. If we express PH
as

PH =

 Ip − B̂ Û

L̂ Iq − Ĉ

 ,

then the GAOR method for solving the preconditioned linear system (1.4), which
is also called the preconditioned GAOR method [17] for solving the linear system
(1.1), is defined as

y(k+1) = L̂ωγy
(k) + ωĝ, k = 0, 1, 2, · · · , (1.5)



658 S. Miao, L. Wang & G. Wang

where

L̂ωγ =

 (1− ω)Ip + ωB̂ −ωÛ

ω(γ − 1)L̂− ωγL̂B̂ (1− ω)Iq + ωĈ + ωγL̂Û


and

ĝ =

 Ip 0

−γL̂ Iq

 P̂ f.

Recently, many preconditioners have been proposed for accelerating the con-
vergence rate of the GAOR method, such as [6–9, 12, 16, 17]. In this paper, two
new preconditioners are proposed to accelerate the convergence rate of the GAOR
method for solving the linear system (1.1). Some comparison theorems are estab-
lished to demonstrate the effectiveness of the proposed preconditioners theoretically,
and a numerical example is given to show the correctness of theoretical analysis.

2. Preliminaries
For A = (aij), B = (bij) ∈ Rn×n, we write A ≥ B (or A > B) if aij ≥ bij (or
aij > bij) holds for all i, j = 1, 2 · · · , n. We say that A is nonnegative (positive)
if A ≥ 0(A > 0), and A − B ≥ 0 if and only if A ≥ B. These definitions carry
immediately over to vectors by identifying them with n× 1 matrices. ρ(∗) denotes
the spectral radius of a square matrix. A is called irreducible if the directed graph
of A is strongly connected [11].

Some useful results which we refer to later are provided below.

Lemma 2.1 ( [11]). Let A ∈ Rn×n be a nonnegative and irreducible matrix. Then

(a). A has a positive eigenvalue equal to ρ(A);

(b). A has an eigenvector x > 0 corresponding to ρ(A).

Lemma 2.2 ( [1]). Let A ∈ Rn×n be a nonnegative matrix. Then

(a). If αx ≤ Ax for a vector x ≥ 0 and x ̸= 0, then α ≤ ρ(A).

(b). If Ax ≤ βx for a vector x > 0, then ρ(A) ≤ β. Moreover, if A is irreducible
and if 0 ̸= αx ≤ Ax ≤ βx, equality excluded, for a vector x ≥ 0 and x ̸= 0,
then α < ρ(A) < β and x > 0.

3. Preconditioned GAOR methods
In this section, on the basis of reviewing the existing preconditioners, we will pro-
pose two kinds of new preconditioners and corresponding preconditioned GAOR
methods.

In 2012, Shen et al. [9] proposed the preconditioner of the form P1=

 Ip + S1 0

0 Iq


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with

S1 =



0 0 · · · 0 0

β2b21 0 · · · 0 0

0 β3b32 · · · 0 0

...
... . . . ...

...

0 0 · · · βpbp,p−1 0


,

where βi > 0, i = 2, 3, · · · , p. In 2014, Zhao et al. [16] considered the preconditioner

P̃1 =

 Ip + S1 0

0 Iq + V1

 ,

where S1 is defined as above and for τj > 0, j = 2, 3, · · · , q,

V1 =



0 0 · · · 0 0

τ2c21 0 · · · 0 0

0 τ3c32 · · · 0 0

...
... . . . ...

...

0 0 · · · τqcq,q−1 0


.

Similar preconditioned techniques are considered in [5, 7]. The preconditioned ma-
trix P̃1H can be expressed as

P̃1H =

 Ip −B∗
1 U∗

1

L̃1 Iq − C̃1

 ,

where B∗
1 = B−S1(Ip−B), U∗

1 = (Ip+S1)U , L̃1 = (Iq+V1)L, C̃1 = C−V1(Iq−C),
and the corresponding preconditioned GAOR method is defined as

y(k+1) = L̃ωγ1y
(k) + ωg̃1, k = 0, 1, 2, · · · (3.1)

with the iteration matrix

L̃ωγ1 =

 (1− ω)Ip + ωB∗
1 −ωU∗

1

ω (γ − 1) L̃1 − ωγL̃1B
∗
1 (1− ω) Iq + ωC̃1 + ωγL̃1U

∗
1

 (3.2)

and the corresponding known vector g̃1 =

 Ip 0

−γL̃1 I

 P̃1H. The preconditioner

introduced by Zhou et al. [17] in 2009 has the form P̄1 =

 Ip 0

K1 Iq

 , where θ > 0
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and

K1 =



0 0 · · · 0

0 0 · · · 0
...

... . . . ...

− lq1
θ 0 · · · 0


.

Recently, in view of the preconditioners P1 and P̄1, Huang et al. [6] considered the
following preconditioner

P 1 =

 Ip + S1 0

K1 Iq

 ,

where S1 and K1 are as above, the matrix P 1H can be written as

P 1H =

 Ip −B∗
1 U∗

1

L1 Iq − C1

 ,

where B∗
1 and U∗

1 are as above, and L1 = L+K1(Ip −B), C1 = C −K1U . Then
the corresponding preconditioned GAOR method is defined as

y(k+1) = Lωγ1y
(k) + ωg1, k = 0, 1, 2, · · · (3.3)

with the iteration matrix

Lωγ1 =

 (1− ω)Ip + ωB∗
1 −ωU∗

1

ω (γ − 1)L1 − ωγL1B
∗
1 (1− ω) Iq + ωC1 + ωγL1U

∗
1

 (3.4)

and the corresponding known vector g1 =

 Ip 0

−γL1 I

P 1f . Based on the idea

of [7, 8], we propose our first new preconditioner P̂1 of the form

P̂1 =

 Ip + S1 0

K1 Iq + V1

 , (3.5)

where S1, V1 and K1 are defined as above. Let the preconditioned matrix P̂1H be
expressed as

P̂1H =

 Ip − B̂1 Û1

L̂1 Iq − Ĉ1

 ,

where B̂1 = B−S1(Ip−B), Û1 = (Ip+S1)U, L̂1 = (Iq+V1)L+K1(Ip−B) and Ĉ1 =
C−V1(Iq−C)−K1U , then applying the GAOR method to the preconditioned linear
system (1.4) with the preconditioners P̂1, we have the following new preconditioned
GAOR method

y(k+1) = L̂ωγ1y
(k) + ωĝ1, k = 0, 1, 2, · · · , (3.6)
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where

L̂ωγ1 =

 (1− ω)Ip + ωB̂1 −ωÛ1

ω(γ − 1)L̂1 − ωγL̂1B̂1 (1− ω)Iq + ωĈ1 + ωγL̂1Û1

 (3.7)

is the iteration matrix and ĝ1 =

 Ip 0

−γL̂1 Iq

 P̂1f is the corresponding known vector.

Based on the works in [6, 17], we will propose our second preconditioner. In

2013, Wang et al. [12] proposed the preconditioner P2 =

 Ip + S2 0

0 Iq

 with

S2 =



0 b12 0 · · · 0

0 0 b23 · · · 0

...
...

... . . . ...

0 0 0 · · · bp−1,p

0 0 0 · · · 0


.

In 2015, Huang et al. [6] considered the preconditioner

P̃2 =

 Ip + S2 0

0 Iq + V2

 ,

where S2 is defined as above and

V2 =



0 c12 0 · · · 0

0 0 c23 · · · 0

...
...

... . . . ...

0 0 0 · · · cq−1,q

0 0 0 · · · 0


.

Applying the GAOR method to the peconditioned linear system (1.4) with the
preconditioner P̃2, the corresponding preconditioned GAOR method is defined as

y(k+1) = L̃ωγ2y
(k) + ωg̃2, k = 0, 1, 2, · · · , (3.8)

where

L̃ωγ2 =

 (1− ω)Ip + ωB∗
2 −ωU∗

2

ω (γ − 1) L̃2 − ωγL̃2B
∗
2 (1− ω) Iq + ωC̃2 + ωγL̃2U

∗
2

 (3.9)
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is the iteration matrix with B∗
2 = B − S2 (Ip −B) , U∗

2 = (Ip + S2)U, L̃2 = (Iq +

V2)L, C̃2 = C−V2(Iq−C), g̃2 =

 Ip 0

−γL Iq

 P̃2f is the corresponding known vector.

Zhou et al. in [17] also proposed the preconditioner

P 2 =

 Ip 0

K2 Iq

 ,

where K2 is defined as follows:

(1). when q < p,

K2 =



−l11 0 · · · 0 0 0 · · · 0

0 −l22 · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...

0 0 · · · −lqq 0 0 · · · 0


,

(2). when q = p,

K2 =



−l11 0 · · · 0

0 −l22 · · · 0

...
... . . . ...

0 0 · · · −lqq


,

(3). when q > p,

K2 =



−l11 0 · · · 0

0 −l22 · · · 0

...
... . . . ...

0 0 · · · −lpp
...

... . . . ...

0 0 · · · 0


.

The preconditioned GAOR method with preconditioner P 2 for solving linear sys-
tems (1.1) can be defined by

y(k+1) = Lωγ2y
(k) + ωg2, k = 0, 1, 2, · · · , (3.10)

where

Lωγ2 =

 (1− ω)Ip + ωB −ωU

ω (γ − 1)L2 − ωγL2B (1− ω) Iq + ωC2 + ωγL2U

 (3.11)
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is the iteration matrix with L2 = L + K2(Ip − B) and C2 = C − K2U , and

g2 =

 Ip 0

−γL2 Iq

P 2f . In view of the preconditioner P̃2 and P 2, our second pre-

conditioner has the form

P̂2 =

 Ip + S2 0

K2 Iq + V2

 , (3.12)

where S2, V2 and K2 are defined as above. Now the preconditioned matrix P̂2H
can be expressed as

P̂2H =

 Ip − B̂2 Û2

L̂2 Iq − Ĉ2

 ,

where B̂2 = B − S2(Ip −B), Û2 = (Ip + S2)U, L̂2 = (Iq + V2)L+K2(Ip −B) and
Ĉ2 = C−V2(Iq−C)−K2U. Applying the GAOR method to the preconditioned linear
system (1.4) with the preconditioners P̂2, we have the following new preconditioned
GAOR method

y(k+1) = L̂ωγ2y
(k) + ωĝ2, k = 0, 1, 2, · · · , (3.13)

where

L̂ωγ2 =

 (1− ω)Ip + ωB̂2 −ωÛ2

ω(γ − 1)L̂2 − ωγL̂2B̂2 (1− ω)Iq + ωĈ2 + ωγL̂2Û2

 , (3.14)

is the iteration matrix and ĝ2 =

 Ip 0

−γL̂2 Iq

 P̂2f is the corresponding known vector.

4. Comparison results
In this section, some comparison theorems are established to demonstrate the effi-
ciency of the proposed preconditioners P̂1 and P̂2 theoretically.

Firstly, the comparison results about the convergent rates of the preconditioned
GAOR methods defined by (3.6) and (3.13) with that of the GAOR method defined
by (1.2) are given. Comparing ρ(L̂ωγ1) with ρ(Lωγ), we have following comparison
result.

Theorem 4.1. Let Lωγ and L̂ωγ1 be the iteration matrices of the GAOR method
(1.2) and the preconditioned GAOR method (3.6), respectively. Assume that the
matrix H in Equation (1.1) is irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0,
0 < ω ≤ 1, 0 ≤ γ < 1, bi+1,i > 0 for some i ∈ {1, 2, · · · , p − 1}, 0 < βi+1 < 1

1−bii
whenever 0 ≤ bii < 1, or βi > 0 whenever bii ≥ 1 for i ∈ {1, 2, · · · , p − 1}; and
cj+1,j > 0 for some j ∈ {1, 2, · · · , q − 1}, 0 < τj+1 < 1

1−cjj
whenever 0 ≤ cjj < 1,

or τj > 0 whenever cjj ≥ 1 for j ∈ {1, 2, · · · , q − 1}; and lq1 < 0, θ > 0 whenever
b11 ≥ 1, or 0 < θ < 1− b11 whenever 0 ≤ b11 < 1, then

ρ(L̂ωγ1) < ρ(Lωγ), if ρ(Lωγ) < 1.
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Proof. By assumptions, it is easy to verify that Lωγ and L̂ωγ1 are nonnegative and
irreducible matrices. From Lemma 2.1, there is a positive vector x such that

Lωγx = λx, (4.1)

where λ = ρ(Lωγ) and λ ̸= 1. For otherwise, the matrix H is singular. Moreover,
it holds that

ωHx =

 Ip 0

γL Iq

 (In − Lωγ)x = (1− λ)

 Ip 0

γL Iq

x. (4.2)

From (4.1) and (4.2), we can deduce that

L̂ωγ1x− λx

=

 Ip 0

γL̂1 Iq

−1 (1− ω)In + (ω − γ)

 0 0

−L̂1 0

+ ω

 B̂1 −Û1

0 Ĉ1

x− λx

=

 Ip 0

γL̂1 Iq

−1 
−ωIp + ωB̂1 −ωÛ1

−ωL̂1 −ωIq + ωĈ1

+ (1− λ)

 Ip 0

γL̂1 Iq

x

=

 Ip 0

γL̂1 Iq

−1 −ωH +

 −ωS1(Ip −B) −ωS1U

−ωV1L− ωK1(Ip −B) −ωV1(Iq − C)− ωK1U


+(1− λ)

 Ip 0

γL̂1 Iq

x

=

 Ip 0

γL̂1 Iq

−1 
 S1 0

K1 V1

 (−ωH) + (1− λ)

 Ip 0

γ(L̂1 − L) Iq

x

=

 Ip 0

γL̂1 Iq

−1 (λ−1)

 S1 0

K1 V1

 Ip 0

γL Iq

+(1−λ)

 0 0

γV1L+γK1(Ip−B) 0

x

=

 Ip 0

−γL̂1 Iq

(λ−1)

 S1 0

K1 V1

 Ip 0

γL Iq

−(λ−1)

 0 0

γV1L+γK1(Ip−B) 0

x

=

 Ip 0

−γL̂1 Iq

(λ− 1)

 S1 0

K1 − γK1(Ip −B) V1

x

= (λ− 1)

 S1 0

(1− γ)K1 + γK1B − γLS1 − γV1LS1 − γK1(Ip −B)S1 V1

x.

Since 0 < ω ≤ 1, 0 ≤ γ < 1, K1, V1 and S1 are nonnegative and nonzero
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matrices, we have S1 0

(1− γ)K1 + γK1B − γLS1 − γV1LS1 − γK1(Ip −B)S1 V1

x ≥ 0

and  S1 0

(1− γ)K1 + γK1B − γLS1 − γV1LS1 − γK1(Ip −B)S1 V1

x ̸= 0.

If λ < 1, then L̂ωγ1x − λx ≤ 0 and L̂ωγ1x − λx ̸= 0, Lemma 2.2 gives ρ(L̂ωγ1) <
ρ(Lωγ) < 1. □

Similarly, comparing ρ(L̂ωγ2) with ρ(Lωγ), we have the following comparison
result.

Theorem 4.2. Let Lωγ and L̂ωγ2 be the iteration matrices of the GAOR method
(1.2) and the preconditioned GAOR method (3.13), respectively. Assume that the
matrix H in Equation (1.1) is irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0,
0 < ω ≤ 1, 0 ≤ γ < 1, bi,i+1 > 0 for some i ∈ {1, · · · , p − 1}, and cj,j+1 > 0 for
some j ∈ {1, · · · , q − 1}, and lii < 0 for i ∈ {1, 2, · · · , p}, then

ρ(L̂ωγ2) < ρ(Lωγ), if ρ(Lωγ) < 1.

Secondly, we will compare the convergent rate of the preconditioned GAOR
method (3.6) with that of the preconditioned GAOR method (3.1), the convergent
rate of the preconditioned GAOR method (3.13) with that of the preconditioned
GAOR method (3.8), respectively. Comparing ρ(L̂ωγ1) with ρ(L̃ωγ1), we have the
following theorem.

Theorem 4.3. Let L̃ωγ1 and L̂ωγ1 be the iteration matrices of the preconditioned
GAOR methods (3.1) and (3.6), respectively. Assume that the matrix H in Equation
(1.1) is irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 < ω ≤ 1, 0 ≤ γ < 1,
bi+1,i > 0 for some i ∈ {1, 2, · · · , p − 1}, 0 < βi+1 < 1

1−bii
whenever 0 ≤ bii < 1,

or βi > 0 whenever bii ≥ 1 for i ∈ {1, 2, · · · , p − 1}; and cj+1,j > 0 for some
j ∈ {1, 2, · · · , q − 1}, 0 < τj+1 < 1

1−cjj
whenever 0 ≤ cjj < 1, or τj > 0 whenever

cjj ≥ 1 for j ∈ {1, 2, · · · , q − 1}; and lq1 < 0, θ > 0 whenever b11 ≥ 1, then

ρ(L̂ωγ1) < ρ(L̃ωγ1), if ρ(L̃ωγ1) < 1.

Proof. By assumptions, it is easy to show that L̃ωγ1 and L̂ωγ1 are irreducible and
non-negative. It follows from Lemma 2.1 that there is a positive vector x such that

L̃ωγ1x = ξx, (4.3)

where ξ = ρ(L̃ωγ1) and ξ ̸= 1. Moreover, note that K1S1 = 0, so it hold that

ωP̃1Hx =

 Ip 0

γL∗
1 Iq

 (In − L̃ωγ1)x = (1− ξ)

 Ip 0

γL∗
1 Iq

x (4.4)
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and −ωIp + ωB̂1 −ωÛ1

−ωL̂1 −ωIq + ωĈ1

 =

 −Ip 0

−K1 −Iq

ωP̃1H. (4.5)

From (4.3), (4.4) and (4.5), we can deduce that

L̂ωγ1x− ξx

=

 Ip 0

γL̂1 Iq

−1 (1− ω)In + (ω − γ)

 0 0

−L̂1 0

+ ω

 B̂1 −Û1

0 Ĉ1

x− ξx

=

 Ip 0

γL̂1 Iq

−1 
−ωIp + ωB̂1 −ωÛ1

−ωL̂1 −ωIq + ωĈ1

+ (1− ξ)

 Ip 0

γL̂1 Iq

x

= (1− ξ)

 Ip 0

γL̂1 Iq

−1  0 0

(γ − 1)K1 − γK1B 0

x

= (1− ξ)

 0 0

(γ − 1)K1 − γK1B 0

x.

By the assumptions, we have 0 0

(γ − 1)K1 − γK1B 0

x ≤ 0 and

 0 0

(γ − 1)K1 − γK1B 0

x ̸= 0.

If ξ < 1, then L̂ωγ1x − ξx ≤ 0 and L̂ωγ1x − ξx ̸= 0, Lemma 2.2 gives ρ(L̂ωγ1) <

ρ(L̃ωγ1) < 1. □

Comparing ρ(L̂ωγ2) with ρ(L̃ωγ2), we have the following theorem.

Theorem 4.4. Let L̃ωγ2 and L̂ωγ2 be the iteration matrices of the preconditioned
GAOR methods (3.8) and (3.13), respectively. Assume that the matrix H in Equa-
tion (1.1) is irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 < ω ≤ 1, 0 ≤ γ < 1,
bi,i+1 > 0 for some i ∈ {1, · · · , p − 1}, and 0 ≤ b11, bpp < 1 and bii = 1 for
i ∈ {2, · · · , p − 1}, and cj,j+1 > 0 for some j ∈ {1, · · · , q − 1}, and lii < 0 for
i ∈ {1, 2, · · · , p}, then

ρ(L̂ωγ2) < ρ(L̃ωγ2), if ρ(L̃ωγ2) < 1.

Proof. We can see that L̃ωγ2 and L̂ωγ2 are irreducible and non-negative matrices
under the assumptions. Let positive vector x be the eigenvector of L̃ωγ2 correspond-
ing to the eigenvalue ν = ρ(L̃ωγ1), then we have

L̃ωγ2x = νx.



New preconditioned GAOR methods 667

Moreover,it hold that

ωP̃2Hx =

 Ip 0

γL∗
2 Iq

 (In − L̃ωγ2)x = (1− ν)

 Ip 0

γL∗
2 Iq

x

and−ωIp + ωB̂2 −ωÛ2

−ωL̂2 −ωIq + ωĈ2

 =

 −Ip 0

−K2 −Iq

ωP̃2H + ω

 0 0

K2S2(Ip −B) K2S2U

 .

Note that

 0 0

K2S2(Ip −B) K2S2U

 ≤ 0 under the assumptions, so similar to

the proof of Theorem 4.3, we can deduce that

L̂ωγ2x− νx

=

 Ip 0

γL̂2 Iq

−1 
−ωIp + ωB̂2 −ωÛ2

−ωL̂2 −ωIq + ωĈ2

+ (1− ν)

 Ip 0

γL̂2 Iq

x

≤ (1− ν)

 0 0

(γ − 1)K2 − γK2B 0

x

≤ 0.

If ν < 1, then L̂ωγ2x − νx ≤ 0 and L̂ωγ2x − νx ̸= 0, Lemma 2.2 gives ρ(L̂ωγ2) <

ρ(L̃ωγ2) < 1. □
Finally, we will show that the proposed preconditioner P̂1 is better than the

preconditioner P 1 considered in [6], and the proposed preconditioner P̂2 is better
than the preconditioner P 2 considered in [17]. Comparing the spectral radius of
the matrix L̂ωγ1 with that of the matrix Lωγ1, we have the following comparison
theorem.

Theorem 4.5. Let Lωγ1 and L̂ωγ1 be the iteration matrices of the GAOR meth-
ods (3.3) and (3.6), respectively. Assume that the matrix H in Equation (1.1)
is irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 < ω ≤ 1, 0 ≤ γ < 1,
bi+1,i > 0 for some i ∈ {1, 2, · · · , p − 1}, 0 < βi+1 < 1

1−bii
whenever 0 ≤ bii < 1,

or βi > 0 whenever bii ≥ 1 for i ∈ {1, 2, · · · , p − 1}; and cj+1,j > 0 for some
j ∈ {1, 2, · · · , q − 1}, 0 < τj+1 < 1

1−cjj
whenever 0 ≤ cjj < 1, or τj > 0 when-

ever cjj ≥ 1 for j ∈ {1, 2, · · · , q − 1}; and lq1 < 0, θ > 0 whenever b11 ≥ 1, or
0 < θ < 1− b11 whenever 0 ≤ b11 < 1 for j ∈ {1, 2, · · · , q − 1}, then

ρ(L̂ωγ1) < ρ(Lωγ1), if ρ(Lωγ1) < 1.

Proof. By assumptions, it is easy to show that Lωγ1 and L̂ωγ1 are irreducible and
non-negative. From Lemma 2.1, there is a positive vector x such that

Lωγ1x = µx, (4.6)
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where µ = ρ(Lωγ1) and µ ̸= 1. Moreover, it holds that

ωP 1Hx =

 Ip 0

γL1 Iq

 (In − Lωγ1)x = (1− µ)

 Ip 0

γL1 Iq

x. (4.7)

From (4.6) and (4.7), we can deduce that

L̂ωγ1x− µx

= (L̂ωγ1 − Lωγ1)x

=

 ω(B̂1 −B∗
1) −ω(Û1 − U∗

1 )

ω(γ − 1)(L̂1 − L1)− ωγ(L̂1B̂1 − L1B
∗
1) ω(Ĉ1 − C1) + ωγ(L̂1Û1 − L1U

∗
1 )

x

=

 0 0

ωγV1L(Ip−B)−ωV1L+ωγV1LS1(Ip−B)−ωV1(Iq−C)+ωγV1LU+ωγV1LS1U

x
=

 0 0

γV1L(Ip + S1) −V1

ω(IP −B) ωU

ωL ω(Iq − C)

x

=

 0 0

γV1L(Ip + S1) −V1

P 1
−1

ωP 1Hx

= (1− µ)

 0 0

γV1L(Ip + S1) −V1

 (IP + S1)
−1 0

−K1(IP + S1)
−1 Iq

 Ip 0

γL1 Iq

x

= (µ− 1)

 0 0

γV1K1(Ip −B)− V1K1(IP + S1)
−1

V1

x.

By the assumptions, 0 < ω ≤ 1, 0 ≤ γ < 1, K1, V1 and S1 are nonnegative
and nonzero matrices. Moreover, note that V1K1 = 0, thus γV1K1(Ip − B) −
V1K1(IP + S1)

−1
= 0, we have0 0

0 V1

x ≥ 0 and

0 0

0 V1

x ̸= 0.

If µ < 1, then L̂ωγ1x − µx ≤ 0 and L̂ωγ1x − µx ̸= 0, hence, Lemma 2.2 gives
ρ(L̂ωγ1) < ρ(Lωγ1) < 1. □

Comparing ρ(L̂ωγ2) with ρ(Lωγ2), we can deduce the following comparison re-
sult.

Theorem 4.6. Let Lωγ2 and L̂ωγ2 be the iteration matrices of the GAOR methods
(3.10) and (3.13), respectively. Assume that the matrix H in Equation (1.1) is
irreducible with L ≤ 0, U ≤ 0, B ≥ 0, C ≥ 0, 0 < ω ≤ 1, 0 ≤ γ < 1, bi,i+1 > 0
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for some i ∈ {1, · · · , p − 1}, bii ≥ 1 for i = 2, · · · , p, and cj,j+1 > 0 for some
j ∈ {1, · · · , q − 1}, and lii < 0 for i ∈ {1, 2, · · · , p}, then

ρ(L̂ωγ2) < ρ(Lωγ2), if ρ(Lωγ2) < 1.

Proof. Let

P̄2 =

 Ip + S2 0

K2 Iq


and

L̄ωγ2 =

 (1− ω)Ip + ωB∗
2 −ωU∗

2

ω (γ − 1)L2 − ωγL2B
∗
2 (1− ω) Iq + ωC2 + ωγL2U

∗
2

 .

It is easy to show that L̄ωγ2, Lωγ2 and L̂ωγ2 are irreducible and non-negative under
the assumptions.

Firstly, let us show that the inequality ρ(L̄ωγ2) < ρ(Lωγ2) holds if ρ(Lωγ2) < 1.
It follows from Lemma 2.1 that there is a positive vector x such that

Lωγ2x = ηx, (4.8)

where η = ρ(Lωγ2) and η ̸= 1. Moreover, it holds that

ωP 2Hx =

 Ip 0

γL2 Iq

 (In − Lωγ2)x = (1− η)

 Ip 0

γL2 Iq

x. (4.9)

From (4.8) and (4.9), we get that

L̄ωγ2x− ηx

=

 Ip 0

γL2 Iq

−1 
−ωIp + ω B∗

2 −ωU∗
2

−ωL2 −ωIq + ωC2

+ (1− η)

 Ip 0

γL2 Iq

x

=

 Ip 0

γL2 Iq

−1 −ωP 2H +

S2 0

0 0

−ωIp + ωB −ωU

0 0

+ (1− η)

 Ip 0

γL2 Iq

x

=

 Ip 0

γL2 Iq

−1 S2 0

0 0

−ωIp + ωB −ωU

−ωL2 −ωIq + ωC2

x

= (1− η)

 −S2 0

γL2S2 0

x.

Under the assumptions, we know that

 −S2 0

γL2S2 0

x ≤ 0 and

 −S2 0

γL2S2 0

x ̸= 0, so

when η < 1, from Lemma 2.2, we have

ρ(L̄ωγ2) < ρ(Lωγ2). (4.10)
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Secondly, let us show that the inequality ρ(L̂ωγ2) < ρ(L̄ωγ2) holds if ρ(L̄ωγ2) < 1.
By Lemma 2.1, there is a positive vector z such that

L̄ωγ2z = ζz, (4.11)

where ζ = ρ(L̄ωγ2) and ζ ̸= 1. Moreover, it holds that

ωP̄2Hz =

 Ip 0

γL2 Iq

 (In − L̄ωγ2)z = (1− ζ)

 Ip 0

γL2 Iq

 z. (4.12)

Note that

 0 0

V2K2(Ip −B) V2K2U

 ≤ 0, from (4.11) and (4.12), we can deduce

that

L̂ωγ2z − ζz

=

 Ip 0

γL̂2 Iq

−1 
−ωIp + ωB̂2 −ωÛ2

−ωL̂2 −ωIq + ωĈ2

+ (1− ζ)

 Ip 0

γL̂2 Iq

 z

=

 Ip 0

γL̂2 Iq

−1 −ωP̄2H + ω

 0 0

−V2L −V2 (Iq − C)

+ (1− ζ)

 Ip 0

γL̂2 Iq

 z

=

 Ip 0

−γL̂2 Iq

(1−ζ)

 0 0

−γV2K2(Ip−B)−V2

+ω

 0 0

V2K2(Ip−B) V2K2U

 z

≤ (1− ζ)

 Ip 0

−γL̂2 Iq

 0 0

−γV2K2(Ip −B) −V2

 y

= (1− ζ)

 0 0

−γV2K2(Ip −B) −V2

 z.

Under the assumptions, we have 0 0

−γV2K2(Ip −B) −V2

 z ≤ 0 and

 0 0

−γV2K2(Ip −B) −V2

 z ̸= 0,

so when ζ < 1, Lemma 2.2 gives

ρ(L̂ωγ2) < ρ(L̄ωγ2). (4.13)

Finally, combining the inequalities (4.10) and (4.13), we get that ρ(L̂ωγ2) <
ρ(Lωγ2) if ρ(Lωγ2) < 1. □

The comparison results in Theorems 4.1–4.6 show the effectiveness of the pro-
posed preconditioners P̂1 and P̂2 in this paper. More precisely, Theorems 4.1–4.2
illustrate that the proposed preconditioned GAOR methods are superior to the orig-
inal GAOR method, Theorems 4.3–4.6 indicate that the proposed preconditioners
P̂1 and P̂2 are more efficient than the corresponding preconditioners in [6, 16,17].
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5. Numerical example
In this section, an example with numerical experiments is given to confirm the
theoretical results.

Example 5.1. The coefficient matrix H in Equation (1.1) is given by

H =

 Ip −B U

L Iq − C


where B = (bij) ∈ Rp×p, C = (cij) ∈ Rq×q, L = (lij) ∈ Rq×p, and U = (uij) ∈ Rp×q

with

bii =
1

10(i+ 1)
, 1 ≤ i ≤ p,

bij =
1

30
− 1

30j + i
, 1 ≤ i < j ≤ p,

bij =
1

30
− 1

30(i− j + 1) + i
, 1 ≤ j < i ≤ p,

cii =
1

10(p+ i+ 1)
, 1 ≤ i ≤ q,

cij =
1

30
− 1

30(p+ j) + p+ i
, 1 ≤ i < j ≤ q,

cij =
1

30
− 1

30(i− j + 1) + p+ i
, 1 ≤ j < i ≤ q,

lij =
1

30(p+ i− j + 1) + p+ i
− 1

30
, 1 ≤ i ≤ q, 1 ≤ j ≤ p,

uij =
1

30(p+ j) + i
− 1

30
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Table 1 displays the spectral radii of the corresponding iteration matrices with
some randomly chosen parameters ω, γ, p and q. The randomly chosen parameters
βi = τi = θ = 0.5 satisfy the conditions of Theorems 4.1–4.6, all computations were
obtained with the help of MATLAB 7.

Table 1. Spectral radii of GAOR and preconditioned GAOR iteration matrices
n 5 10 15 20 25 30

p 3 5 8 10 12 16

ω 0.6 0.85 0.9 0.95 0.5 0.6

γ 0.8 0.95 0.7 0.85 0.8 0.9

ρ(Lωγ) 0.45736791 0.30767282 0.4169924 0.51628091 0.83506446 0.91224842

ρ(L̃ωγ1) 0.4543861 0.30184813 0.41173503 0.51123732 0.83324585 0.91118683

ρ(L̃ωγ2) 0.45033466 0.29148393 0.40154745 0.5011917 0.82960536 0.90906632

ρ(Lωγ1) 0.45072737 0.30252013 0.41227847 0.51285524 0.83395616 0.91157453

ρ(Lωγ2) 0.45350997 0.30543023 0.41504625 0.51520332 0.83475041 0.91210154

ρ(L̂ωγ1) 0.44987408 0.29940948 0.40969232 0.51011698 0.83292189 0.91103589

ρ(L̂ωγ2) 0.44763716 0.28740331 0.39595058 0.4967042 0.82799786 0.90816138
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From Table 1, we can see that these numerical results are consistent with the
conclusions of Theorems 4.1–4.6. It should be remarked that in Theorem 4.3 and
4.6, the conditions of bii = 1 and bii ≥ 1 such that the corresponding comparison
results hold, however, from the numerical results, we can see that the corresponding
comparison results still hold even without these conditions.

6. Conclusions
In this paper, new preconditioned GAOR methods are proposed for solving a class
of 2 × 2 block structure linear systems. Comparison results show that the conver-
gence rates of the new preconditioned GAOR methods are better than those of the
preconditioned GAOR methods in the previous literatures whenever these methods
are convergent. A numerical example is given to confirm our theoretical results.
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