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1. Introduction and main results
The paper is to study the following fractional Kirchhoff equation(

a+ b

∫
R3

|(−∆)
s
2u|2dx

)
(−∆)su+ V (x)u = h(x)|u|p−2u+ |u|2

∗
s−2u in R3, (1.1)

where a, b > 0, s ∈ ( 34 , 1) and p ∈ (4, 2∗s) with 2∗s = 6
3−2s . The potential functions

V (x) and h(x) can be nonconstant, indefinite in sign and nonradial. Specifically, if
we denote V −(x) := max{−V (x), 0}, conditions are as follows:

(V1) V − ∈ L
2∗s

2∗s−2 (R3),
∫
R3 |V −(x)|

2∗s
2∗s−2 dx < S

2∗s
2∗s−2 , where S denotes the best

Sobolev constant:

S := inf
u∈Ds,2(R3)\{0}

∫
R3 |(−∆)

s
2u|2dx

(
∫
R3 |u|2∗sdx)

2
2∗s

;

(V2) There exist γ > 0, Cv > 0, such that

V (x) ≤ V∞ − Cve
−γ|x| for a.e. x ∈ R3, where V∞ := lim

|x|→+∞
V (x) > 0;

(h) h(x) ∈ C(R3), there exist θ > 0, Ch > 0, such that

h(x) ≥ h∞ − Che
−θ|x| for a.e. x ∈ R3, where h∞ := lim

|x|→+∞
h(x) > 0.
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The fractional Laplacian (−∆)s is a nonlocal operator which is defined by

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = CN,s lim

ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy,

where u ∈ S(RN ), which stands for the Schwartz space of rapidly decaying C∞

functions. P.V. denotes the Cauchy principle value and CN,s denotes a normal-
ization constant. This operator arises in the description of various phenomena in
applied sciences, such as phase transitions, materials science, conservation laws,
minimal surfaces, water waves, optimization, plasma physics and so on, see [5] and
references therein for more detailed introduction.

When s = 1, problem 1.1 is related to the classical Kirchhoff problem:

−
(
a+ b

∫
R3

|∇u|2dx
)
∆u+ V (x)u = f(x, u) in R3. (1.2)

For the existence of sign-changing solutions to Kirchhoff problem like (1.2), we
refer to [1, 17, 20] and references therein. For the critical situation, Xu and Chen
[21] proved the existence of positive and sign-changing solutions with variational
method.

When a = 1 and b = 0, problem (1.1) is related to the usual fractional Schrödinger
problem:

(−∆)su+ V (x)u = f(x, u) in R3. (1.3)

As we know, the path integral over Lévy-like quantum mechanics paths allows one
to develop a generalization of quantum mechanics; namely, if the path integral over
Brownian trajectories leads to the classical Schrödinger equation, then the path
integral over Lévy trajectories leads to the fractional Schrödinger equation. The
fractional Schrödinger equation is a fundamental equation in the study of particles
on stochastic fields modeled by Lévy processes, which occur widely in physics,
chemistry and biology. Therefore, the fractional Schrödinger problem like (1.3) has
been extensively investigated. Concerning the existence of sign-changing solutions
for it, we refer to [11, 13, 18]. Li etc [13] showed that problem (1.3) with f(x, u) =
f(u) has a positive ground state solution and a sign-changing solution. When
f(x, u) = |u|p−1u where p ∈ (1, 2∗s − 1), Wang and Zhou [18] obtained a radial sign-
changing solution. For the critical situation, [11] proved the existence of infinitely
many non-radial sign-changing solutions.

The usual fractional Kirchhoff problem is as follows:(
a+ b

∫
R3

|(−∆)
s
2u|2dx

)
(−∆)su+ V (x)u = f(x, u) in R3. (1.4)

Recently, Fiscella and Valdinoci [7] first proposed a stationary Kirchhoff model in-
volving the fractional Laplacian. Then, many papers have been devoted to studying
the existence of solutions for fractional Kirchhoff like equation (1.4), see [6,9,15,16,
22] and the references therein. We must point out that there are a few results on
the existence of sign-changing solutions, see [2, 4, 10, 12]. Cheng and Gao [2] used
the constraint variational method and quantitative deformation lemma to obtain
a least energy nodal solution. Chen etc [4] studied the existence and asymptotic
behavior of sign-changing solutions in low dimensions. Luo etc [12] proved a ground
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state sign-changing solution in bounded domains. The recent one, Isernia [10] used
a minimization argument and a quantitative deformation lemma to establish the
existence of least energy sign-changing solutions.

To the authors’ knowledge, there is no result on the existence of least energy
sign-changing solutions for problem (1.1). One of the main difficulties is the presence
of nonlocal term (a+ b

∫
R3 |(−∆)

s
2u|2dx)(−△)su, the other is the critical term that

makes the problem complicated due to the lack of compactness.
In order to prove the existence of positive solutions: Firstly, through the Eke-

land Variational Principle, we get a Palais-Smale sequence on the Nehari man-
ifold. Later to overcome the problem of the lack of compactness, we use some
comparison arguments about the minimax level of energy functional and that of
the limit problem, here the conditions (V2), (h) play the important role. On the
other hand, the existence of sign-changing solutions is usually studied on the Nodal
manifold. People used to use the method of a finite dimensional space to ap-
proximate infinite dimensional space or the quantitative deformation lemma to
prove it. However in our paper, we try to seek a minimizer of the energy func-
tional over a manifold N ∗, which is a variant of Nodal Nehari manifold. Setting
∥u±∥2 =

∫
R3

(
a|(−∆)

s
2u±|2 + V (x)(u±)2

)
dx, the manifold N ∗ is as follows:

N ∗ =
{
u ∈ X\{0} : f

(
u+

)
= f

(
u−

)
= 1

}
,

where

f(u+) =

∫
R3 h(x)|u+|pdx+

∫
R3 |u+|2

∗
sdx

∥u+∥2 + b
∫
R3 |(−△)

s
2u|2dx

∫
R3 |(−△)

s
2u+|2dx

, with u+ := max{u, 0},

f(u−) =

∫
R3 h(x)|u−|pdx+

∫
R3 |u−|2

∗
sdx

∥u−∥2 + b
∫
R3 |(−△)

s
2u|2dx

∫
R3 |(−△)

s
2u−|2dx

, with u− := min{u, 0}.

Then we show the minimum of the energy functional on the manifold N ∗ is the
sign-changing solution of problem (1.1).

From the above arguments, to overcome the lack of compactness, we are going
to consider the limit problem of (1.1), namely(

a+ b

∫
R3

|(−∆)
s
2u|2dx

)
(−∆)su+ V∞u = h∞|u|p−2u+ |u|2

∗
s−2u. (1.5)

Argued as in [9], we can easily prove the limit problem (1.5) has a positive ground
state solution w. Thus if one set α :=

(
a+ b

∫
R3 |(−∆)

s
2w|2dx

) 1
2s , we can state the

main results of this paper.

Theorem 1.1. Assume (V1) − (V2), (h) hold and s ∈ ( 34 , 1), p ∈ (4, 2∗s). If
γ < θ < p

√
V∞
α , the problem (1.1) possesses a positive ground state solution.

Theorem 1.2. Assume (V1) − (V2), (h) hold and s ∈ ( 34 , 1), p ∈ (4, 2∗s). If
γ < min{θ,

√
V∞
α }, θ < p

√
V∞
α , the problem (1.1) possesses a least energy sign-

changing solution.

Remark 1.1. The conditions on the exponent γ and θ are of technical nature,
which will appear when trying to localize the minimax level (of the energy func-
tional) in the correct compactness range. Moreover, for sign-changing solution, it
needs a stronger restrictions on the exponent γ.
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Notations:
• Lp(R3), p ∈ [1,+∞) is the Lebesgue space with the norm ∥u∥p=(

∫
R3 |u|pdx)

1
p .

• Ds,2(R3) is the completion of C∞
0 (R3) endowed with the norm

∥u∥2Ds,2 =
∫
R3 |(−∆)

s
2u|2dx.

• Hs(R3) is the usual fractional Sobolev space endowed with the nature norm

∥u∥2Hs(R3) =

∫
R3

(
|(−∆)

s
2u|2 + |u|2

)
dx.

• In this paper, because of the presence of potential V , we denote the fractional
Sobolev space for problem (1.1) as follows

X = {u ∈ Hs(R3) :

∫
R3

(
a|(−∆)

s
2u|2 + V (x)u2

)
dx <∞},

defined the norm in X by

∥u∥2 =

∫
R3

(
a|(−∆)

s
2u|2 + V (x)u2

)
dx.

By [13], we know X is continuously embedded into Lp(R3) for p ∈ [2, 2∗s].
• C, Ci denote various positive constants, which may vary from line to line.

2. Positive solution
The energy functional associated with problem (1.1) is defined by

I(u) =
1

2
∥u∥2 + b

4

(∫
R3

|(−∆)
s
2u|2dx

)2

− 1

p

∫
R3

h(x)|u|pdx− 1

2∗s

∫
R3

|u|2
∗
sdx,

obviously, I ∈ C1(X,R) and the critical points of I are the weak solutions of problem
(1.1).

Thought this paper, we denote

∥u∥2∞ :=

∫
R3

(
a|(−∆)

s
2u|2 + V∞u

2
)
dx,

the energy functional associated with limit problem (1.5) is given by

I∞(u) =
1

2
∥u∥2∞ +

b

4

(∫
R3

|(−∆)
s
2u|2dx

)2

− 1

p

∫
R3

h∞|u|pdx− 1

2∗s

∫
R3

|u|2
∗
sdx.

The functional I(u) and I∞(u) are respectively restricted on the following man-
ifold N ,N∞ :

N = {u ∈ X\{0} : ⟨I ′(u), u⟩ = 0}, m = inf
u∈N

I(u).

N∞ = {u ∈ X\{0} : ⟨I ′∞(u), u⟩ = 0}, m∞ = inf
u∈N∞

I(u).

Lemma 2.1. The limit problem (1.5) has a positive solution w ∈ X such that
I∞(w) = m∞. Moreover, if we set α :=

(
a+ b

∫
R3 |(−∆)

s
2w|2dx

) 1
2s , then for any

δ ∈ (0,
√
V∞), there exists C = C(δ) > 0 such that

w(x) ≤ Ce−
δ
α |x|, ∀ x ∈ R3.
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Proof. By (h), the existence of w is similar to section 2 in [9]. It’s easy to see
α2s = a + b

∫
R3 |(−∆)

s
2w|2dx. Because the integral range of b

∫
R3 |(−∆)

s
2w|2dx is

R3, we know b
∫
R3 |(−∆)

s
2w|2dx is a constant no matter w is w(x) or w(αx). For

any x ∈ R3, let v(x) := w(αx), there holds

(−∆)sv(x) = α2s(−∆)sw(αx)

= h∞|w(αx)|p−2w(αx) + |w(αx)|2
∗
s−2w(αx)− V∞w(αx).

Thus (−∆)sv + V∞v = h∞|v|p−2v + |v|2∗s−2v. By [8], we can get v(x) ∈ L∞(R3)
and v(x) = w(αx) → 0 as |x| → ∞. So for any 0 < δ <

√
V∞, there exists

R := R(δ) > 0, such that for |x| ≥ R, we have V∞ − h∞|v|p−2 − |v|2∗s−2 ≥ δ2.
Then (−△)sv + δ2v ≤ 0 for |x| ≥ R. And there exists M = M(δ) > 0, such
that v(x) ≤ M for |x| = R. Let v(x) = M · e−δ(|x|−R), a direct calculation can
drive that (−△)sv + δ2v ≥ 0 for x ̸= 0. The Maximum Principle implies that
v(x) ≤M · e−δ(|x|−R) for |x| ≥ R, thus w(x) ≤ Ce−

δ
α |x|.

Lemma 2.2. N is nonempty and it’s a C1 manifold. Moreover, m = inf
u∈N

I(u) > 0.

Proof. For n ∈ N, we define wn(x) := w(x − xn), where w is given by Lemma
2.1 and xn := (0, 0, n). Since w is a positive solution, we have

∫
R3 |wn|2

∗
sdx > 0. So

I(twn) > 0 for t > 0 small and I(twn) < 0 for t large. I(twn) achieves its maximum
at some tn > 0, thus ⟨I ′(tnwn), (tnwn)⟩ = 0, which implies tnwn ∈ N ̸= ∅. For any
u ∈ N ,

⟨I ′(u), u⟩ = ∥u∥2 + b

(∫
R3

|(−∆)
s
2u|2dx

)2

−
∫
R3

h(x)|u|pdx−
∫
R3

|u|2
∗
sdx = 0.

By (h) and Sobolev embedding theorems, it follows that

∥u∥2 ≤
∫
R3

h(x)|u|pdx+

∫
R3

|u|2
∗
sdx ≤ C∥u∥p + S− 2∗s

2 ∥u∥2
∗
s ,

since p, 2∗s > 2, there exists ϱ > 0 such that

∥u∥2 ≥ ϱ > 0, ∀ u ∈ N . (2.1)

From (h), for any ε > 0, there exists C(ε) > 0, such that for any u ∈ N , we have

∥u∥2 ≤
∫
R3

h(x)|u|pdx+

∫
R3

|u|2
∗
sdx ≤ ε

∫
R3

|u|2dx+ C(ε)

∫
R3

|u|2
∗
sdx, (2.2)

set ε < 1
2 , by Sobolev embedding theorem, one can conclude that there exists

C(S) > 0, such that

(

∫
R3

|u|2
∗
sdx)

2
2∗s ≤ C(S)

∫
R3

|u|2
∗
sdx, (2.3)

hence
∫
R3 |u|2

∗
sdx > C(S)

2∗s
2−2∗s > 0, ∀ u ∈ N .

If we define J : X → R where J(u) := ⟨I ′(u), u⟩, thus

⟨J ′(u), u⟩ =(2− p)∥u∥2 + (4− p)b

(∫
R3

|(−∆)
s
2u|2dx

)2
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+ (p− 2∗s)

∫
R3

|u|2
∗
sdx < 0, (2.4)

it follows from the Implicit Function Theorem that N is a C1 manifold. Finally, if
u ∈ N , from (2.1) we have

I(u) = I(u)− 1

p
⟨I ′(u), u⟩ ≥ (

1

2
− 1

p
)∥u∥2 > 0, (2.5)

so m = inf
u∈N

I(u) > 0. The lemma is proved.

Lemma 2.3. m < m∞.

Proof. Let wn and tn be defined as in the proof of Lemma 2.2. Since tn > 0 and
tnwn ∈ N , there holds

t−2
n ∥wn∥2 + b

(∫
R3

|(−∆)
s
2wn|2dx

)2

= tp−4
n

∫
R3

h(x)|wn|pdx+ t
2∗s−4
n

∫
R3

|wn|2
∗
sdx, (2.6)

which implies that {tn} is bounded. Otherwise if {tn} → ∞, the left-hand side
of (2.6) is bounded, the right-hand side is unbounded, which is a contradiction.
Thus there exists t0 ≥ 0, such that tn → t0, as n → ∞. By (2.1), we have
0 < C ≤ ∥tnwn∥2 = t2n∥wn∥2, it’s easy to see t0 > 0.

Now we notice that

m ≤ I(tnwn) = I∞(tnwn) +
t2n
2

∫
R3

(V (x)− V∞)w2
ndx+

tpn
p

∫
R3

(h∞ − h(x))wp
ndx

:= I∞(tnwn) +
t2n
2
An +

tpn
p
Dn. (2.7)

From Lemma 2.1, one has w(x) ≤ Ce−
δ
α |x|. Using |x+ xn| ≤ |x|+ n, we infer from

(V2) that

An ≤
∫
R3

(−Cve
−γ|x|)w2

ndx = −Cv

∫
R3

(e−γ|x+xn|)w2dx

≤ −Cve
−γn

∫
R3

(e−γ|x|)w2dx ≤ −Ce−γn. (2.8)

Since θ < p
√
V∞
α , we pick δ ∈ (αθp ,

√
V∞) satisfying that θ < pδ

α , then together with
(h), n− |x| ≤ |x+ xn| we have

Dn ≤
∫
R3

(Che
−θ|x|)wp

ndx = Ch

∫
R3

(e−θ|x+xn|)wpdx

≤ Che
−θn

∫
R3

e(θ−
pδ
α )|x|dx ≤ Ce−θn. (2.9)

On the other hand let g(tn) = I∞(tnw), where {tn} is bounded. Note that g(tn)
has a unique critical point corresponding to its maximum. Since g′(1) = 0, this
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critical point must be achieved at tn = 1, thus max
tn≥0

g(tn) = max
tn≥0

I∞(tnw) = I∞(w).

From Lemma 2.1, we have

I∞(tnwn) = I∞(tnw) ≤ I∞(w) = m∞. (2.10)

As a consequence, by (2.7)-(2.10),

m ≤ m∞ − Ct2n
2
e−γn +

Ctpn
p
e−θn

= m∞ + e−γn

(
−Ct

2
n

2
+
Ctpn
p
e(γ−θ)n

)
.

Recalling that tn → t0 and γ < θ, one can easily check that m < m∞+ on(1). Thus
there exists n0 > 0, when n ≥ n0, we have m < m∞.

Proof of Theorem 1.1. The Ekeland Variational Principle provides {un} ⊂
N and {λn} ⊂ R such that I(un) → m, I ′(un) + λnJ

′(un) → 0 with J(un) =
⟨I ′(un), un⟩. Using (2.4), a standard argument shows that I ′(un) → 0, thus {un} is
a Palais-Smale sequence of I. Moreover it follows from (2.5) that {un} is bounded.
Hence, along a subsequence still denoted by {un}, un ⇀ u0 in X. One can easily
deduce that I ′(u0) = 0.

We claim that u0 ̸= 0. Suppose for the contradiction that u0 ≡ 0, thus un ⇀ 0
in X and un → 0 in Lq

loc(RN ) for any q ∈ [2, 2∗s), then ∥un∥2∞ = ∥un∥2 + on(1).
Since ⟨I ′(un), un⟩ = 0, by (2.9) one has

∥un∥2∞ + b(

∫
R3

|(−∆)
s
2un|2dx)2=

∫
R3

h∞|un|pdx+

∫
R3

|un|2
∗
sdx+ on(1). (2.11)

Similar to Lemma 2.2, there exists tn > 0 such that tnun ∈ N∞, namely

t2n∥un∥2∞+bt4n(

∫
R3

|(−∆)
s
2un|2dx)2 = tpn

∫
R3

h∞|un|pdx+ t
2∗s
n

∫
R3

|un|2
∗
sdx.(2.12)

From (2.11)-(2.12), we have

(t2n − tpn)∥un∥2∞ + b(t4n − tpn)(

∫
R3

|(−∆)
s
2un|2dx)2 + (tpn − t

2∗s
n )

∫
R3

|un|2
∗
sdx = on(1),

one can easily check that tn → 1 as n→ +∞, it follows that

I∞(tnun) = I∞(tnun)−
1

p
⟨I ′∞(tnun), tnun⟩

= (
1

2
− 1

p
)t2n∥un∥2∞ + (

1

4
− 1

p
)btpn

(∫
R3

|(−∆)
s
2un|2dx+

)2

+(
1

p
− 1

2∗s
)t

2∗s
n

∫
R3

|un|2
∗
sdx

= (
1

2
− 1

p
)∥un∥2 + (

1

4
− 1

p
)b

(∫
R3

|(−∆)
s
2un|2dx

)2

+(
1

p
− 1

2∗s
)

∫
R3

|un|2
∗
sdx+ on(1)
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= I(un)−
1

p
⟨I ′(un), un⟩+ on(1)

= I(un) + on(1).

On the other hand, by tnun ∈ N∞, we have m∞ ≤ I∞(tnun), so

m∞ ≤ I∞(tnun) = I(un) + on(1) = m+ on(1),

which contradicts Lemma 2.3, thus u0 ̸= 0. What’s more

m ≤ I(u0)−
1

p
⟨I ′(u0), u0⟩

= (
1

2
− 1

p
)∥u0∥2 + (

1

4
− 1

p
)b

(∫
R3

|(−∆)
s
2u0|2dx

)2

+ (
1

p
− 1

2∗s
)

∫
R3

|u0|2
∗
sdx

≤ lim inf
n→∞

(
I(un)−

1

p
⟨I ′(un), un⟩

)
= m,

obviously I(u0) = m, which shows u0 is a ground state solution.
Considering ũ = |u0|, we can easily conclude that I(ũ) = I(u0) = m and ũ ∈ N .

Hence I ′(ũ) = λJ ′(ũ) for some λ ∈ R, where J(ũ) = ⟨I ′(ũ), ũ⟩. By (2.4), we have
⟨J ′(ũ), ũ⟩ < 0 and ⟨I ′(ũ), ũ⟩ = 0, it follows that λ = 0. Thus ũ ≥ 0 is a nonnegative
ground state solution of problem (1.1). By the strong maximum principle we see
that ũ is a positive solution of problem (1.1). □
Remark 2.1. If ũ is the positive solution given by Theorem 1.1, as in the proof
of Lemma 2.1, we can verify that, for any µ > 0, there exists C = C(µ) > 0, such
that ũ(x) ≤ Ce−µ|x|, ∀ x ∈ R3.

3. Sign-changing solution
In this section, we consider the existence of sign-changing solutions for problem
(1.1). Define the functional f(u+), f(u−) on X by

f(u+) =

∫
R3 h(x)|u+|pdx+

∫
R3 |u+|2

∗
sdx

∥u+∥2 + b
∫
R3 |(−△)

s
2u|2dx

∫
R3 |(−△)

s
2u+|2dx

, where u+ := max{u, 0},

f(u−) =

∫
R3 h(x)|u−|pdx+

∫
R3 |u−|2

∗
sdx

∥u−∥2 + b
∫
R3 |(−△)

s
2u|2dx

∫
R3 |(−△)

s
2u−|2dx

, where u− := min{u, 0}.

Then we define

N ∗ =
{
u ∈ X\{0} : f

(
u+

)
= f

(
u−

)
= 1

}
,

U =

{
u ∈ X\{0} :

∣∣f (u±)− 1
∣∣ < 1

2

}
.

Lemma 3.1 (Miranda Theorem [14]). Let G = {x ∈ Rn : |xi| < L, for 1 ≤ i ≤
n} and suppose that the mapping F = (f1, f2, ..., fn) : G→ Rn is continuous on the
closure G of G such that F (x) ̸= θ = (0, 0, ..., 0) for x on the boundary ∂G of G,
and

(i) fi (x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) ≥ 0 for 1 ≤ i ≤ n ;
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(ii) fi (x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) ≤ 0 for 1 ≤ i ≤ n.

Then F (x) = θ has a solution in G.

Lemma 3.2. For u ∈ U , there exists C > 0, such that
∫
R3 |u±|

2∗s dx ≥ C > 0.

Proof. For u ∈ U , we have

1

2
∥u±∥2 ≤ 1

2
∥u±∥2 + 1

2
b

(∫
R3

|(−∆)
s
2u±|2dx

)2

<

∫
R3

h(x)|u±|pdx+

∫
R3

|u±|2
∗
sdx.

Then similar to (2.2)-(2.3), we can derive that there exists C > 0, such that∫
R3 |u±|

2∗s dx ≥ C > 0, ∀ u ∈ U .

Lemma 3.3. Let u ∈ N ∗ and define hu(t, s) := I(tu+ + su−), where t, s ≥ 0, then
hu attains its maximum at the point (1, 1) ∈ R2.

Proof. For u ∈ N ∗, we have

hu(t, s) =
1

2
∥tu+ + su−∥2 + b

4

(∫
R3

|(−△)
s
2 (tu+ + su−)|2dx

)2

−1

p

∫
R3
h(x)|tu+ + su−|pdx− 1

2∗s

∫
R3

|tu+ + su−|2
∗
sdx,

because lim
(t,s)→+∞

hu(t, s) = −∞, it follows that the maximum is attained at some

point (t0, s0) ∈ [0,+∞)2.
Claim 1. s0, t0 > 0.

By contradiction, we assume that s0 = 0. However, since hu(0, 0) = 0 and
hu(t, s) reaches its maximum at the point (t0, s0), we have t0 > 0. Furthermore,
one can conclude that I(su−) > 0 for s > 0 small, thus

hu (t0, 0) = I
(
t0u

+
)

< I
(
t0u

+
)
+ I

(
su−

)
+ b t20s

2

∫
R3

|(−△)
s
2u+|2dx

∫
R3

|(−△)
s
2u−|2dx

= hu (t0, s) ,

but hu(t, s) reaches its maximum at point (t0, s0), it follows that s0 > 0. A similar
argument shows that t0 > 0.
Claim 2. s0, t0 ∈ (0, 1].

Since the case s0 ≤ 1 is analogous to t0 ≤ 1, without loss of generality, we just
need to prove that t0 ≤ 1. Recalling that I(tu++ su−) reaches its maximum at the
point (t0, s0), thus we have ⟨I ′(t0u++ s0u

−), t0u
+⟩ = 0. Suppose that s0 ≤ t0, then

t20∥u+∥2 + bt40

∫
R3

|(−△)
s
2u|2dx

∫
R3

|(−△)
s
2u+|2dx

≥t20∥u+∥2 + bt40

(∫
R3

|(−△)
s
2u+|2dx

)2

+ bt20s
2
0

∫
R3

|(−△)
s
2u−|2dx

∫
R3

|(−△)
s
2u+|2dx
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=tp0

∫
R3
h(x)|u+|pdx+ t

2∗s
0

∫
R3

|u+|2
∗
sdx, (3.1)

which implies that

t−2
0 ∥u+∥2 + b

∫
R3

|(−△)
s
2u|2dx

∫
R3

|(−△)
s
2u+|2dx

≥ tp−4
0

∫
R3
h(x)|u+|pdx+ t

2∗s−4
0

∫
R3

|u+|2
∗
sdx. (3.2)

Furthermore, for u ∈ N ∗, we have

∥u+∥2 + b

∫
R3

|(−△)
s
2u|2dx

∫
R3

|(−△)
s
2u+|2dx =

∫
R3
h(x)|u+|pdx+

∫
R3

|u+|2
∗
sdx.

(3.3)

By (3.2)-(3.3), we get

(t−2
0 − 1)∥u+∥2 ≥ (tp−4

0 − 1)

∫
R3
h(x)|u+|pdx+ (t

2∗s−4
0 − 1)

∫
R3

|u+|2
∗
sdx, (3.4)

thus t0 ≤ 1. Otherwise if t0 > 1, we must have ∥u+∥2 ≥
∫
R3 h(x)|u

+|pdx +∫
R3 |u

+|2∗sdx, which contradicts with (3.3).
For the case t0 ≤ s0, it is sufficient to use ⟨I ′(t0u+ + s0u

−), s0u
−⟩ = 0, and

similar to the above discussion, we have s0 ≤ 1.
Claim 3. hu does not attain its maximum in (0, 1]2 \ {(1, 1)}.

If s0 < 1 or t0 < 1, we have

hu(t0, s0) = I(t0u
+ + s0u

−)− 1

p

〈
I ′(t0u

+ + s0u
−), (t0u

+ + s0u
−)

〉
= (

1

2
− 1

p
)
(
t20∥u+∥2 + s20∥u−∥2

)
+(

1

4
− 1

p
)b

(∫
R3

∣∣(−△)
s
2 (t0u

+ + s0u
−)

∣∣2 dx)2

+(
1

p
− 1

2∗s
)

∫
R3

∣∣t0u+ + s0u
−∣∣2∗s dx

< hu(1, 1),

which is absurd.
Following the idea of [3], we give some definitions. Denote P the cone of non-

negative functions in X. Let Q = [0, 1]× [0, 1]. Define

Σ := {σ ∈ C(Q,X); σ(t, 0) = 0, σ(0, s) ∈ P, σ(1, s) ∈ −P,
I(σ(t, 1)) ≤ 0, f(σ(t, 1)) ≥ 2,∀ t, s ∈ [0, 1]}.

Choose u ∈ X such that u± ̸= 0. Let σ(t, s) = ks(1 − t)u+ + kstu−, where
k > 0, t, s ∈ [0, 1]. It is easy to check that σ ∈ Σ for k > 0 large enough.

Lemma 3.4. inf
u∈N∗

I(u) = inf
σ∈Σ

sup
u∈σ(Q)

I(u).



782 Q. Peng, Z. Ou & Y. Lv

Proof. From the definition of Σ, for any σ ∈ Σ, t ∈ [0, 1], we have

f
(
σ+(t, 0)

)
+ f

(
σ−(t, 0)

)
− 2 = −2 < 0,

f
(
σ+(t, 1)

)
+ f

(
σ−(t, 1)

)
− 2 = f (σ(t, 1))− 2 ≥ 0.

On the other hand, for any σ ∈ Σ, s ∈ [0, 1], we have

f
(
σ+(0, s)

)
− f

(
σ−(0, s)

)
= f

(
σ+(0, s)

)
≥ 0,

f
(
σ+(1, s)

)
− f

(
σ−(1, s)

)
= −f

(
σ−(1, s)

)
≤ 0.

Then from Miranda theorem in [14], we conclude that for any σ ∈ Σ, there exists
(t, s) ∈ Q such that

f
(
σ+(t, s)

)
− f

(
σ−(t, s)

)
= 0 = f

(
σ+(t, s)

)
+ f

(
σ−(t, s)

)
− 2,

thus f
(
σ+(t, s)

)
= f

(
σ−(t, s)

)
= 1, which is σ(t, s) ∈ N ∗. So there holds

inf
σ∈Σ

sup
u∈σ(Q)

I(u) ≥ inf
u∈N∗

I(u). (3.5)

From Lemma 3.3, we know I(tu+ + su−) attains its maximum at the point (t, s) =
(1, 1), thus for every u ∈ N ∗, we have

I(u) = I(u+ + u−) ≥ sup
α,β≥0

I
(
αu+ + βu−

)
≥ sup

u∈σ(Q)

I(u) ≥ inf
σ∈Σ

sup
u∈σ(Q)

I(u),

which implies that

inf
σ∈Σ

sup
u∈σ(Q)

I(u) ≤ inf
u∈N∗

I(u). (3.6)

From (3.5)-(3.6), Lemma 3.4 holds.

Lemma 3.5. There is a sequence {un} ⊂ U such that I (un) → c∗ = inf
u∈N∗

I(u)

and I ′(un) → 0.

Proof. Define c∗ = inf
u∈N∗

I(u), consider a minimizing sequence {un} ⊂ N ∗ and
choose σn ∈ Σ such that σn(Q) ⊂

{
αnu

+
n + βnu

−
n

}
where αn, βn ∈ [0, 1], then by

Lemma 3.4 we have

lim
n→∞

max
u∈σn(Q)

I(u) = lim
n→∞

I (un) = c∗. (3.7)

By [3], we can derive that there exists {un} ⊂ X such that

I (un) → c∗, I ′ (un) → 0 and dist (un, σn(Q)) → 0, (3.8)

we just need to prove {un} ⊂ U for n large enough. By (3.7)-(3.8), there exists a
sequence {vn}, where vn = αnu

+
n + βnu

−
n ∈ σn(Q), such that

I(vn) → c∗, ∥vn − un∥ → 0. (3.9)
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From Lemma 3.2, for any un ∈ N ∗ ⊂ U ,
∫
R3

∣∣u±n ∣∣2∗s dx ≥ C > 0, then by Sobolev
embedding theorem, one has

I(u±n ) = I(u±n )−
1

p
⟨I ′(u±n ), u±n ⟩ ≥ (

1

2
− 1

p
)∥u±n ∥2 ≥ (

1

2
− 1

p
)S2C

4
2∗s > 0.

By (3.7), without loss of generality, we may assume that I
(
u+n

)
→ c∗1 > 0, I

(
u−n

)
→

c∗2 > 0. Thanks to un ∈ N ∗, we can easily conclude that

I
(
u+n

)
≥ I

(
αnu

+
n

)
= I

(
v+n

)
, I

(
u−n

)
≥ I

(
βnu

−
n

)
= I

(
v−n

)
,

b

∫
R3

|(−∆)
s
2u+n |2dx

∫
R3

|(−∆)
s
2u−n |2dx ≥

∫
R3

|(−∆)
s
2αnu

+
n |2dx

∫
R3

|(−∆)
s
2 βnu

−
n |2dx

=

∫
R3

|(−∆)
s
2 v+n |2dx

∫
R3

|(−∆)
s
2 v−n |2dx.

Furthermore

c∗ = lim
n→∞

I (un)

= lim
n→∞

[
I
(
u+n

)
+ I

(
u−n

)
+
b

2

∫
R3

|(−∆)
s
2u+n |2dx

∫
R3

|(−∆)
s
2u−n |2dx

]
≥ lim

n→∞

[
I
(
v+n

)
+ I

(
v−n

)
+
b

2

∫
R3

|(−∆)
s
2 v+n |2dx

∫
R3

|(−∆)
s
2 v−n |2dx

]
= lim

n→∞
I (vn) = c∗,

so we have

lim
n→∞

I
(
v+n

)
= lim

n→∞
I
(
u+n

)
= c∗1, lim

n→∞
I
(
v−n

)
= lim

n→∞
I
(
u−n

)
= c∗2,

b

∫
R3

|(−∆)
s
2u+n |2dx

∫
R3

|(−∆)
s
2u−n |2dx = b

∫
R3

|(−∆)
s
2 v+n |2dx

∫
R3

|(−∆)
s
2 v−n |2dx.

By (3.9), ∥v±n − u±n ∥ → 0, so lim
n→∞

I (u+n ) = c∗1 > 0 and lim
n→∞

I (u−n ) = c∗2 > 0, which
implies u±n ̸= 0. Moreover I ′(un) → 0, we have ⟨I ′(un), u±n ⟩ = 0, thus {un} ⊂ U for
n large enough.

Lemma 3.6. Let {un} ⊂ U be a sequence such that ∥un∥ is bounded, I(un) → c∗

and I ′(un) → 0. There exists a subsequence of {un}, still denoted by {un}. We can
assume that un ⇀ u weakly in X, thus I ′(u) = 0. Set vn = un − u, we have

(i) c∗ ≥ I(u) + I∞(vn) + on(1),

(ii) ⟨I ′∞(vn), vn⟩ ≤ on(1).

Proof. For vn = un − u, there hold vn ⇀ 0 weakly in X and vn → 0 in Lp
loc(R3),

thus ∥vn∥2∞ = ∥vn∥2 + on(1), then by the Brezis-Lieb Lemma in [19], we get

∥vn∥2∞ = ∥vn∥2 + on(1) = ∥un∥2 − ∥u∥2 + on(1),∫
R3

|vn|2
∗
sdx =

∫
R3

|un|2
∗
sdx−

∫
R3

|u|2
∗
sdx+ on(1),∫

R3

h(x)|vn|pdx =

∫
R3

h(x)|un|pdx−
∫
R3

h(x)|u|pdx+ on(1). (3.10)
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Combining (h) with the third equality of (3.10), we have∫
R3

h∞|vn|pdx =

∫
R3

h(x)|un|pdx−
∫
R3

h(x)|u|pdx+ on(1). (3.11)

However, let ∥u∥2Ds,2 :=
∫
R3 |(−∆)

s
2u|2dx, there holds

∥un∥4Ds,2 =
(
∥u∥2Ds,2 + ∥vn∥2Ds,2 + on(1)

)2
≥ ∥u∥4Ds,2 + ∥vn∥4Ds,2 + on(1). (3.12)

Combining (3.10)-(3.12), it’s easy to see

c∗ ≥ I(u) + I∞(vn) + on(1).

On the other hand, from un ⇀ u, we have ⟨un, u⟩Ds,2 → ∥u∥2Ds,2 . By the Brezis-
Lieb Lemma in [19], we get ∥vn∥2Ds,2 = ∥un∥2Ds,2 − ∥u∥2Ds,2 + on(1).
Thus

∥vn∥4Ds,2 −
(
∥un∥4Ds,2 − ∥u∥4Ds,2

)
=

(
∥un∥2Ds,2 + ∥u∥2Ds,2 − 2⟨un, u⟩Ds,2

)2 − ∥un∥4Ds,2 + ∥u∥4Ds,2

= 2∥u∥4Ds,2 − 2∥un∥2Ds,2∥u∥2Ds,2 + on(1)

= 2∥u∥4Ds,2 − 2
(
∥vn∥2Ds,2 + ∥u∥2Ds,2

)
∥u∥2Ds,2 + on(1)

= −2∥vn∥2Ds,2∥u∥2Ds,2 + on(1)

≤ on(1). (3.13)

By (3.10)-(3.11) and (3.13), there holds

⟨I ′∞(vn), vn⟩ − (⟨I ′(un), un⟩ − ⟨I ′(u), u⟩) ≤ on(1),

together with ⟨I ′(un), un⟩ = 0, ⟨I ′(u), u⟩ = 0, we have ⟨I ′∞(vn), vn⟩ ≤ on(1).

Lemma 3.7. If the sequence {un} ⊂ U satisfies that ∥un∥ is bounded, I(un) →
c∗ ∈ (0,m+m∞) and I ′(un) → 0, then un → u in X.

Proof. Since ∥un∥ is bounded, there holds un ⇀ u in X and I ′(u) = 0. Set
vn = un − u, from Lemma 3.6, we have

c∗ ≥ I(u) + I∞(vn) + on(1), (3.14)
⟨I ′∞(vn), vn⟩ ≤ on(1). (3.15)

If vn → 0 strongly in X, then Lemma 3.7 holds. Now we consider vn converges
weakly (and not strongly) to 0 in X. Then either v+n converges weakly (and not
strongly) to 0 in X, or v−n converges weakly (and not strongly) to 0 in X. We will
consider three cases as follows.
Case 1. v+n converges weakly (and not strongly) to 0 in X, v−n → 0 strongly in X.

We claim that un ⇀ u ̸= 0 weakly in X. By contradiction, if u = 0, then u−n =

v−n → 0 strongly in X, from Lemma 3.2, it’s a contradiction with
∫
R3 |u−n |

2∗s dx ≥
C > 0. So un ⇀ u ̸= 0 weakly in X.

Note that v+n ⇀ 0, there holds ∥v+n ∥2∞ = ∥v+n ∥2 + on(1), then by (3.15), we have

∥∥v+n ∥∥2+b(∫
R3

|(−△)
s
2 v+n |2dx

)2

≤
∫
R3

h∞
∣∣v+n ∣∣p dx+∫

R3

∣∣v+n ∣∣2∗s dx+on(1). (3.16)
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Similar to Lemma 2.2, there exists tn ∈ (0,+∞) such that tnv+n ∈ N∞, namely

t2n∥v+n ∥2 + bt4n

(∫
R3

|(−△)
s
2 v+n |2dx

)2

= tpn

∫
R3

h∞
∣∣v+n ∣∣p dx+ t

2∗s
n

∫
R3

∣∣v+n ∣∣2∗s dx.
(3.17)

By (3.16)-(3.17), one has

(
t2n − 1

)
b

(∫
R3

|(−△)
s
2 v+n |2dx

)2

≥
(
tp−2
n − 1

) ∫
R3

h∞
∣∣v+n ∣∣p dx+

(
t
2∗s−2
n − 1

)∫
R3

∣∣v+n ∣∣2∗s dx. (3.18)

Since v+n converges weakly (and not strongly) to 0 in Lp(R3), and by (h) we can
derive that lim

n→∞

∫
R3 h∞ |v+n |

p
dx > 0. Then from (3.17), it’s easy to get

t2n∥v+n ∥2 + bt4n

(∫
R3

|(−△)
s
2 v+n |2dx

)2

≥ tn
2∗s

∫
R3

∣∣v+n ∣∣2∗s dx, (3.19)

Combining (3.16) with (h), we know for any ε > 0, there exists C(ε) > 0 such that

∥∥v+n ∥∥2 + b

(∫
R3

|(−△)
s
2 v+n |2dx

)2

≤
∫
R3

h∞
∣∣v+n ∣∣p + ∫

R3

∣∣v+n ∣∣2∗s dx+ on(1)

≤
∫
R3

h(x)
∣∣v+n ∣∣p + ∫

R3

∣∣v+n ∣∣2∗s dx+ on(1)

≤ ε

∫
R3

∣∣v+n ∣∣2 + C(ε)

∫
R3

∣∣v+n ∣∣2∗s dx+ on(1).

(3.20)

In view of (3.19)-(3.20), one can derive that {tn} is bounded. Otherwise if {tn} is un-
bounded, from (3.19), we must have ∥v+n ∥

2
+b

(∫
R3 |(−△)

s
2 v+n |2dx

)2
>

∫
R3 |v+n |

2∗s dx,
which contradicts with (3.20). So there exists t1 ≥ 0, such that tn → t1 as n→ ∞.
If t1 > 1, by (3.18) there holds

lim
n→∞

b

(∫
R3

|(−△)
s
2 v+n |2dx

)2

> lim
n→∞

∫
R3

h∞
∣∣v+n ∣∣p dx+ lim

n→∞

∫
R3

∣∣v+n ∣∣2∗s dx,
which contradicts with (3.16), so tn → t1 ≤ 1. On the other hand, let s ∈ (0,+∞),
it’s easy to see I∞(sv+n ) > 0 for s > 0 small, I∞(sv+n ) < 0 for s large. Thus I∞(sv+n )
achieves its maximum at some s > 0. Since ⟨I ′∞(tnv

+
n ), tnv

+
n ⟩ = 0, we know the

maximum must be achieved at s = tn, which implies max
s∈(0,+∞)

I∞(sv+n ) = I∞(tnv
+
n ).

Moveover

I∞(tnv
+
n ) =I∞(tnv

+
n )−

1

p

〈
I ′∞(tnv

+
n ), (tnv

+
n )

〉
=(
t2n
2

− tpn
p
)
∥∥v+n ∥∥2 + b(

t4n
4

− tpn
p
)

(∫
R3

|(−△)
s
2 v+n |2dx

)2

+ (
t
2∗s
n

2∗s
− tpn

p
)

∫
R3

∣∣v+n ∣∣2∗s dx,
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by tn ∈ (0, 1], we can easily get max
tn∈(0,1]

I∞(tnv
+
n ) = I∞(v+n ). Thus by (3.14) one has

c∗ ≥ I(u) + I∞(v+n ) + on(1)

≥ I(u) + I∞(tnv
+
n ) + on(1)

≥ m+m∞ + on(1),

which is a contradiction to c∗ < m+m∞.
Case 2. v−n converges weakly (and not strongly) to 0 in X, v+n → 0 strongly in X.

The proof is similar to Case 1.
Case 3. v+n converges weakly (and not strongly) to 0 in X, v−n converges weakly
(and not strongly) to 0 in X.

Similar to the proof of Case 1, we can derive that there exists t+n , s−n ∈ (0,+∞)
such that t+n v+n , s−n v−n ∈ N∞ and t+n → t+ ≤ 1, s−n → s− ≤ 1. Then by (3.14) and
m < m∞ in Lemma 2.3, we have

c∗ > I∞(vn) + on(1)

> I∞(v+n ) + I∞(v−n ) + on(1)

≥ I∞(t+n v
+
n ) + I∞(s−n v

−
n ) + on(1)

≥ 2m∞ + on(1)

> m+m∞ + on(1),

which is a contradiction to c∗ < m+m∞.

Proof of Theorem 1.2. From Lemma 3.5, there is a sequence {un} ⊂ U such
that I (un) → c∗ = inf

u∈N∗
I(u) and I ′(un) → 0. Then similar to (2.5), we can get

∥un∥ is bounded. From Lemma 3.2, for {un} ⊂ U , we have
∫
R3 |u±n |

2∗s dx ≥ C > 0.
Thus if un → u in X, then I ′(u) = 0,

∫
R3 |u±|

2∗s dx ≥ C > 0, which implies that u
is a sign-changing solution of (1.1). Now we prove un → u in X. From Lemma 3.7,
we only need to prove that c∗ < m+m∞.

Let ũ be the positive solution given by Theorem 1.1, and wn was defined in
Lemma 2.2. For any n ∈ N, x ∈ R3 and (t, s) ∈ [ 12 , 2]

2, we define ψn(x) := tũ(x) +
swn(x). We claim that there exists n0 ∈ N, such that for any n ≥ n0 and (t, s) ∈
[ 12 , 2]

2, I(ψn) < m+m∞.

I(tũ+ swn) = I(tũ) + I∞(swn) +An +Bn + Cn +Dn + En + Fn. (3.21)

From Lemma 2.3, we have

An =
1

2
s2

∫
R3

(V (x)− V∞)w2
ndx ≤ −C1e

−γn,

Dn =
1

p
sp

∫
R3

(h∞ − h(x))wp
ndx ≤ C2e

−θn.

From Lemma 2.1 and Remark 2.1, there hold ũ(x) ≤ Ce−µx, w(x) ≤ Ce−
δ
αx. Since

γ <
√
V∞
α , let µ ∈ (γ,

√
V∞
α ), similar to (2.8)-(2.9) we can get

En = −1

p

∫
R3

h(x) (|ψn|p − |tũ|p − |swn|p) dx ≤ −C3e
−µn,
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Fn = − 1

2∗s

∫
R3

(
|ψn|2

∗
s − |tũ|2

∗
s − |swn|2

∗
s

)
dx ≤ −C4e

−µn.

Note that ⟨I ′(ũ), wn) = 0, there holds

Bn = st

∫
R3

a|(−△)
s
2 ũ|dx

∫
R3

|(−△)
s
2wn|dx+ st

∫
R3

V (x)ũwn dx

= st(

∫
R3

h(x)|ũ|p−1wndx+

∫
R3

|ũ|2
∗
s−1wndx

−b
∫
R3

|(−△)
s
2 ũ|2dx ·

∫
R3

|(−△)
s
2 ũ|dx

∫
R3

|(−△)
s
2wn|)

≤ C5e
−µn.

For the convenience, let ∥wn∥2Ds,2 :=
∫
R3 |(−△)

s
2wn|dx, by ⟨I ′∞(wn), wn⟩ = 0, we

have

a∥wn∥2Ds,2 + b∥wn∥4Ds,2 =

∫
R3

h∞|wn|pdx+
∫
R3

|wn|2
∗
sdx−

∫
R3

V∞|wn|2dx < Ce−δn,

thus Gn := ∥wn∥2Ds,2 ≤ −a+
√

a2+4Ce−δn

2b → 0 (n→ ∞), then

Cn =
b

4
[ 4t2s2

∫
R3

|(−△)
s
2 ũ|2dx

∫
R3

|(−△)
s
2wn|2dx

+2t2s2(

∫
R3

(−△)
s
2 ũdx

∫
R3

(−△)
s
2wndx)

2

+4t3s

∫
R3

|(−△)
s
2 ũ|2dx

∫
R3

(−△)
s
2 ũdx

∫
R3

(−△)
s
2wndx

+4ts3
∫
R3

|(−△)
s
2wn|2dx

∫
R3

(−△)
s
2 ũdx

∫
R3

(−△)
s
2wndx]

≤ C6Gn + C7e
−µn.

All the above inequalities can be replaced in (3.21) to provide

I(ψn) ≤ m+m∞ − C1e
−rn + C2e

−θn

−C3e
−µn − C4e

−µn + C5e
−µn + C6Gn + C7e

−µn.

So we obtain the inequality I(ψn) ≤ m+m∞ + on(1) .
In view of the claim, to prove that c∗ < m + m∞, it is sufficient to obtain

(t0, s0) ∈ [ 12 , 2]
2 such that t0ũ(x) + s0wn(x) ∈ N ∗. With this purpose, we define

h±(t, s, n) :=
〈
I ′(tũ+ swn), (tũ+ swn)

±〉 .
Since wn ⇀ 0 weakly in X, and w is a solution of the limit problem, we can use

(V2), (h) to conclude that

h−(0, 2, n) = 22∥wn∥2+24b

(∫
R3

|(−△)
s
2wn|2

)2

−2p
∫
R3

h(x)wp
ndx−22

∗
s

∫
R3

w
2∗s
n dx

= (22 − 2p)∥w∥2∞ + b(24 − 2p)

(∫
R3

|(−△)
s
2w|2

)2
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+(2p − 22
∗
s )

∫
R3

w2∗sdx+ on(1),

so h−(0, 2, n) < 0 for n large. The same argument provides h−(0, 12 , n) > 0. More-
over by ⟨I ′(ũ), ũ⟩ = 0, we can conclude that

h+(
1

2
, 0, n) > 0, h+(2, 0, n) < 0.

From Lemma 3.1(Miranda Theorem [14]), there exists (t0, s0) ∈ [ 12 , 2]
2 such that

h±(t0, s0, n) = 0 for n large, which is equivalent to t0ũ(x) + s0wn(x) ∈ N ∗. □
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