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CRANK-NICOLSON DIFFERENCE SCHEME
FOR THE DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATION WITH THE RIESZ
SPACE FRACTIONAL DERIVATIVE∗

Changhong Guo1 and Shaomei Fang2,†

Abstract This paper studied the Crank-Nicolson(CN) difference scheme for
the derivative nonlinear Schrödinger equation with the Riesz space fractional
derivative, which generalized the classical Schrödinger equation that was used
as a model in quantum mechanics. The existence of this difference solution is
proved by the Brouwer fixed point theorem. Since the difference solution of the
equation satisfies the mass conservation law, the corresponding convergence
is also investigated in the L2 norm, which turns out to be the second order
accuracy in both temporal and space directions. Especially when the fractional
order equals to two, all those results are in accordance with the conclusions for
the difference solution developed for the non-fractional derivative Schrödinger
equation. Finally, some numerical examples are carried out and further verified
the theoretical results.
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tive, Crank-Nicolson scheme, convergence.
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1. Introduction
It is well known that the Schrödinger equation (SE) is one of the most important
equations in quantum mechanics, and the standard Schrödinger equation was de-
rived by R. P. Feynman and A. R. Hibbs from the path integrals over Brownian
paths [5]. In 1970s, another kind of Schrödinger wave equation, which was called
derivative nonlinear Schrödinger equation (DNLSE) as the form

iut + uxx − i(|u|2u)x = 0, (1.1)

was derived for studying the propagation of the circular polarised nonlinear Alfvén
waves in magnetized plasma with a constant magnetic field [19,20,24]. Both the clas-
sical Schrödinger equation and the DNLSE (1.1) have been extensively studied with
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respect to the mathematical theory and physical applications. In 2000, N. Laskin
generalized the classical Schrödinger equation to the fractional Schrödinger equa-
tion(FSE), which involves the fractional Laplacian (−∆)

α
2 (1 < α ≤ 2) by replacing

the Brownian trajectories in Feynman path integrals by the Lévy flights [16, 17].
This generalization extends the standard quantum mechanics to the fractional ones.
Since the fractional quantum mechanics play a very vital role in the quantum phe-
nomena, it is natural to generalize the derivative nonlinear Schrödinger equation
into fractional case. Thus in this paper, we are going to consider the following
fractional derivative nonlinear Schrödinger equation(FDNLSE)

iut − (−∆)
α
2 u− i(|u|2u)x = 0, (1.2)

where 1 < α ≤ 2, and (−∆)
α
2 is the fractional Laplacian which is defined as a

pseudo-differential operator with the symbol −|ξ|α

(−∆)
α
2 u(x, t) = F−1(|ξ|αû(ξ, t)),

where F(·) denotes the usual Fourier transform.
When α = 2 and in one dimension, the FDNLSE (1.2) is reduced to the usual

DNLSE (1.1). There are various papers devoted to investigate the mathematical
theoretical properties, exact and numerical solutions for the DNLSE (1.1). D. J.
Kaup and A. C. Newell [15] showed that the equation (1.1) was completely inte-
grable, and they succeeded to apply the inverse scattering techniques to obtain
one-soliton as well as the infinite family of conservation laws. Some local and
global well-posedness results in different function spaces have been also obtained
by using mass and energy conservation laws, the proper gauge transformations and
other methods, as seen in [10–12, 21, 28] and reference therein. For the numerical
solutions of the DNLSE (1.1), M. S. Ismail and T. R. Taha introduced a finite
difference method for the numerical simulation, which was second-order in space
and conserved the energy exactly [14]. T. C. Wang et al . proposed some symplectic
and conservative difference schemes for the coupled nonlinear Schrödinger system,
which were also second order convergence [32,33]. For some other numerical results,
we refer readers to [4, 27] and reference therein.

In the fractional case, some researches about the fractional Schrödinger equation,
which possesses the term |u|2u but the derivative term (|u|2u)x have been processed
by many researchers, such as the global existence [7,8], complex dynamic behavior
[40], ground state solution [6] and so on. From the numerical point of view, there are
still several methods that have been developed to solve the fractional Schrödinger
equation with the term |u|2u. D. L. Wang et al . proposed some nonlinear and
linearized difference schemes [29–31], P. D. Wang and C. M. Huang constructed an
energy conservative nonlinear difference scheme and a linearized difference scheme
to solve the equation numerically, respectively [34, 35]. Some other techniques,
such as the finite element methods [18], collocation method [2], compact difference
method [42] have been developed in the literature. For more numerical methods
and simulations, one can see [23,36,39,41] and reference therein.

Although these above mentioned methods are interesting and instructive, they
were proposed to handle the fractional Schrödinger equation with the normal term
|u|2u. However, to our best knowledge, there are very few works concerning on
the fractional derivative nonlinear Schrödinger equation (1.2), which indicates that
the equation has the derivative term (|u|2u)x, even the basic mathematical results.
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Since the emergence of the derivative term, it is different from the usual fractional
one and will cause much more difficulties in handling this nonlinear term. Thus in
this paper, we are going to study the fractional derivative nonlinear Schrödinger
equation (1.2) mathematically. As a start point, we will investigate the equation
from the numerical point. More specifically speaking, we consider the following
FDNLSE with the Riesz space fractional derivative (1 < α ≤ 2)

iut − (−∆)
α
2 u− i(|u|2u)x = 0, a < x < b, 0 < t ≤ T, (1.3)

with the initial condition

u(x, 0) = u0(x), a < x < b, (1.4)

and the Dirichlet boundary condition

u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T, (1.5)

where u = u(x, t) is the complex function on (x, t) ∈ [a, b] × [0, T ], T ≥ 0. The
initial condition u0(x) is a given smooth function vanishing at the end points x = a
and x = b.

The rest of paper is organized as follows. In Section 2, we briefly give some
notations and preliminaries. In Section 3, some Crank-Nicolson(CN) difference
scheme for the FDNLSE is proposed, and the existence of this difference solution
is proved by the Brouwer fixed point theorem. The convergence of the CN scheme
is also investigated in the L2 norm by the use of the mass conservation law and
some delicate estimates. Furthermore, the uniqueness of the difference solution
is also presented. In Section 4, two numerical examples are present and verified
the correction of the theoretical analysis. In the last Section 5, we make some
conclusions.

2. Notations and preliminaries
In this section, we will give out some notations and preliminaries for the fractional
derivative and difference scheme. First of all, it is well known that the fractional
Laplace operator −(−∆)

α
2 is equivalent to the Riesz fractional derivative opera-

tor ∂α

∂|x|α under homogeneous Dirichlet boundary conditions [25]. And the Riesz
fractional derivative for 1 < α ≤ 2 is defined as [26]

∂αu(x, t)

∂|x|α
= − 1

2 cos(απ/2)Γ(2− α)

d2

dx2

∫ ∞

−∞
|x− ξ|1−αu(ξ, t)dξ, (2.1)

where Γ(z) =
∫∞
0

tz−1e−tdt is the Gamma function.
There are several numerical methods to approximate the Riesz fractional deriva-

tive, such as the standard and shifted Grünwald formula approximations [37], ma-
trix transform method (MTM) [13], finite element method [38] and so on. Here we
mainly adopt the fractional centered difference proposed by M. D. Ortigueira [22].
Omitting the time variable and denoting u(x) = u(x, t), the fractional centered
difference for α > −1 is defined as

∆α
hu(x) =

+∞∑
k=−∞

(−1)kΓ(α+ 1)

Γ(α/2− k + 1)Γ(α/2 + k + 1)
u(x− kh). (2.2)
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And it is also shown that for 1 < α ≤ 2, there holds

∂αu(x)

∂|x|α
= − lim

h→0

∆α
hu(x)

hα
= − lim

h→0

+∞∑
k=−∞

ck
hα

u(x− kh), (2.3)

where ck = (−1)kΓ(α+1)
Γ(α/2−k+1)Γ(α/2+k+1) (k = 0,±1,±2, · · · ) are the coefficients. First for

the coefficients ck, we have the following properties.

Lemma 2.1 ( [3]). Let ck be the coefficients of the centered finite difference ap-
proximation (2.3) for k = 0,±1,±2, · · · and α > −1. Then

c0 ≥ 0, c−k = ck ≤ 0, for all |k| ≥ 1. (2.4)

Lemma 2.2. Let u ∈ C5(R) and all derivatives up to order five belong to L1(R),
and the fractional centered difference ∆α

hu(x) be given in (2.2). Then for 1 < α ≤ 2,
we have

− h−α∆α
hu(x) =

∂αu(x)

∂|x|α
+O(h2), (2.5)

as h → 0 and ∂αu(x)
∂|x|α is the Riesz fractional derivative.

Proof. This lemma can be proved by using the Fourier transform. For detailed
proof, we refer readers to [3].

Remark 2.1. If α = 2, there yields c0 = 2, c−1 = c1 = −1 and ck = 0, (k =
±2,±3, · · · ), and the difference (2.2) coincides with the classical centered second
difference estimator for the second derivative.

For the difference scheme, we introduce some notations. Let J,N be any posi-
tive integers, and h = b−a

J , τ = T
N . Define Ωh = {xj = jh; j = 0, 1, · · · , J},Ωτ =

{tn = nτ ;n = 0, 1, · · · , N}, and Ωhτ = Ωh × Ωτ . Let ω = {wn
j ; j = 0, 1, · · · , J, n =

0, 1, · · · , N} be a discrete function on Ωhτ and Ωh,0 = {w|w = (w0, w1, · · · , wJ),
w0 = wJ = 0} be the complex grid function space on Ωh and Ωn = (wn

0 , w
n
1 , · · · , wn

J ).
Meanwhile, one denotes that

w
n+ 1

2
j =

wn+1
j + wn

j

2
, (wn

j )x =
wn

j+1 − wn
j

2h
, (wn

j )x̂ =
wn

j+1 − wn
j−1

2h
,

(wn
j )t =

wn+1
j − wn

j

τ
, ⟨wn, vn⟩ = h

J−1∑
j=1

wn
j · vnj , ∥wn∥2 = ⟨wn, wn⟩,

∥wn
x∥2 = h

J−1∑
j=1

|(wn
j )x|2, ∥wn

x̂∥2 = h

J−1∑
j=1

|(wn
j )x̂|2, ∥wn∥∞ = max

0≤j≤J
|wn

j |.

Without any ambiguity, we denote generic positive constants by Ck, C and so on,
which may have different values in different occurrences.

In what follows, we will use the following inequalities and lemmas.

Lemma 2.3 (Sobolev’s estimate, [43]). For any discrete function {un
j |j=0, 1, · · · , J}

on the finite interval [xL, xR], there is the inequality

∥un∥∞ ≤ C0∥un∥ 1
2 (∥un

x∥+ ∥un∥) 1
2 ,
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or
∥un∥∞ ≤ ε∥un

x∥+ C(ε)∥un∥,
where C0, ε and C(ε) are three constants independent of function {un

j } and the step
length h. ε can be any small and C(ε) is a constant dependent on ε.

Lemma 2.4 ( [27]). For any complex functions U, V, u and v, we have∣∣|U |2V − |u|2v
∣∣ ≤ (max{|U |, |V |, |u|, |v|})2 · (2|U − u|+ |V − v|) . (2.6)

Proof. By direct calculation, one has∣∣|U |2V − |u|2v
∣∣ = ∣∣|U |2(V − v) + (|U |2 − |u|2)v

∣∣
=
∣∣|U |2(V − v) + [U(U − u) + (U − u)

∣∣
= |U |2|V − v|+ |Uv||U − u|+ |uv||U − u|

≤ (max{|U |, |V |, |u|, |v|})2 · (2|U − u|+ |V − v|) ,

which concludes (2.6).

Lemma 2.5 ( [9]). Suppose that a > 0, b > 0, c > 0, b2−4ac > 0 and −az2+bz−c ≤
0, then there holds

z ≤ 2c

b
, or z ≥ b

a
− 2c

b
.

Lemma 2.6 (Brouwer fixed point theorem, [1]). Let H(, ⟨·, ·⟩) be a finite dimen-
sional inner product space, ∥ · ∥ the associated norm, and g : H → H be continuous.
Assume moreover that

∃α > 0, ∀z ∈ H, ∥z∥ = α, Re(g(z), z) ≥ 0.

Then, there exists a z∗ ∈ H such that g(z∗) = 0 and ∥z∗∥ ≤ α.

3. Crank-Nicolson difference scheme
In this section, we will propose some Crank-Nicolson(CN) difference scheme for the
FDNLSE (1.3)-(1.5), and analyze its existence, convergence and uniqueness. Firstly,
the equation (1.3) can be rewritten as

ut + i(−∆)
α
2 u− (|u|2)xu− |u|2ux = 0. (3.1)

Let un
j = u(xj , tn) be the true solution of u(x, t) at x = xj , t = tn, and Un

j be the
numerical approximation of u(xj , tn). Then combining (2.3), we adopt the following
CN difference scheme for the FDNLSE (1.3)-(1.5)

(Un
j )t +

i
hα

J−1∑
l=1

cj−lU
n+ 1

2

l − (|Un+ 1
2

j |2)x̂U
n+ 1

2
j

−
U

n+ 1
2

j+1 + U
n+ 1

2
j−1

2
U

n+ 1
2

j (U
n+ 1

2
j )x̂ = 0,

(3.2)

U0
j = u0(xj), Un

0 = Un
J = 0, (3.3)

where 1 ≤ j ≤ J − 1, and 1 ≤ n ≤ N − 1.
In what follows, we will discuss the existence, convergence and uniqueness of the

CN difference scheme (3.2) and (3.3).
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3.1. Existence
Before proving the existence of the numerical solution for the CN difference scheme
(3.2) and (3.3), we have the following lemma for the fractional derivative part.

Lemma 3.1. For the functions Un
j , there holds

Im

J−1∑
j=1

J−1∑
l=1

cj−lU
n+ 1

2

l U
n+ 1

2
j

 = 0, (3.4)

where Im means taking the imaginary part.

Proof. By direct calculation, we have

J−1∑
j=1

J−1∑
l=1

cj−lU
n+ 1

2

l U
n+ 1

2
j

=c0

J−1∑
j=1

U
n+ 1

2
j U

n+ 1
2

j +

J−2∑
l=1

J−1∑
j=l+1

(
cj−lU

n+ 1
2

l U
n+ 1

2
j + cl−jU

n+ 1
2

j U
n+ 1

2

l

)

=
c0
h
∥Un+ 1

2 ∥2 + 2Re

J−2∑
l=1

J−1∑
j=l+1

(
cj−lU

n+ 1
2

l U
n+ 1

2
j

)
,

(3.5)

where we used the results of cl−j = cj−l from Lemma 2.1 and U
n+ 1

2

l U
n+ 1

2
j =

U
n+ 1

2
j U

n+ 1
2

l . Thus (3.5) implies the result (3.4).
Now we have the following existence result for the numerical solutions.

Theorem 3.1 (Existence). Let Z∆ = {s|s ∈ Ωh,0}, then the solution Un of the
difference scheme (3.2) and (3.3) exists, and Un ∈ Z∆.

Proof. Here we mainly employ the Brouwer fixed point theorem and induction
argument to prove this theorem. First from the original problem (1.3)-(1.5), it is
easy to find that U0 ∈ Z∆ exists and satisfies the difference scheme. Now assume
that there exist U0, U1, · · · , Un ∈ Z∆ which satisfy the difference scheme (3.2)(3.3)
for n ≤ N − 1, we need to prove that there exists Un+1 ∈ Z∆ which also satisfies
the difference scheme.

Since Un+1
j = 2U

n+ 1
2

j −Un
j , and for fixed n, we can rewrite (3.2) as the following

form

U
n+ 1

2
j = Un

j − iτ
2hα

J−1∑
l=1

cj−lU
n+ 1

2

l +
τ

2
(|Un+ 1

2
j |2)x̂U

n+ 1
2

j

+
τ

2

U
n+ 1

2
j+1 + U

n+ 1
2

j−1

2
U

n+ 1
2

j (U
n+ 1

2
j )x̂.

(3.6)

Let sj = U
n+ 1

2
j and define the mapping sj → ω(s)j on Z∆ by

ω(s)j = sj − Un
j +

iτ
2hα

J−1∑
l=1

cj−lsl −
τ

2
(|sj |2)x̂sj −

τ

2

sj+1 + sj−1

2
sj(sj)x̂. (3.7)
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Multiplying the equation (3.7) by sjh, summing from j = 1 to J − 1 and taking the
real part, we can obtain

Re

h

J−1∑
j=1

ω(s)jsj

 = Re

h

J−1∑
j=1

sjsj

− Re

h

J−1∑
j=1

Un
j sj


+Re

h

J−1∑
j=1

iτ
2hα

J−1∑
l=1

cj−lslsj


− Re

h

J−1∑
j=1

τ

2
(|sj |2)x̂sjsj


− Re

h

J−1∑
j=1

τ

2

sj+1 + sj−1

2
sj(sj)x̂sj

 .

(3.8)

From Lemma 3.1, there holds

Re

h

J−1∑
j=1

iτ
2hα

J−1∑
l=1

cj−lslsj

 = 0. (3.9)

And by direct computations, we have

Re

h

J−1∑
j=1

τ

2
(|sj |2)x̂sjsj

 = Re

hτ

2

J−1∑
j=1

|sj+1|2 − |sj−1|2

2h
|sj |2

 = 0, (3.10)

and

Re

h

J−1∑
j=1

τ

2

sj+1 + sj−1

2
sj(sj)x̂sj

 = Re

hτ

2

J−1∑
j=1

sj+1 + sj−1

2

sj+1 + sj−1

2h
|sj |2


= 0.

(3.11)
Combining (3.8)-(3.11) together, we have

Re ⟨ω(s), s⟩ = ∥s∥2 − Re

h

J−1∑
j=1

Un
j sj


≥ ∥s∥2 − 1

2
(∥Un∥2 + ∥s∥2)

=
1

2
(∥s∥2 − ∥Un∥2).

(3.12)

Now taking α =
√

1 + ∥Un∥2, for ∀s : ∥s∥ = α, we can have Re ⟨ω(s), s⟩ ≥ 1
2 . Thus

by the Brouwer fixed point theorem in Lemma 2.6, there exists an element s∗ ∈ Z∆

such that ω(s∗) = 0. Let Un+1 = 2s∗ −Un, thus one can obtain that Un+1 ∈ Z∆ is
the solution of the scheme (3.2)(3.3). The proof of Theorem 3.1 is completed.
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3.2. Convergence
In this subsection, we use some important inequalities and the induction argument
to prove the second-order convergence of the difference solution. First for the dif-
ference solution of CN scheme (3.2)(3.3), we have the following priori estimates,
which show that the CN scheme is conservative.

Lemma 3.2. The CN scheme (3.2)(3.3) is conservative in the sense
Qn = Qn−1 = · · · = Q0, (3.13)

where Ql = ∥U l∥2, l = 0, 1, 2, · · · , n, 0 ≤ n ≤ N . Furthermore, if u0 ∈ L2([a, b]),
then the numerical solution of (3.2) and (3.3) is bounded, i.e., there exists some
constant Cb > 0, such that

∥Un∥ ≤ Cb, n = 0, 1, 2, · · · , N. (3.14)

Proof. Multiplying the equation (3.2) by U
n+ 1

2
j h, summing from j = 1 to J − 1

and taking the real part, we can obtain

Re

h

J−1∑
j=1

Un+1
j − Un

j

τ

Un+1
j + Un

j

2

+Re

ih1−α
J−1∑
j=1

J−1∑
l=1

cj−lU
n+ 1

2

l U
n+ 1

2
j


=Re

h

J−1∑
j=1

|Un+ 1
2

j+1 |2 − |Un+ 1
2

j−1 |2

2h
U

n+ 1
2

j U
n+ 1

2
j


+Re

h

J−1∑
j=1

U
n+ 1

2
j+1 + U

n+ 1
2

j−1

2
U

n+ 1
2

j

U
n+ 1

2
j+1 − U

n+ 1
2

j−1

2h
U

n+ 1
2

j

 .

(3.15)
Since Re

(
Un+1
j Un

j − Un
j U

n+1
j

)
= 0, we have

Re

h

J−1∑
j=1

Un+1
j − Un

j

τ

Un+1
j + Un

j

2

 =
h

2τ

J−1∑
j=1

Un+1
j Un+1

j − Un
j U

n
j


=

1

2τ

(
∥Un+1∥2 − ∥Un∥2

)
.

(3.16)

From Lemma 3.1, there holds

Re

ih1−α
J−1∑
j=1

J−1∑
l=1

cj−lU
n+ 1

2

l U
n+ 1

2
j

 = 0. (3.17)

For the last two terms on the right hand of (3.15), and noticing the boundary
condition, we have

Re

h

J−1∑
j=1

|Un+ 1
2

j+1 |2 − |Un+ 1
2

j−1 |2

2h
U

n+ 1
2

j U
n+ 1

2
j


= Re

1

2

J−1∑
j=1

(
|Un+ 1

2
j+1 |2|Un+ 1

2
j |2 − |Un+ 1

2
j−1 |2|Un+ 1

2
j |2

)
= 0,

(3.18)



1082 C. Guo & S. Fang

and

Re

h

J−1∑
j=1

U
n+ 1

2
j+1 + U

n+ 1
2

j−1

2
U

n+ 1
2

j

U
n+ 1

2
j+1 − U

n+ 1
2

j−1

2h
U

n+ 1
2

j


=

1

4
Re

J−1∑
j=1

(
|Un+ 1

2
j+1 |2 − U

n+ 1
2

j+1 U
n+ 1

2
j−1 + U

n+ 1
2

j−1 U
n+ 1

2
j+1 − |Un+ 1

2
j−1 |2

)
|Un+ 1

2
j |2


=

1

4

J−1∑
j=1

|Un+ 1
2

j+1 |2|Un+ 1
2

j |2 − 1

4

J−1∑
j=1

|Un+ 1
2

j−1 |2|Un+ 1
2

j |2

= 0.
(3.19)

Combining (3.15)–(3.19) together, there yields

∥Un+1∥2 = ∥Un∥2. (3.20)

Thus this completes the proof of Lemma 3.2.
The convergence result for the scheme (3.2) and (3.3) can be stated as

Theorem 3.2. Suppose that the original problem (1.3)–(1.5) has a smooth solution
u(x, t), and if h, τ, τ

h and τ
h2 are small enough. Then the numerical solution Un of

the CN difference scheme (3.2) and (3.3) is convergent to the true solution u(x, t)
with the error O(τ2 + h2) in the L2 norm.

Proof. Let un
j = u(xj , tn) and define the truncation errors of the scheme (3.2)(3.3)

as

ξnj = (un
j )t +

i
hα

J−1∑
l=1

cj−lu
n+ 1

2

l − (|un+ 1
2

j |2)x̂u
n+ 1

2
j

−
u
n+ 1

2
j+1 + u

n+ 1
2

j−1

2
u
n+ 1

2
j (u

n+ 1
2

j )x̂.

(3.21)

Then from Lemma 2.2 and the Taylor’s expansion, there exists a constant Cξ > 0
such that

|ξnj | ≤ Cξ(τ
2 + h2). (3.22)

Now one lets enj = un
j − Un

j and combines (3.2)(3.21) together to have that

ξnj = (enj )t +
i
hα

J−1∑
l=1

cj−le
n+ 1

2

l + F
n+ 1

2
j +G

n+ 1
2

j , (3.23)

where

F
n+ 1

2
j = (|Un+ 1

2
j |2)x̂U

n+ 1
2

j − (|un+ 1
2

j |2)x̂u
n+ 1

2
j ,

G
n+ 1

2
j =

U
n+ 1

2
j+1 + U

n+ 1
2

j−1

2
U

n+ 1
2

j (U
n+ 1

2
j )x̂ −

u
n+ 1

2
j+1 + u

n+ 1
2

j−1

2
u
n+ 1

2
j (u

n+ 1
2

j )x̂.

(3.24)

Now taking the real part of the inner product of (3.23) with e
n+ 1

2
j and noticing
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Lemma 3.1, we have

Re
〈
ξnj , e

n+ 1
2

j

〉
= Re

〈
(enj )t +

i
hα

J−1∑
l=1

cj−le
n+ 1

2

l + F
n+ 1

2
j +G

n+ 1
2

j , e
n+ 1

2
j

〉

=
1

2τ

(
∥en+1∥2 − ∥en∥2

)
+Re

〈
F

n+ 1
2

j , e
n+ 1

2
j

〉
+Re

〈
G

n+ 1
2

j , e
n+ 1

2
j

〉
.

(3.25)

This implies

1

τ

(
∥en+1∥2 − ∥en∥2

)
= 2Re

〈
ξnj , e

n+ 1
2

j

〉
− 2Re

〈
F

n+ 1
2

j , e
n+ 1

2
j

〉
− 2Re

〈
G

n+ 1
2

j , e
n+ 1

2
j

〉
:= I1 + I2 + I3,

(3.26)

where

|I1| =
∣∣∣2Re〈ξnj , en+ 1

2
j

〉∣∣∣ ≤ ∥ξn∥2 + ∥en+ 1
2 ∥2

≤ ∥ξn∥2 + 1

2
(∥en+1∥2 + ∥en∥2),

(3.27)

|I2| =
∣∣∣−2Re

〈
F

n+ 1
2

j , e
n+ 1

2
j

〉∣∣∣
= 2

∣∣∣∣∣∣h
J−1∑
j=1

(
|Un+ 1

2
j+1 |2 − |Un+ 1

2
j−1 |2

)
U

n+ 1
2

j −
(
|un+ 1

2
j+1 |2 − |un+ 1

2
j−1 |2

)
u
n+ 1

2
j

2h
e
n+ 1

2
j

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣h
J−1∑
j=1

(|Un+ 1
2

j+1 |2 − |Un+ 1
2

j−1 |2)en+
1
2

j

2h
e
n+ 1

2
j

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣h
J−1∑
j=1

(U
n+ 1

2
j+1 e

n+ 1
2

j+1 + u
n+ 1

2
j+1 e

n+ 1
2

j+1 )u
n+ 1

2
j

2h
e
n+ 1

2
j

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣h
J−1∑
j=1

(U
n+ 1

2
j−1 e

n+ 1
2

j−1 + u
n+ 1

2
j−1 e

n+ 1
2

j−1 )u
n+ 1

2
j

2h
e
n+ 1

2
j

∣∣∣∣∣∣ ,
(3.28)

and

I3 =
∣∣∣−2Re

〈
G

n+ 1
2

j , e
n+ 1

2
j

〉∣∣∣
= 2

∣∣∣∣∣h J−1∑
j=1

U
n+1

2
j+1 +U

n+1
2

j−1

2 U
n+ 1

2
j

U
n+1

2
j+1 −U

n+1
2

j−1

2h − u
n+1

2
j+1 +u

n+1
2

j−1

2 u
n+ 1

2
j

u
n+1

2
j+1 −u

n+1
2

j−1

2h e
n+ 1

2
j

∣∣∣∣∣
= 2

∣∣∣∣∣hJ−1∑
j=1

(U
n+1

2
j+1 +U

n+1
2

j−1 )(U
n+1

2
j+1 −U

n+1
2

j−1 )U
n+1

2
j −(u

n+1
2

j+1 +u
n+1

2
j−1 )(u

n+1
2

j+1 −u
n+1

2
j−1 )u

n+1
2

j

4h e
n+ 1

2
j

∣∣∣∣∣
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≤ 2

∣∣∣∣∣∣∣∣h
J−1∑
j=1

(
U

n+ 1
2

j+1 + U
n+ 1

2
j−1

)(
U

n+ 1
2

j+1 − U
n+ 1

2
j−1

)
e
n+ 1

2
j

4h
e
n+ 1

2
j

∣∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣h
J−1∑
j=1

(∣∣∣Un+ 1
2

j+1

∣∣∣+ ∣∣∣un+ 1
2

j−1

∣∣∣)un+ 1
2

j e
n+ 1

2
j+1

4h
e
n+ 1

2
j

∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣∣h
J−1∑
j=1

(∣∣∣∣un+ 1
2

j+1

∣∣∣∣+ ∣∣∣∣un+ 1
2

j−1

∣∣∣∣)u
n+ 1

2
j e

n+ 1
2

j+1

4h
e
n+ 1

2
j

∣∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣h
J−1∑
j=1

(∣∣∣Un+ 1
2

j+1

∣∣∣+ ∣∣∣un+ 1
2

j−1

∣∣∣)un+ 1
2

j e
n+ 1

2
j−1

4h
e
n+ 1

2
j

∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣∣h
J−1∑
j=1

(∣∣∣∣Un+ 1
2

j+1

∣∣∣∣+ ∣∣∣∣Un+ 1
2

j−1

∣∣∣∣)u
n+ 1

2
j e

n+ 1
2

j−1

4h
e
n+ 1

2
j

∣∣∣∣∣∣∣∣ . (3.29)

Now we need to estimate I2 and I3, respectively. First according to the assumptions
of the theorem and Lemma 2.3, we have ∥un∥∞ ≤ Cu, and

∥en∥∞ ≤ C0∥en∥
1
2 (∥enx∥+ ∥en∥) 1

2

≤ C0∥en∥
1
2

(
2

h
∥en∥+ ∥en∥

) 1
2

≤ C0

√
2

h
+ 1∥en∥.

Thus there is

∥Un∥∞ ≤ ∥un∥∞ + ∥en∥∞ ≤ Cu + C0

√
2

h
+ 1∥en∥, (3.30)

∥Un+ 1
2 ∥∞ ≤ 1

2

(
∥Un+1∥∞ + ∥Un∥∞

)
≤ Cu +

C0

2

√
2

h
+ 1

(
∥en∥+ ∥en+1∥

)
,

(3.31)

and thus
∥Un+ 1

2 ∥2∞ ≤ 2

[
C2

u +
C2

0 (2 + h)

4h

(
∥en∥+ ∥en+1∥

)2]
≤ 2C2

u + C2
0

(
1 +

2

h

)(
∥en∥2 + ∥en+1∥2

)
.

(3.32)

Now combining (3.31) and (3.32), we have the following estimates

|I2| ≤
2

h
∥Un+ 1

2 ∥2∞∥en+ 1
2 ∥2
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+
1

h

(
∥Un+ 1

2 ∥∞∥un+ 1
2 ∥∞ + ∥un+ 1

2 ∥2∞
)
∥en+ 1

2 ∥2

+
1

h

(
∥un+ 1

2 ∥∞∥Un+ 1
2 ∥∞ + ∥un+ 1

2 ∥2∞
)
∥en+ 1

2 ∥2

≤ 1

h

(
∥en∥2 + ∥en+1∥2

) (
∥Un+ 1

2 ∥2∞ + ∥Un+ 1
2 ∥∞∥un+ 1

2 ∥∞
)

≤ 1

h

(
∥en∥2 + ∥en+1∥2

)(3

2
∥Un+ 1

2 ∥2∞ +
1

2
∥un+ 1

2 ∥2∞
)
, (3.33)

|I3| ≤
1

2h
4∥Un+ 1

2 ∥2∞∥en+ 1
2 ∥2

+
1

2h

(
∥Un+ 1

2 ∥∞∥un+ 1
2 ∥∞ + ∥un+ 1

2 ∥2∞
)
∥en+ 1

2 ∥2

+
1

2h

(
2∥un+ 1

2 ∥2∞
)
∥en+ 1

2 ∥2

+
1

2h

(
∥Un+ 1

2 ∥∞∥un+ 1
2 ∥∞ + ∥un+ 1

2 ∥2∞
)
∥en+ 1

2 ∥2

+
1

2h

(
2∥Un+ 1

2 ∥∞∥un+ 1
2 ∥∞

)
∥en+ 1

2 ∥2

≤ 3

2h

(
∥en∥2 + ∥en+1∥2

) (
∥Un+ 1

2 ∥2∞ + ∥un+ 1
2 ∥2∞

)
, (3.34)

and thus

|I2 + I3| ≤
1

h

(
∥en∥2 + ∥en+1∥2

) (
3∥Un+ 1

2 ∥2∞ + 2∥un+ 1
2 ∥2∞

)
≤

8C2
u + 3C2

0

(
1 + 2

h

) (
∥en∥2 + ∥en+1∥2

)
h

(
∥en∥2 + ∥en+1∥2

)
.

(3.35)

From this inequality, we know that there exist two positive constants C1 and C2

independent of h, τ such that

|I2 + I3| ≤ (C1h
−1 + C2h

−2∥en∥2)∥en∥2

+ (C1h
−1 + C2h

−2∥en+1∥2)∥en+1∥2.
(3.36)

Together with (3.26) and (3.27), we obtain

∥en+1∥2 − ∥en∥2 ≤ 1

2
(∥en∥2 + ∥en+1∥2)τ + ∥ξn∥2τ

+ (C1h
−1 + C2h

−2∥en∥2)τ∥en∥2

+ (C1h
−1 + C2h

−2∥en+1∥2)τ∥en+1∥2

≤ (
1

2
+ C1h

−1 + C2h
−2∥en+1∥2)τ∥en+1∥2

+ (
1

2
+ C1h

−1 + C2h
−2∥en∥2)τ∥en∥2 + ∥ξn∥2τ.

(3.37)

For convenience sake, we denote Wn = ∥en∥2, and (3.37) can be rewritten as[
1−

(
1

2
+ C1h

−1

)
τ − C2τh

−2Wn+1

]
Wn+1

≤
[
1 +

(
1

2
+ C1h

−1

)
τ + C2τh

−2Wn

]
Wn + ∥ξn∥2τ.

(3.38)
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If one sets Y n =
[
1−

(
1
2 + C1h

−1
)
τ − C2τh

−2Wn
]
Wn, then

Y n+1 =

[
1−

(
1

2
+ C1h

−1

)
τ − C2τh

−2Wn+1

]
Wn+1, (3.39)

and (3.38) will be equivalent to the form

Y n+1 ≤
1 +

(
1
2 + C1h

−1
)
τ + C2τh

−2Wn

1−
(
1
2 + C1h−1

)
τ − C2τh−2Wn

Y n + ∥ξn∥2τ. (3.40)

Again from (3.39) (3.40), we have

− C2τh
−2(Wn+1)2 +

[
1−

(
1

2
+ C1h

−1

)
τ

]
Wn+1 − C(Wn) ≤ 0, (3.41)

where
C(Wn) =

1 +
(
1
2 + C1h

−1
)
τ + C2τh

−2Wn

1−
(
1
2 + C1h−1

)
τ − C2τh−2Wn

Y n + ∥ξn∥2τ. (3.42)

According Lemma 3.2, we know the boundedness of Wn and Y n. Meanwhile, one
can take h, τ, τ

h and τ
h2 small enough, such that

0 < C2τh
−2 <

1

2C2
b

, 1−
(
1

2
+ C1h

−1

)
τ >

1

2
> 0, C(Wn) > 0, (3.43)

and [
1−

(
1

2
+ C1h

−1

)
τ

]2
− 4C2τh

−2 · C(Wn) > 0. (3.44)

Then from Lemma 2.5, we have

Wn+1 ≥
1−

(
1
2 + C1h

−1
)
τ

C2τh−2
− 2

1−
(
1
2 + C1h−1

)
τ
· C(Wn), (3.45)

or
Wn+1 ≤ 2

1−
(
1
2 + C1h−1

)
τ
· C(Wn). (3.46)

In what follows, we will use (3.40)(3.46) and the induction argument to prove the
following estimates hold

Y n ≤ C(τ2 + h2)2, Wn ≤ C(τ2 + h2)2, (3.47)

for some constants. For n = 0, there is W 0 = 0, Y 0 = 0, and it satisfies (3.47)
obviously. In fact, inequality (3.45) does not hold for any n. For example, if (3.45)
holds for n = 0, then C(W 0) = 0 and for n = 1, since h, τ, τ

h and τ
h2 are taken small

enough, such that (3.43) satisfy, there arrives at

W 1 ≥
1−

(
1
2 + C1h

−1
)
τ

C2τh−2
≥ 1

2C2τh−2
> 4C2

b , (3.48)

which is contradiction to

Wn = ∥en∥2 = ∥un − Un∥2 ≤ 4C2
b . (3.49)
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Actually for n = 1, from (3.40)(3.46), we have

Y 1 ≤ τ∥ξ0∥2 ≤ τC2
ξ (τ

2 + h2)2,

W 1 ≤ 2C(Wn)

1−
(
1
2 + C1h−1

)
τ
≤ 4τ∥ξ0∥2 ≤ 4τC2

ξ (τ
2 + h2)2.

(3.50)

Then we suppose that (3.47) holds for all n = k((k + 1)τ ≤ T ), then we can
determine some C∗ to be a sufficiently large constant independent of h and τ , and
τ
h2 be sufficiently small such that

1 +
(
1
2 + C1h

−1
)
τ + C2τh

−2Wn

1−
(
1
2 + C1h−1

)
τ − C2τh−2Wn

≤ 1 + C∗τ. (3.51)

Now combining (3.50), we suppose that for all the s ≤ k, there holds

Y s ≤
C2

ξ

C∗
[(1 + C∗τ)

s − 1] (τ2 + h2)2, (3.52)

and

W s ≤
4C2

ξ

C∗
eC∗T (τ2 + h2)2. (3.53)

Then for n = k + 1 and from (3.40) (3.46) and (3.51), we have

Y k+1 ≤ (1 + C∗τ)Y
k + τC2

ξ (τ
2 + h2)2

≤ (1 + C∗τ)

[
C2

ξ

C∗

(
(1 + C∗τ)

k − 1
)
(τ2 + h2)2

]
+ τC2

ξ (τ
2 + h2)2

=
C2

ξ

C∗

[
(1 + C∗τ)

k+1 − (1 + C∗τ) + C∗τ
]
(τ2 + h2)2

=
C2

ξ

C∗

[
(1 + C∗τ)

k+1 − 1
]
(τ2 + h2)2,

(3.54)

and

W k+1 ≤ 2

1−
(
1
2 + C1h−1

)
τ

[
1 +

(
1
2 + C1h

−1
)
τ + C2τh

−2W k

1−
(
1
2 + C1h−1

)
τ − C2τh−2W k

Y k + ∥ξn∥2τ

]
≤ 4

[
(1 + C∗τ)Y

k + ∥ξn∥2τ
]

≤ 4

[
(1 + C∗τ)

(
C2

ξ

C∗

(
(1 + C∗τ)

k − 1
)
(τ2 + h2)2

)
+ τC2

ξ (τ
2 + h2)2

]

≤
4C2

ξ

C∗

[
(1 + C∗τ)

k+1 − 1
]
(τ2 + h2)2

≤
4C2

ξ

C∗

(1 + C∗ ·
T

k + 1

) (k+1)C∗T
C∗T

 (τ2 + h2)2

≤
4C2

ξ

C∗
eC∗T (τ2 + h2)2, (3.55)
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where the following inequality(
1 + C∗ ·

T

k + 1

) (k+1)C∗T
C∗T

≤ eC∗T , (3.56)

for all (k+1)τ ≤ T is applied. Thus the estimates (3.47) can be obtained for all n.
The proof of Theorem 3.2 is completed.

3.3. Uniqueness
Finally, based on the results of the existence and convergence, we also have the
following uniqueness result.

Theorem 3.3. Under the conditions of Theorem 3.2, the difference solution of the
CN difference scheme (3.2) and (3.3) is unique.

Proof. Assume Un and V n both satisfy the CN difference scheme (3.2) and (3.3).
Then for Y n = Un − V n, we have

(Y n
j )t +

i
hα

J−1∑
l=1

cj−lY
n+ 1

2

l − F
n+ 1

2
j (Un

j , V
n
j )−G

n+ 1
2

j (Un
j , V

n
j ) = 0, (3.57)

Y 0
j = 0, Y n

0 = Y n
J = 0, 1 ≤ j ≤ J, 0 ≤ n ≤ N. (3.58)

where

F
n+ 1

2
j (Un

j , V
n
j )=(|Un+ 1

2
j |2)x̂U

n+ 1
2

j − (|V n+ 1
2

j |2)x̂V
n+ 1

2
j ,

G
n+ 1

2
j (Un

j , V
n
j )=

U
n+ 1

2
j+1 +U

n+ 1
2

j−1

2
U

n+ 1
2

j (U
n+ 1

2
j )x̂−

V
n+ 1

2
j+1 +V

n+ 1
2

j−1

2
V

n+ 1
2

j (V
n+ 1

2
j )x̂.

(3.59)
Similar to the proof of Theorem 3.2, as h → 0 and τ → 0, we have

∥Y n∥ = 0, (3.60)

which means the uniqueness. This completes the proof of Theorem 3.3.

4. Examples and numerical results
In this section, we compute two numerical examples to demonstrate the effectiveness
of the CN difference scheme (3.2) and (3.3).

Example 4.1. Let α = 2, then the fractional derivative nonlinear Schrödinger
equation (1.3)-(1.5) reduce to the usual derivative nonlinear Schrödinger equation
(1.1)

iut + uxx − i(|u|2u)x = 0, (4.1)

with the initial condition
u(x, 0) = u0(x), (4.2)

and the Dirichlet boundary condition

u(a, t) = u(b, t) = 0. (4.3)
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Here we take the initial value as u0(x) = 2
√

sech(2x)exp
[
3
2 arctan(sinh(2x))i

]
, and

the exact solution for this initial value problem (4.1) and (4.2) is given by

u(x, t) = 2
√

sech(2x)exp
[
3

2
arctan(sinh(2x))i + it

]
. (4.4)

The initial-boundary value problem (4.1)–(4.3) can be considered to the initial value
problem (4.1) and (4.2) for a ≪ 0 and b ≫ 0. Since the initial value u0(x) exponen-
tially decays to zero with the variable x away from the origin, thus it is reasonable
to consider that the wave function is negligible outside the interval [a, b], and we can
set u(a, t) = u(b, t) = 0 for a ≪ 0 and b ≫ 0. In this example, we chose a = −20
and b = 20.

Table 1. Errors between the difference solution and true solution of Example 4.1 at t = 2.

h τ λ ∥uN − UN∥ Order ∥uN − UN∥∞ Order
0.1 0.1 10 2.178783e-01 - 1.573651e-01 -
0.05 0.05 20 5.428458e-02 2.00341 3.960803e-02 1.993252
0.025 0.025 40 1.355145e-02 2.00145 9.907701e-03 1.999427
0.0125 0.0125 80 3.386133e-03 2.00051 2.476947e-03 1.999991

Table 2. Discrete mass Qn in Example 4.1 at different time with h = τ = 0.02.

t Qn (Qn −Q0)/Q0

0 6.283185307179577 0
0.1 6.283185395698440 1.408821465908791e-08
0.2 6.283185575083924 4.263830119556149e-08
0.3 6.283185725425165 6.656585281784965e-08
0.4 6.283185833555792 8.377537662344859e-08
0.5 6.283185909172271 9.581011308330088e-08
0.6 6.283185961712505 1.041721509555845e-07
0.7 6.283185997937546 1.099375452538331e-07
0.8 6.283186022469789 1.138419731184578e-07
0.9 6.283186038484496 1.163907928827964e-07
1.0 6.283186048204716 1.179378139730703e-07

Table 1 gives some errors between the difference solution and true solution (4.4)
of Example 4.1 with different mesh ratios λ = τ

h2 , which verifies the second order
convergence and good stability of the numerical solutions. The conservative law of
discrete mass computed by the CN difference scheme can be also seen in Table 2,
which also shows that the scheme converses the discrete masses very well.

Example 4.2. When 1 < α < 2, we also consider the FDNLSE (1.3)–(1.5) with
the same initial value

u0(x) = 2
√

sech(2x)exp
[
3

2
arctan(sinh(2x))i

]
,

and truncate the problem in [−20, 20], which implies u(−20, t) = u(20, t) = 0.
Fig.1–Fig.4 present the numerical solutions for different values of order α, where we
take h = τ = 0.05. As we can find that, the order of α will affect the shape of the
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solution both in the height and width. When α becomes larger, the modulus value
at the center is larger, and the shape will change more quickly. When α tends to
2, the numerical solutions of the fractional equation are convergent to the solutions
of the usual non-fractional equation, as the case in Example 4.1. Meanwhile, we
observe that the shape of the solutions is more smoother as the values of order α
is larger, as seen in Fig.5, which represents the solutions of the FDNLSE at t = 2
with different values of α.

Figure 1. Numerical solutions for α = 1.7

Figure 2. Numerical solutions for α = 1.8

Similarly, for the CN difference scheme (3.2)(3.3) of the FDNLSE (1.3)–(1.5)
with 1 < α < 2, it still preserve the discrete masses, as expected. Table 3 shows
the errors of (Qn −Q0)/Q0 for different α at some different time.

5. Conclusions
In this paper, we proposed and analyzed a conservative difference scheme for the
derivative nonlinear Schrödinger equation with the Riesz space fractional deriva-
tive, which can be used as important model in plasma physics. On one hand,
the term (|u|2u)x brings more difficulties in the theoretical analysis and numerical
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Figure 3. Numerical solutions for α = 1.9

Figure 4. Numerical solutions for α = 2
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Figure 5. Numerical solutions for different values of α at t = 2.
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Table 3. The errors of
∣∣∣Qn−Q0

Q0

∣∣∣ for different α at different time with h = τ = 0.05.

α t = 0.1 t = 0.5 t = 1 t = 1.5 t = 2

1.7 6.5544e-04 8.7366e-04 6.8926e-04 5.7651e-04 5.1118e-04
1.8 1.0333e-04 6.1432e-05 1.0323e-04 1.1785e-04 1.0821e-04
1.9 3.4014e-05 2.7388e-05 4.9055e-05 5.4610e-05 5.1194e-05

simulations, compared to the usual Schrödinger equation. Thus we proposed the
Crank-Nicolson difference schemes and handled the nonlinear term skillfully. On
the other hand, there are many methods to approximate the Riesz space-fractional
derivative, which may lead to different accuracy. Fortunately, we adopt the frac-
tional centered difference operator, as defined in (2.2) to get the approximation.
Furthermore, there holds the conservation law, as seen in Lemma 3.1, it plays an
important role in the theoretical analysis for the derivative nonlinear Schrödinger
equation, and the symmetry of the coefficients is also crucial for the numerical
computations. Based on the discrete conservation laws and some delicate priori es-
timates, the optimal convergence rate for the CN difference schemes at the order of
O(τ2 + h2) is obtained, and some numerical tests are carried out, which confirmed
our theoretical results.
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