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ESTIMATING WHITE NOISE INTENSITY
REGIONS FOR COMPARABLE PROPERTIES
OF A CLASS OF SEIRS STOCHASTIC AND

DETERMINISTIC EPIDEMIC MODELS

Divine Wanduku1

Abstract A comparative stochastic and deterministic study of a family of
epidemic models for vector-borne diseases e.g. malaria and dengue fever etc. is
presented. The family type is determined by a general nonlinear incidence rate
of the disease. Two major sources of environmental white noises are considered:
disease transmission and natural death rates. The impacts of each source of
noise on the disease dynamics are examined. The basic reproduction numbers
and other threshold values for the disease in the stochastic and deterministic
settings are determined and compared to determine the impacts of the noises
on the dynamics. The question about the extend that stability conditions for
steady states in the noise-free disease dynamics, remain valid for the stochastic
stability of the steady state is answered in this paper. Moreover, noise intensity
regions are computed, within which all stability conditions for both systems
are the same, and both systems behave similarly.

Keywords Stochastic delay differential equations, stochastic stability in prob-
ability, functional Itô differential operator, deterministic delay differential
equations, white noise intensity.
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1. Introduction
Vector-borne diseases such as malaria, and dengue fever etc. rank amongst the
top most widely spread infectious diseases of humans in the world today with very
high global mortality rates, and heavy economic burdens upon many nations in the
world. In fact, according to the WHO report [71] released in December 2016, it is
estimated that about 212 million cases of malaria occurred in 2015 resulting in a
large-scale death count of about 429 thousand people. Dengue fever on the other
hand prevails globally among about 400 million people annually, and approximated
22,000 of the 100 million infected cases die from the disease [71,73].

Certain biological characteristics are unique to vector-borne diseases such as
dengue fever, malaria, yellow fever, zika fever, lymphatic filariasis, and the different
types of encephalitis etc. For instance, the incubation of the diseases require two
hosts-the vector and human hosts, which may be either involved in one full life
cycle of the infectious agent consisting of two separate and independent segments
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of sub-life cycles, where each segment is completed separately inside the two hosts
(e.g. malaria), or the vector and the human constitute different forms of behavior
of the infectious agent in two separate and independent half-life cycles in each host
(e.g. dengue fever). Therefore, there exists a total latent time lapse of disease
incubation which extends over the two segments of delay incubation times namely:
(1) the incubation period of the infectious agent ( or the first half-life cycle) inside
the vector, and (2) the incubation period of the infectious agent (or the second
half-life cycle) inside the human being.

For example, the dengue fever virus transmitted primarily by the Aedes aegypti
and Aedes albopictus mosquitos undergoes two delay incubation periods: (1) about
8-12 days incubation period inside the female mosquito vector, which starts imme-
diately after the ingestion of an infected blood meal collected, after biting a dengue
fever infectious person, and (2) another delay incubation period of about 2-7 days
inside a human, whenever the infected female vector leaves its resting place for
another blood meal, and bites a susceptible person, and successfully transmits the
virus to the person [71,73].

The following facts about malaria appear in the earlier study [56]. The malaria
plasmodium undergoes the first developmental half-life cycle called the sporogonic
cycle inside the female Anopheles mosquito lasting approximately 10–18 days, fol-
lowing a successful blood meal obtained from an infectious human being through a
mosquito bite. Moreover, the mosquito becomes infectious. The parasite completes
the second developmental half-life cycle called the exo-erythrocytic cycle lasting
about 7–30 days inside the exposed human being, whenever the parasite is trans-
ferred to the human being in the process of the infectious mosquito foraging for
another blood meal. See the references [16,71,72].

The exposure and successful recovery from a malaria parasite, for example, falci-
parum vivae induces natural immunity against the disease which can protect against
subsequent severe outbreaks of the disease. Moreover, the effectiveness and dura-
tion of the naturally acquired immunity against malaria is determined by several
factors such as the species and the frequency of exposure to the parasites. Further-
more, it has been determined that other biological factors such as the genetics of
the human being, for instance, sickle-cell anaemia, duffy negative blood types have
bearings on the naturally acquired immunity against different species of malaria.
See the references [17, 23, 72]. Similarly, the exposure and successful recovery from
one dengue fever viral strain confers lifelong immunity against the particular viral
serotype [73].

Various types of mathematical models have been proposed for malaria with the
earliest studies by Ross [50] who studied mosquito control in 1911. Many other
authors have addressed different aspects of the malaria dynamics (cf. [2, 12, 24, 39,
43–45,55]). Dengue fever has also been studied mathematically (cf. [53]).

Some studies have shown the presence of noise in the dynamics of malaria.
Noise can be seen in seasonal variations of the malaria incidence rates over yearly
data, and over spatial disparities of malaria prevalence rates. In fact, some authors
such as [49] studying the seasonality of P. falciparum transmission have shown that
there are several climatic drivers responsible for the temporal variation and spatial
distribution of malaria transmission rates, for instance, temperature, rainfall, and
vegetation indices etc. The randomness in the malaria incidence rates over time,
and spatially is a good reason to consider stochastic representations of the disease
dynamics.
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There are several different ways to introduce white noise into infectious disease
dynamic systems, for example, as random perturbation of the driving parameters
of the infectious system known as environmental white noise (see [19,46,59,60,63]),
or random perturbation of the state of the system also known demographic white
noise (see [5]). Some authors such as [1,7] have suggested a mean-reverting process
technique to include white noise processes. Also, some stochastic models for malaria
involving white noise perturbations include [27,32].

A stochastic white noise driven system exhibits more complex behavior in the
disease dynamics than the corresponding deterministic version. For instance, the
presence of noise in the disease dynamics may destabilize a disease-free steady state.
The occurrence of noise with high intensity may cause massive oscillations over time
in the population state, which may decrease the population size over time, and lead
to extinctions depending on the source of the noise e.g. high intensity noise in
natural death rates can lead to extinction etc. (cf. [35, 59,60,63,69,70]).

Cooke [14] presented a deterministic epidemic dynamic model for vector-borne
diseases, where the bilinear incidence rate defined as βS(t)I(t − T ) represents the
number of new infections occurring per unit time during the disease transmission
process. It is assumed in the formulation of this incidence rate that the number of
infectious vectors Vi(t) at time t interacting and effectively transmitting infection to
susceptible human beings, S(t), after β number of effective contacts per unit time
per infective is proportional to the infectious human population, I(t−T ), at earlier
time t− T . Cook’s method of studying the dynamics of a vector-borne disease in a
human population without directly including the vector population dynamics has
been utilized by several other authors, for example [35,40,54,56,59]. Some criticism
of the Cooke model concerns the absence of a rationale for the assumption about
the proportionality between Vi(t) and I(t − T ) used as an approximation for the
force of infection. Furthermore, there is the question whether the Cooke model
emerges from the combined vector-host dynamics. Takeuchi et. al. [54] answered
this question and presented an extension of the Cooke model, with a joint dynamics
for the vector-host populations, and under the assumption of a large constant vector
population present, the proportionality between the states Vi(t) and I(t − T ) is
justified.

Recently, applying similar reasoning of the Cooke model, Wanduku [56, 57] de-
veloped and studied a novel family of SEIRS dynamic models for malaria with three
distributed delays given in (1.1)–(1.4) below. The model in [56, 57] was simplified
by omitting the vector dynamics (similarly as [14]), and applying other assump-
tions about the death rates of the vectors and humans. Moreover, time scales for
the model parameters were not well specified. Thus, to improve understanding and
usefulness of [56, 57], it is necessary to add more epidemiologically sound assump-
tions, and define time scales for the model parameters in (1.1)–(1.4), and derive the
model [56,57] from the vector vs. human dynamics.

The new modified family of SEIRS dynamic models is given in (1.1)–(1.4). Note,
the modified assumptions for (1.1)–(1.4), and complete derivation of the model
(1.1)–(1.4) are given in 8.

dS(t) =

[
B − βS(t)

∫ h1

t0

fT1(s)e
−µvsG(I(t− s))ds− µS(t)

+ α

∫ ∞

t0

fT3
(r)I(t− r)e−µrdr

]
dt,

(1.1)
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dE(t) =

[
βS(t)

∫ h1

t0

fT1
(s)e−µvsG(I(t− s))ds− µE(t)

−β
∫ h2

t0

fT2(u)S(t−u)
∫ h1

t0

fT1(s)e
−µvs−µuG(I(t− s− u))dsdu

]
dt,

(1.2)

dI(t) =

[
β

∫ h2

t0

fT2
(u)S(t− u)

∫ h1

t0

fT1
(s)e−µvs−µuG(I(t− s− u))dsdu

− (µ+ d+ α)I(t)

]
dt,

(1.3)

dR(t) =

[
αI(t)− µR(t)− α

∫ ∞

t0

fT3(r)I(t− r)e−µsdr

]
dt, (1.4)

where the initial conditions are given in the following: let h = h1 + h2 and define

(S(t), E(t), I(t), R(t)) = (φ1(t), φ2(t), φ3(t), φ4(t)) , t ∈ (−∞, t0],

φk ∈ UCg ⊂ C((−∞, t0],R+),∀k = 1, 2, 3, 4, φk(t0) > 0,∀k = 1, 2, 3, 4,
(1.5)

where UCg is some fading memory sub Banach space of the Banach space C((−∞, t0],
R+) endowed with the norm

∥φ∥g = sup
t≤t0

|φ(t)|
g(t)

, (1.6)

and g is some continuous function with the following properties: (P1.) g ((−∞, t0])⊆
[1,∞), non-increasing, and g(t0) = 1; (P2.) limu→t−0

g(t+u)
g(t) = 1, uniformly on

[t0,∞); limt→−∞ g(t) = ∞. An example of such a function is g(t) = e−at, a > 0 (cf.
[28]). Note that for any g satisfying (P1.)–(P2.) the Banach space C((−∞, t0],R+) is
continuously embedded in UCg which allows structural properties for C((−∞, t0],R+)
with the uniform norm to hold in UCg with ||.||g norm. Moreover, φ ∈ UCg,∃g if
and only if ||φ||g < ∞ and |φ(t)|

g(t) is uniformly continuous on (−∞, t0]. Also, the
function G satisfies the conditions of Assumption 1.1.

In (1.1)–(1.4), the disease spreads in the human population of total size N(t) =
S(t)+E(t)+ I(t)+R(t), where S(t), E(t), I(t) and R(t) represent the susceptible,
exposed, infectious and naturally acquired immunity classes at time t, respectively.
The positive constants B, and µ represent the constant birth and natural death
rates, respectively. Furthermore, the disease related deathrate is denoted d. The
rate β is the average effective contact rate per infected mosquito per unit time.
The recovery rate from the disease with acquired immunity is α. All parameters of
(1.1)–(1.4) are dimensionless and defined in (8.42).

Also, the incubation delays inside the mosquito and human hosts are denoted
T1 and T2, respectively, and the period of effective naturally acquired immunity
is denoted T3. Moreover, the delays are random variables with arbitrary densities
denoted fT1 , fT2 and fT3 , and their supports given as T1 ∈ [t0, h1], T2 ∈ [t0, h1] and
T3 ∈ [t0,+∞). The nonlinear incidence function G which signifies the response to
disease transmission by the susceptible class as disease increases in the population,
satisfies the following assumptions

Assumption 1.1. A1: G(0) = 0; A2: G(I) is strictly monotonic on [0,∞); A3:
G ∈ C2(R+,R+) and G′′(I) < 0;A4: limI→∞G(I) = C, 0 ≤ C < ∞; and A5:
G(I) ≤ I, ∀I > 0.
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Deterministic models represent disease dynamics in ideal situations, and are
simply first approximations. Realistically, the occurrence of noise is inevitable in
disease dynamics. As emphasized in the introduction, the occurrence of noise in a
disease dynamics can destabilize a steady state, or cause the steady state to cease
to exist (c.f. [35, 59,60,63,69,70]).

The question remains about the extend that stability conditions for a steady
state of the noise-free dynamics will continue to suffice for the stochastic stability of
the steady state when noise occurs in the dynamics. In other words, to what extend
will disease eradication conditions for the deterministic system remain sufficient
for the ensuing stochastic system? This question is addressed in this paper via
a comparative analysis of the deterministic and corresponding stochastic systems:
(1.1)–(1.4) and (1.8)–(1.10), and with attention given to elucidate the impacts of
noises and delays in the disease dynamics, on the existence and stability of equilibria,
which create several interesting features of the disease dynamics near the infection-
free equilibrium.

Apart from having a focus on both deterministic and stochastic systems, this
work differs considerably from [57] in (a) characterizing noise intensity regions,
where behavior of both stochastic vs deterministic systems contrast or are similar;
(b) intensifying the importance of delays in the system in defining parameter regions
that delineate the behaviors of the stochastic and deterministic systems. And (c)
more appropriate stochastic Lyapunov functionals are constructed, and properly
estimated, whenever self-invariant spaces exist, or do not exist. Obviously, (a)–(c)
could not be obtained in [57].

This work is presented as follows. In 8, the stochastic and deterministic epidemic
dynamic models for the disease are derived. In section 2, the model validation results
are presented for both the deterministic and stochastic systems. In section 3, the
effects of the noises on the existence of equilibria of the systems are investigated. In
Section 4, stochastic stability results with noise only from the disease transmission
rate is presented. In Section 5, the stochastic stability results with noises from both
the disease transmission rate and natural death rates are presented. In section 6, a
parameter region for the intensities of noises in the system within which the stability
conditions of the deterministic system remain sufficient for the stochastic stability
of equilibria is presented. In Section 7, the stochastic system is characterized when
noise occurs from the natural death rate of the susceptible state.

Observe that the system (1.1)–(1.4) is similarly structured as [56], and the model
parameters are well defined in (8.42). Thus, the deterministic results in [56] can be
translated into (1.1)–(1.4).

It is assumed that the effects of random environmental fluctuations lead to
variability in the disease transmission and natural death rates. For t ≥ t0, let
(Ω,F, P ) be a complete probability space, and Ft be a filtration (that is, sub σ-
algebra Ft that satisfies the following: given t1 ≤ t2 ⇒ Ft1 ⊂ Ft2 ; F0 contains
all null sets in Ft). Indeed, the variability in the disease transmission and natural
death rates are represented by the white noise processes as follows:

µ→ µ+σiξi(t), ξi(t)dt = dwi(t), i = S,E, I,R, β → β+σβξβ(t), ξβ(t)dt = dwβ(t),
(1.7)

where ξi(t) and wi(t) represent the standard white noise and normalized Wiener pro-
cesses for the ith state at time t, with the following properties: w(0) = 0,E(w(t)) =
0, V ar(w(t)) = t. Furthermore, observe from (1.7), Var (µdt+ σidwi(t)) = σ2

i dt, i =
S,E, I,R, where σ2

i , i = S,E, I,R represents the intensity of the environmental



1100 D. Wanduku

white noise in the natural death rate of the ith state, and Var (βdt+ σβdwβ(t)) =
σ2
βdt, where σ2

β is the intensity of the white noise in the disease transmission rate.
Substituting (1.7) into the deterministic system (1.1)–(1.4) leads to the follow-

ing generalized system of Itô-Doob stochastic differential equations describing the
dynamics of vector-borne diseases in the human population.

dS(t) =

[
B − βS(t)

∫ h1

t0

fT1(s)e
−µvsG(I(t−s))ds− µS(t)

+ α

∫ ∞

t0

fT3
(r)I(t− r)e−µrdr

]
dt

− σSS(t)dwS(t)− σβS(t)

∫ h1

t0

fT1
(s)e−µvsG(I(t− s))dsdwβ(t)

(1.8)

dE(t) =

[
βS(t)

∫ h1

t0

fT1(s)e
−µvsG(I(t− s))ds− µE(t)

− β

∫ h2

t0

fT2(u)S(t−u)
∫ h1

t0

fT1(s)e
−µvs−µuG(I(t−s−u))dsdu

]
dt

− σEE(t)dwE(t) + σβS(t)

∫ h1

t0

fT1
(s)e−µvsG(I(t− s))dsdwβ(t)

− σβ

∫ h2

t0

fT2
(u)S(t−u)

∫ h1

t0

fT1
(s)e−µvs−µuG(I(t−s−u))dsdudwβ(t)

(1.9)

dI(t) =

[
β

∫ h2

t0

fT2(u)S(t− u)

∫ h1

t0

fT1(s)e
−µvs−µuG(I(t− s− u))dsdu

− (µ+ d+ α)I(t)

]
dt− σII(t)dwI(t)

+ σβ

∫ h2

t0

fT2(u)S(t−u)
∫ h1

t0

fT1(s)e
−µvs−µuG(I(t−s−u))dsdudwβ(t)

(1.10)

dR(t) =

[
αI(t)−µR(t)−α

∫ ∞

t0

fT3
(r)I(t−r)e−µrdr

]
dt−σRR(t)dwR(t), (1.11)

where the initial conditions are given in the following: let h = h1 + h2 and define

(S(t), E(t), I(t), R(t)) = (φ1(t), φ2(t), φ3(t), φ4(t)) , t ∈ (−∞, t0],

φk ∈ UCg ⊂ C((−∞, t0],R+),∀k = 1, 2, 3, 4, φk(t0) > 0,∀k = 1, 2, 3, 4,
(1.12)

where UCg is some fading memory sub Banach space of the Banach space C((−∞, t0],
R+) endowed with the norm

∥φ∥g = sup
t≤t0

|φ(t)|
g(t)

, (1.13)

and g is some continuous function with the following properties: (P1.) g ((−∞, t0])⊆
[1,∞), non-increasing, and g(t0) = 1; (P2.) limu→t−0

g(t+u)
g(t) = 1, uniformly on

[t0,∞); limt→−∞ g(t) = ∞. Furthermore, the random continuous functions φk, k =
1, 2, 3, 4 are F0 −measurable, or independent of w(t) for all t ≥ t0.
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Observe that (1.9) and (1.11), and the corresponding equations (1.2) and (1.4)
all decouple from the other two equations in their respective systems: (1.8)–(1.11)
and (1.1)–(1.4). Nevertheless, for convenience most of the results in this paper
related to the systems (1.8)–(1.11) and (1.1)–(1.4) will be shown for the vector
X(t) = (S(t), E(t), I(t))T . The following notations are utilized:

Y (t) = (S(t), E(t), I(t), R(t))T , X(t) = (S(t), E(t), I(t))T ,

N(t) = S(t) + E(t) + I(t) +R(t).
(1.14)

Also, observe from the dimensionless formulas (8.42) that

B

µ
=

[
B̂(

B̂
µ̂

)2
Λ

]
[

µ̂(
B̂
µ̂

)
Λ

] = 1. (1.15)

However, in this paper, the notation B
µ ≡ 1 will be used to emphasize the origin of

the dimensionless quantity “1” in (1.15).

2. Model Validation Results
Observe from the deterministic and stochastic systems (1.1)–(1.4) and (1.8)–(1.11),
respectively, and (1.14), that when the intensities σi = 0, i ∈ {S,E, I,R}, both
systems are the same. The following result shows that there exists a unique positive
self-invariant space for both systems, whenever the intensities of the noises are
infinitesimally small.

Theorem 2.1. Given the initial conditions (1.5)–(1.6), there exists a unique so-
lution Y (t) = (S(t), E(t), I(t), R(t))T satisfying (1.1)–(1.4), for all t ≥ t0. More-
over, the solution is nonnegative for all t ≥ t0 and also lies in D(∞). That is,
S(t) > 0, E(t) > 0, I(t) > 0, R(t) > 0,∀t ≥ t0 and

lim sup
t→∞

N(t) ≤ S∗
0 =

B

µ
≡ 1, (2.1)

for N(t) = S(t) + E(t) + I(t) + R(t), and Y (t) ∈ D(∞) = B̄
(−∞,∞)

R4
+,

(
0, Bµ ≡ 1

)
,

where D(∞) is defined in (2.3).

Proof. Observe from the deterministic and stochastic systems (1.1)–(1.4) and
(1.8)–(1.11), respectively, and (1.14), that when the intensities σi=0, i ∈{S,E, I,R},
both systems satisfy

dN(t) = [B − µN(t)− dI(t)]dt. (2.2)
It follows that for Y (t) ∈ R4

+, the equation (2.2) leads to N(t) ≤ B
µ − B

µ e
−µ(t−t0) +

N(t0)e
−µ(t−t0). And under the assumption that N(t0) ≤ B

µ , it follows that the set

D(∞) =

{
Y (t) ∈ R4

+ : N(t) = ∥Y (t)∥1 ≤ B

µ
,∀t ∈ (−∞,∞)

}
≡ B̄

(−∞,∞)

R4
+

(
0,
B

µ
≡ 1

)
, (2.3)
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representing the closed unit ball in R4
+ centered at the origin and radius B

µ ≡ 1,
with norm ||.||1 is almost surely self-invariant with respect to the deterministic and
stochastic systems, provided that σi = 0, i ∈ {S,E, I,R} in (1.8)–(1.11).

Theorem 2.2. Given the initial conditions (1.12) and (1.13), there exists a unique
solution process X(t, w) = (S(t, w), E(t, w), I(t, w))T , ∀w ∈ Ω satisfying (1.8)–
(1.11), for all t ≥ t0. Moreover,

(a.) the solution process is positive for all t ≥ t0 a.s. and lies in D(∞), whenever the
intensities of the independent white noise processes in the system satisfy σi = 0,
i ∈ {S,E, I} and σβ ≥ 0. That is, S(t, w) > 0, E(t, w) > 0, I(t, w) > 0,∀t ≥ t0

a.s. and X(t, w) ∈ D(∞) = B̄
(−∞,∞)

R4
+,

(
0, Bµ

)
, where D(∞) is defined in (2.3).

(b.) Also, the solution process is positive for all t ≥ t0 a.s. and lies in R4
+, whenever

the intensities of the independent white noise processes in the system satisfy
σi > 0, i ∈ {S,E, I} and σβ ≥ 0. That is, S(t, w) > 0, E(t, w) > 0, I(t, w) >
0,∀t ≥ t0 a.s. and X(t, w) ∈ R4

+.

Proof. Observe that when σi = 0, i ∈ {S,E, I} and σβ = 0, the result of (a)
follows immediately from Theorem 2.1. Also, when σi = 0, i ∈ {S,E, I} and
σβ > 0, observe that the ensuing stochastic system (1.8)–(1.11), still satisfies (2.2),
and the results follow from Theorem 2.1.

For (b), when at least one of σi > 0, i ∈ {S,E, I,R}, the equation (2.2) is no
longer satisfied, and the closed unit ball D(∞) is no longer self-invariant for the
system (1.8)–(1.11). Nevertheless, all sample paths for the stochastic system remain
in R4

+ (cf. [59–62]).

Remark 2.1.
1. Theorem 2.2 signifies that the stochastic system (1.8)–(1.11) almost surely has a

unique global positive solution process Y (t) ∈ R4
+, for all t ∈ (−∞,∞). Further-

more, it follows that a positive solution of the system that starts in the closed ball
centered at the origin with a radius of B

µ ≡ 1, given by D(∞) = B̄
(−∞,∞)

R4
+,

(
0, Bµ

)
,

will continue to oscillate in the closed unit ball for all time t ≥ t0, when-
ever the intensities of the noises from the natural deathrates are zero, that
is, σi = 0, i ∈ {S,E, I,R}. Hence, the unit ball D(∞) = B̄

(−∞,∞)

R4
+,

(
0, Bµ

)
is a positive self-invariant set for the stochastic system (1.8)–(1.11), whenever
σi = 0, i ∈ {S,E, I,R}. In other words, the trajectories of the system (1.8)–
(1.11) are ”well-behaved” whenever the only major source of variability in the
system is the disease transmission rate σβ > 0.
When at least one of the intensities of the noises from the natural deathrates
is positive, that is, σi > 0, i ∈ {S,E, I,R}, all trajectories that start in the
unbounded positive space R4

+ continue to oscillate in the space R4
+ for all time

t ≥ t0. This suggests that the paths of the stochastic system are inflated out of
bounds in D(∞) by the additional source of noise, the natural deathrates, but
they continue to oscillate unpredictably in R4

+ . Thus, in this scenario, various
complex behaviors are possible, for example, extinction of the population.

2. Theorem 2.1 also signifies that the deterministic system (1.1)–(1.4) has a unique
global positive solution denoted by Y (t) ∈ R4

+, for all t ∈ (−∞,∞). Furthermore,
it follows that any positive solution of the deterministic system that starts in the
closed unit ball D(∞), grows and becomes bounded within the closed unit ball
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for all time t ≥ t0, as signified by (2.1). In other words, D(∞) = B̄
(−∞,∞)

R4
+,

(
0, Bµ

)
is also positive self-invariant space for the deterministic system (1.1)–(1.4).

The Remark 2.1 suggests that the character of the stochastic disease dynamics
in this paper is more profound than [56]. For instance, there is tendency for the
noises in the dynamics to dive the population to extinction etc. Moreover, some
nontrivial factors influencing the behavior of the disease dynamics are identified
namely: (1) the presence or absence of noises in the dynamics, (2) the major source
of noise in the dynamics: disease transmission and/or natural death rates, and (3)
the magnitude of the intensities of the noises in the disease dynamics etc. Given
limited space, (1)&(2) are given full treatment in this paper.

3. Existence of infection-free equilibrium
Let the equilibria of the two delayed systems (1.1)–(1.4) and (1.8)–(1.11) be denoted
generally by E = (S∗, E∗, I∗). For infection free steady state, E = I = R = 0. Note
that the existence of a disease free steady state solution for the stochastic system
is determined by the intensities of the white noises in the system σi, i = S,E, I, β.
For easy reference, the following result characterizes the existence of the disease-free
steady solution of the systems: (1.1)–(1.4) and (1.8)–(1.11).

Theorem 3.1.
1. There exists a disease-free steady state E0 = (S∗

0 , 0, 0) for the deterministic
system (1.1)–(1.4), where S∗

0 = B
µ ≡ 1.

2. When σi ≥ 0, i = E, I, β and σS = 0, there exists a disease-free steady state
solution E0 = (S∗

0 , 0, 0), for the stochastic system (1.8)–(1.11), where S∗
0 = B

µ ≡
1.

3. When σi ≥ 0, i = E, I, β and σS > 0, the system (1.8)–(1.11) does not have a
disease-free steady state solution.

Proof. The results follow immediately by applying standard methods of finding
equilibria for stochastic systems.

Remark 3.1. Theorem 3.1[1.] signifies that the deterministic system (1.1)–(1.4)
always has a disease free equilibrium given by E0. Theorem 3.1[2.] and Theo-
rem 3.1[3.] signify that regardless of the intensities σi ≥ 0, i = E, I, β of the noises
in the natural death rates of the exposed, infectious and removal states, and also
from the disease transmission rate, there exists a steady state disease-free popula-
tion E0, which is exactly the same as that of the deterministic system, provided
the intensity of the white noise in the natural death rate of the susceptible state is
zero. That is, σS = 0.

These observations suggest that the source: disease transmission rate or natural
death rates, and also the magnitude of the intensities of the noises in the stochastic
system (1.8)–(1.11) have bearings on the asymptotic behavior of the paths of the
stochastic system (1.8)–(1.11) near the infection-free steady state E0.

In the following, the asymptotic stability of the disease free equilibrium, E0, of
the deterministic system (1.1)–(1.4) and the stochastic system (1.8)–(1.11), when-
ever σS = 0 are investigated and compared. The deterministic and stochastic
versions of the Lyapunov functionals techniques [59,60,62] are utilized to establish
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the stability results. The paths of the systems: (1.1)–(1.4) and (1.8)–(1.11) are
transformed using E0 = (S∗

0 , 0, 0), S
∗
0 = B

µ ≡ 1 as follows:

U(t) = S(t)− S∗
0 , V (t) = E(t), W (t) = I(t). (3.1)

By employing the transformation in (3.1) to the system (1.8)–(1.10), the following
system is obtained:

dU(t) =

[
− βU(t)

∫ h1

t0

fT1(s)e
−µssG(W (t− s))ds− µU(t)

+ α

∫ ∞

t0

fT3
(r)W (t− r)e−µrdr

]
dt− σS (S∗

0 + U(t)) dwS(t)

− σβ (S
∗
0 + U(t))

∫ h1

t0

fT1
(s)e−µvsG(W (t− s))dsdwβ(t),

(3.2)

dV (t) =

[
β (S∗

0 + U(t))

∫ h1

t0

fT1
(s)e−µsG(W (t− s))ds− µV (t)

−β
∫ h2

t0

fT2
(u) (S∗

0+U(t−u))
∫ h1

t0

fT1
(s)e−µes−µuG(W (t−s−u))dsdu

]
dt

−σEV (t)dwE(t) + σβ (S
∗
0 + U(t))

∫ h1

t0

fT1
(s)e−µvsG(W (t− s))dsdwβ(t)

−σβ
∫ h2

t0

fT2
(u) (S∗

0+U(t−u))
∫ h1

t0

fT1
(s)e−µes−µuG(W (t−s−u))dsdudwβ(t),

(3.3)

and

dW (t)=

[
β

∫ h2

t0

fT2
(u) (S∗

0 + U(t− u))

∫ h1

t0

fT1
(s)e−µvs−µuG(W (t− s− u))dsdu

− (µ+ d+ α)W (t)

]
dt− σIW (t)dwI(t)

+σβ

∫ h2

t0

fT2
(u) (S∗

0+U(t−u))
∫ h1

t0

fT1
(s)e−µvs−µuG(W (t−s−u))dsdudwβ(t).

(3.4)

The lemmas that follow in this section will be utilized to establish the asymptotic
results for the system (1.8)–(1.11) with respect to the steady state solution E0. Note
that from Assumption 1.1 the nonlinear function G is bounded. Therefore, suppose

G∗ = sup
z>0

G(z), (3.5)

then it is easy to see that 0 ≤ G(z) ≤ G∗. It follows further from Assumption 1.1
that given limI→∞G(I) = C, if G is strictly monotonic increasing then G∗ ≤ C.
Also, if G is strictly monotonic decreasing then G∗ ≥ C.

Recall the following lemma in the earlier study [63, Lemma 4.1]. Also, from
(1.14) and (3.1), we organize all notations used in the subsequent sections of this
paper as follows.
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Notation 3.1.

(1.) We denote by

Y (t) = (S(t), E(t), I(t), R(t))T , X(t) = (S(t), E(t), I(t))T ,

N(t) = S(t) + E(t) + I(t) +R(t).

x(t) = (U(t), V (t),W (t))T = (S(t)− S∗
0 , E(t), I(t))T .

(3.6)

(2.) Note from (3.6) that for each t ∈ R+, x(t) is the transformed or shifted value of
X(t). Also, x = (U, V,W )T = (S−S∗

0 , E, I)
T denotes a point on the functions

vector space
[
C1(R× R+,R+)

]3 ≡ C1(R×R+,R+)×C1(R×R+,R+)×C1(R×
R+,R+). That is, x = (U, V,W )T = (S − S∗

0 , E, I)
T ∈

[
C1(R× R+,R+)

]3.

(3.) For convenience, the notations “x(t)” and “x” are commonly used interchange-
able throughout this paper. To prevent “abuse” of notation, an explicit note
will be made, whenever x refers to a point in the functions vector space, and
it is used to define a Lyapunov functional.

Lemma 3.1. Let V1 ∈ C2,1(R3 × R+,R+), defined by

V1(x(t), t) = (S(t)− S∗ + E(t))2 + c(E(t))2 + (I(t))2,

x(t) = (S(t)− S∗, E(t), I(t))T , (3.7)

where c is a positive constant. There exists two increasing positive real valued
functions ϕ1, and ϕ2, such that V1 satisfies the inequality

ϕ1(||x(t)||2) ≤ V1(x(t), t) ≤ ϕ2(||x(t)||2). (3.8)

Proof. Using the notations in X(t) − E0 = (U(t), V (t),W (t)), observe that V1
can be expressed as follows

V1(x, t) =

(
c

2 + c

)
U2(t)+

 1√
c+2
2

U(t) +

√
c+ 2

2
V (t)

2

+
c

2
V 2(t)+W 2(t). (3.9)

It is easy to see from (3.9) and using (1.14) that

V1(x, t) ≥
(

c

2 + c

)
||X(t)− E0||2 ≡ ϕ1(||X(t)− E0||2). (3.10)

Also, from (3.9) it is easy to see that

V1(x, t) ≤ (2 + c) ||X(t)− E0||2 ≡ ϕ2(||X(t)− E0||2). (3.11)

Note that Lemma 3.1, (3.8) signifies that the function V (x, t) in (3.7) is positive
definite and decrescent. This function will be used to create Lyapunov functionals,
and also to examine stochastic stability in probability, of the equilibria of the system
(1.8)–(1.11). See [67].
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4. Stochastic stability in the absence of noise in the
natural deathrate of all states

Recall Theorem 2.2(a) asserts that the unit ball D(∞) is a positive self-invariant
space for the stochastic system (1.8)–(1.11), whenever the intensities 0 < σβ < ∞
and σi = 0, i = S,E, I. In this section, the stochastic stability of E0 in D(∞) is
investigated, whenever 0 < σβ < ∞ and σi = 0, i = S,E, I, β. The following result
estimates the stochastic derivative of the Lyapunov function in (3.7) in D(∞),
whenever 0 < σβ <∞ and σi = 0, i = S,E, I, β.

Lemma 4.1. Let the hypothesis of Theorem 2.2(a) be satisfied, i.e. 0 < σβ < ∞
and σi = 0, i = S,E, I, β. The differential operator [62,63] applied to the Lyapunov
function V1 in (3.7) with respect to the system of stochastic differential equation
(1.8)–(1.11) is given by

dV1(x, t)

=LV1(x, t)dt− 2σS(U(t) + V (t))(S∗
0 + U(t))dwS(t)

− 2σE(U(t)V (t) + (c+ 1)V 2(t))dwE(t)− 2σIW
2(t))dwI(t)

− 2cσβ(S
∗
0 + U(t))V (t)

∫ h1

t0

fT1(s)e
−µvsG(W (t− s))dsdwβ

− 2σE [U(t) + (c+ 1)V (t) +W (t)]

×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0 + U(t− u))G(W (t− s− u))dsdudwβ(t),

(4.1)

where for some positive valued function K̃(µ) that depends on µ, the drift part LV1
of dV1 in (4.1), satisfies the inequality

LV1(x, t) ≤ (2βS∗
0 + β + α+ 2

µ

K̃(µ)2
− 2µ)U2(t)

+
[
2µK̃(µ)2 + α+ β(2S∗

0 + 1) + cβ(3S∗
0 + 1)− 2(1 + c)µ

]
V 2(t)

+2[βS∗
0 − (µ+ d+ α)]W 2(t)

+2α

∫ ∞

t0

fT3
(r)e−2µrW 2(t− r)dr

+[2βS∗
0 (1+c)+σ

2
β(S

∗
0 )

2(4c+2(1−c)2)]
∫ h1

t0

fT1
(s)e−2µsG2(W (t−s))ds

+
[
βS∗

0 (4 + c) + β(S∗
0 )

2(2 + c) + σ2
β(S

∗
0 )

2(4c+ 10)
]

×
∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−2µ(s+u)G2(W (t− s− u))dsdu.

(4.2)

Proof. The computation of the drift part LV ( see the references [60, 62]) of the
differential operator dV applied to the Lyapunov function V1 in (3.7) with respect
to the system of stochastic differential equation (1.8)–(1.11) gives the following:

LV1(x, t)
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=− 4µU(t)V (t)− 2µU2(t)− 2(1 + c)µV 2(t)− 2(µ+ d+ α)W 2(t)

+ 2α(U(t) + V (t))

∫ ∞

t0

fT3
(r)e−µrW (t− r)dr

+ 2β [S∗
0U(t)+(1+c)S∗

0V (t)+cV (t)U(t)]

∫ h1

t0

fT1(s)e
−µvsG(W (t− s))ds

− 2β [U(t) + (1 + c)V (t)−W (t)]

×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0 + U(t− u))G(W (t− s− u))dsdu

+ σ2
βc (S

∗
0 + U(t))

2

(∫ h1

t0

fT1
(s)e−µvsG(W (t− s))ds

)2

+ σ2
β(c+2)

(∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0+U(t−u))G(W (t−s−u))dsdu

)2

+ σ2
β(1− c) (S∗

0 + U(t))

(∫ h1

t0

fT1
(s)e−µvsG(W (t− s))ds

)

×

(∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−(µvs+µu)(S∗
0 + U(t− u))G(W (t− s− u))dsdu

)
.

(4.3)
Applying Theorem 2.2, Cauchy − Schwarz, Hölder inequalities, (8.1) and the fol-
lowing algebraic inequality

2ab ≤ a2

g(c)
+ b2g(c), (4.4)

where a, b, c ∈ R, and the function g is such that g(c) > 0, to estimate the terms
with integral signs in (4.3), one can see the following:

2α(U(t) + V (t))

∫ ∞

t0

fT3(r)e
−µrW (t− r)dr

≤αU2(t) + αV 2(t) + 2α

∫ ∞

t0

fT3
(r)e−2µrW 2(t− r)dr,

(4.5)

2β [S∗
0U(t) + (1 + c)S∗

0V (t) + cV (t)U(t)]

∫ h1

t0

fT1
(s)e−µsG(W (t− s))ds

≤βS∗
0U

2(t) + βS∗
0 (1 + 2c)V 2(t) + 2βS∗

0 (1 + c)

∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds,

(4.6)
− 2β [U(t) + (1 + c)V (t)−W (t)]

×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0 + U(t− u))G(W (t− s− u))dsdu

≤β(S∗
0 + 1)U2(t) + (1 + c)β(S∗

0 + 1)V 2(t) + 2βS∗
0W

2(t)

+
[
βS∗

0 (4+c)+β(S
∗
0 )

2(2+c)
]∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu,

(4.7)
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σ2
βc (S

∗
0 + U(t))

2

(∫ h1

t0

fT1(s)e
−µvsG(W (t− s))ds

)2

≤4cσ2
β(S

∗
0 )

2

∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds,

(4.8)

σ2
β(c+2)

(∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−(µvs+µu)(S∗
0+U(t−u))G(W (t−s−u))dsdu

)2

≤4(c+ 2)σ2
β(S

∗
0 )

2

∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu,

(4.9)

σ2
β(1− c) (S∗

0 + U(t))

(∫ h1

t0

fT1(s)e
−µvsG(W (t− s))ds

)

×

(∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−(µvs+µu)(S∗
0 + U(t− u))G(W (t− s− u))dsdu

)

≤2σ2
β(1− c)2(S∗

0 )
2

∫ h1

t0

fT1(s)e
−2µsG2(W (t− s))ds

+ 2σ2
β(S

∗
0 )

2

∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu.

(4.10)

The result (4.2) follows by applying (4.6)–(4.10) and the inequality (4.4) into (4.3).
That is, LV1(x, t) becomes

LV1(x, t)

≤(2βS∗
0 + β + α+ 2

µ

K̃(µ)2
− 2µ)U2(t)

+
[
2µK̃(µ)2 + α+ β(2S∗

0 + 1) + cβ(3S∗
0 + 1)− 2(1 + c)µ

]
V 2(t)

+ 2[βS∗
0 − (µ+ d+ α)]W 2(t)

+ 2α

∫ ∞

t0

fT3
(r)e−2µrW 2(t− r)dr

+ [2βS∗
0 (1 + c) + σ2

β(S
∗
0 )

2(4c+ 2(1− c)2)]

∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds

+
[
βS∗

0 (4 + c) + β(S∗
0 )

2(2 + c) + σ2
β(S

∗
0 )

2(4c+ 10)
]

×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu,

(4.11)
where K̃(µ) = g(µ) and g is defined in (4.4).

The following set of lemmas characterize the stochastic asymptotic stability
of E0 in the absence of noises from the natural death rates µ in the susceptible,
exposed, infectious, and removal states. That is, whenever 0 < σβ < ∞ and
σi = 0, i = S,E, I, β. In this case, the only source of variability is the disease
transmission rate.
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One other major objective of this study is to understand the role of the delays
in the stochastic system on the stability of equilibria. This goal is not apparent
when the delays Ti, i = 1, 2, 3 are distributed, and averaged in the system (1.8)–
(1.11)(cf. [57]). Thus, the system (1.8)–(1.11) will be transformed into a finite
constant delay system, using a centering density function for the random variables
Ti, i = 1, 2, 3 in (1.8)–(1.11).

Assume that the incubation delays T1 and T2, and the immunity delay period
T3 are constants and finite. This is equivalent to the special case of letting the
probability density functions fTi , i = 1, 2, 3 of the random variables T1, T2 and T3
in 8 (A) be the dirac-delta function∗. That is,

fTi
(s) = δ(s− Ti) =

+∞, s = Ti,

0, otherwise,
, i = 1, 2, 3. (4.12)

Moreover, under the assumption that T1 ≥ 0, T2 ≥ 0 and T3 ≥ 0 are constant, the
following expectations can be written as E(e−2µ(T1+T2)) = e−2µ(T1+T2), E(e−2µT1) =
e−2µT1 and E(e−2µT3) = e−2µT3 .

Theorem 4.1. Let the hypotheses of Theorem 2.2, Theorem 3.1[2.] and Lemma 4.1
be satisfied, where 0 < σβ < ∞ and σi = 0, i = S,E, I. Also, let T1, T2 and T3 be
constant positive values. There exists a Lyapunov functional

V (x, t) = V1(x, t) + V12(x, t), (4.13)

where V1 ∈ C2,1(R3 × R+,R+) is defined by (3.7), and the functional component
V12 is defined over the functions vector space V12 :

[
C1(R,R+)

]3 → R+, such that
x = (S − S∗, E, I) → V12(x, t) ∈ R+, ∀t ∈ R+. Moreover, V12 is given as follows:

V12(x, t) =2αe−2µT3

∫ t

t−r

I2(v)dv

+ [2βS∗
0 (1 + c) + σ2

β(S
∗
0 )

2(4c+ 2(1− c)2)]e−2µT1

∫ t

t−s

G2(I(v))dv

+
[
βS∗

0 (4 + c) + β(S∗
0 )

2(2 + c) + σ2
β(S

∗
0 )

2(4c+ 10)
]

× e−2µ(T1+T2)

∫ t

t−(T1+T2)

G2(I(v))dv.

(4.14)
Furthermore, there exists threshold values R∗

1, R∗
0, U0 and V0 defined as follows:

R∗
1 = 4R∗

0 +
β (S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)
+ 6

σ2
β (S

∗
0 )

2

(µ+ d+ α)
, (4.15)

R∗
0 =

βS∗
0

(µ+ d+ α)
, (4.16)

U0 =
2βS∗

0 + β + α+ 2 µ

K̃(µ)2

2µ
, (4.17)

∗Note that to minimize notations Ti, i = 1, 2, 3, are abusively used as the random variables
and the single observations of the random variable.
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and

V0 =

(
2µK̃(µ)2 + α+ β (2S∗

0 + 1)

2µ
, (4.18)

and some positive constants ϕ, ψ, and φ, such that under the assumptions that
R∗

0 < 1, U0 ≤ 1, and V0 ≤ 1, and

Tmin ≥ 1

2µ
log

R∗
1

1−R∗
0

, (4.19)

where
Tmin = min (T1, T1 + T2, T3), (4.20)

the drift part LV of the functional Itô differential operator (cf. [13]) dV applied to
V with respect to the stochastic dynamic system (1.8)–(1.11) satisfies the following
inequality:

LV (x, t) ≤ −
(
ϕU2(t) + ψV 2(t) + φW 2(t)

)
. (4.21)

In addition, the infection-free equilibrium E0 of the stochastic dynamic system (1.8)–
(1.11) is stochastically asymptotically stable in the large in the unit ball D(∞).
Moreover, the steady state E0 is exponentially mean square stable.

Proof. By applying the translation properties of the Dirac-Delata function (4.12),
it can be seen from Lemma 4.1 that the drift part LV of the functional Itô differential
operator (cf. [13]) dV applied to the Lyapunov functional defined in (4.13), (3.7)
and (4.14) with respect to system (1.8)–(1.11) leads to the following:

LV (x, t)=LV1(x, t)

+2αe−2µT3W 2(t)

+[2βS∗
0 (1 + c) + σ2

β(S
∗
0 )

2(4c+ 2(1− c)2)]e−2µT1G2(W (t))

+
[
βS∗

0 (4 + c) +β(S∗
0 )

2(2 + c)+σ2
β(S

∗
0 )

2(4c+ 10)
]
e−2µ(T1+T2)G2(W (t))

−2αe−2µT3W 2(t− T3)

−[2βS∗
0 (1 + c) + σ2

β(S
∗
0 )

2(4c+ 2(1− c)2)]e−2µT1G2(W (t− T1))

−
[
βS∗

0 (4 + c) + β(S∗
0 )

2(2 + c) + σ2
β(S

∗
0 )

2(4c+ 10)
]

×e−2µ(T1+T2)G2(W (t− T1 − T2)). (4.22)

It follows that under the assumptions for 0 < σβ < ∞ and σi = 0, i = S,E, I in
Theorem 3.1[2.], and for some suitable choice of the positive constant c, it is easy to
see from (4.2), (4.22), the statements of Assumption 1.1, A5 (i.e. G2(x) ≤ x2, x ≥ 0)
and some further algebraic manipulations and simplifications that

LV (x, t) ≤ −
(
ϕU2(t) + ψV 2(t) + φW 2(t)

)
, (4.23)

where,

ϕ = 2µ(1− U0), (4.24)

ψ = 2µ(1− V0)− 2µc

(
1− β(3S∗

0 + 1) + σ2
E

2µ

)
, (4.25)

φ = 2(µ+ d+ α)−
[
2βS∗

0 + σ2
I + 2αe−2µT3 + 2

(
βS∗

0 + σ2
β(S

∗
0 )

2
)
e−2µT3
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+
(
4βS∗

0+2β(S∗
0 )

2+10σ2
β(S

∗
0 )

2
)
e−2µ(T1+T2)

]
−c(3βS∗

0 + β(S∗
0 )

2 + 4σ2
β(S

∗
0 )

2)

−2c2σ2
β(S

∗
0 )

2,

≥ 2(µ+ d+ α)
[
1−R∗

0 −R∗
1e

−2µTmax
]
− c(3βS∗

0 + β(S∗
0 )

2 + 4σ2
β(S

∗
0 )

2)

−2c2σ2
β(S

∗
0 )

2. (4.26)

and R∗
0 and R∗

1 are defined in (4.15)–(4.16). It is now easy to see that under the
assumptions of R∗

0, R∗
1, U0, and V0 in the hypothesis and also for a suitable choice

of the positive constant c it follows that ϕ, ψ, and φ are positive constants and
(4.21) follows immediately. Also, the stochastic stability results follows very easily
by applying the comparison stability results (cf. [60, 67]).

The following result for the deterministic system (1.1)–(1.4) will be useful to
compare and obtain insight about the influence of the noises and delays in the
stochastic system (1.8)–(1.11), whenever the delays Ti, i = 1, 2, 3 in both systems
are constant, and σi = 0, i = S,E, I,R, and σβ > 0.

Theorem 4.2. Let the hypotheses of Theorem 2.2, Theorem 3.1[1.] and Lemma 4.1
be satisfied. Also, let T1, T2 and T3 be constant positive values. There exists a
Lyapunov functional

V (x, t) = V1(x, t) + V13(x, t), (4.27)
where V1 ∈ C2,1(R3 × R+,R+) is defined by (3.7) and the functional component
V13 is defined over the functions vector space V13 :

[
C1(R,R+)

]3 → R+, such that
x = (S − S∗, E, I) → V13(x, t) ∈ R+. Moreover, V13 is given as follows:

V13(x, t) =2αe−2µT3

∫ t

t−T3

I2(v)dv

+ [2βS∗
0 (1 + c)]e−2µT1

∫ t

t−T1

G2(I(v))dv

+
[
βS∗

0 (4 + c) + β(S∗
0 )

2(2 + c)
]
e−2µ(T1+T2)

∫ t

t−(T1+T2)

G2(I(v))dv.

(4.28)
Furthermore, there exists threshold values R̂∗

1, R̂∗
0, Û0 and V̂0 defined as follows:

R̂∗
1 =

βS∗
0K̂

∗
0 + α

(µ+ d+ α)
, (4.29)

R̂∗
0 =

βS∗
0

(µ+ d+ α)
, (4.30)

Û0 =
2βS∗

0 + β + α+ 2 µ

K̃(µ)2

2µ
, (4.31)

and
V̂0 =

(2µK̃(µ)2 + α+ β(2S∗
0 + 1))

2µ
, (4.32)

and some positive constants ϕ, ψ, and φ, such that, under the assumptions that
R̂∗

0 < 1, Û0 ≤ 1, and V̂0 ≤ 1, and

Tmin ≥ 1

2µ
log

R̂∗
1

1− R̂∗
0

, (4.33)
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where
Tmin = min (T1, T1 + T2, T3), (4.34)

the deterministic differential operator V̇ applied to V with respect to the determin-
istic dynamic system (1.1)–(1.4) satisfies the following inequality:

V̇ (x, t) ≤ −
(
ϕU2(t) + ψV 2(t) + φW 2(t)

)
. (4.35)

Furthermore, the disease free steady state E0 is globally uniformly asymptotically
stable in D(∞). Moreover, it is exponentially stable.

Proof. (cf. [56]).

Remark 4.1.

1. Given E0 = (S∗
0 , 0, 0) = (1, 0, 0), it follows that (4.30) reduces to

R̂∗
0 =

βS∗
0

(µ+ d+ α)
=

β

(µ+ d+ α)
. (4.36)

The parameter R̂∗
0 is called the basic reproduction number (BRN) for the vector-

borne disease in the absence of any noise in the system. It is interpreted as
the average number of secondary infected cases given by the term βS∗

0 = β
that result from one infectious individual placed in a complete infection-free
population, E0 = (1, 0, 0), over the effective average lifespan of an infectious
individual given by 1

(µ+d+α) . Note 1
(µ+d+α) is the effective average lifespan of a

person in the population, where people can either die naturally at rate µ or die
from the disease at the rate d, or recover from the disease at rate α.
Observe from (4.16) that when the intensity of noise in the system satisfies
0 < σβ < ∞, then the BRN in (4.36) is exactly the same BRN R∗

0 in (4.16). In
addition, observe that the other threshold values in Theorem 4.1, (4.15)–(4.18)
and Theorem 4.2 (4.29)–(4.32) are also related as follows:

U0 = k1βS
∗
0

1

µ
+

1

2
α
1

µ
+

µ

K̃(µ)2
1

µ
= Û0, (4.37)

and

V0 = k1βS
∗
0

1

µ
+

1

2
α
1

µ
+
(
µK̃(µ)2

) 1

µ

= V̂0 (4.38)

where k1 = 1 + 1
2S∗

0
.

These observations suggests that the occurrence of noise in the disease transmis-
sion rate with intensity 0 < σβ < ∞, does not affect the BRN and some of the
other threshold values for disease control or disease eradication.

2. Also, observe from Theorem 4.1 and Theorem 4.2, that when the noise intensity
0 < σβ <∞, the delay threshold conditions in (4.19) and (4.33), satisfy

Tmin ≥ 1

2µ
log

R∗
1

1−R∗
0

>
1

2µ
log

R̂∗
1

1− R̂∗
0

. (4.39)
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The relation (4.39), suggests that, the intensity 0 < σβ < ∞ inflates the mini-
mum threshold bounds for the delays in the system, required for the stability of
E0, and hence for disease eradication.
Thus, from the items (1.) and (2.) above it is easy to see that increasing or
decreasing the intensity 0 < σβ <∞ of the noise in the disease transmission rate
will not make much difference to the stability conditions of the infection-free
steady state E0 of the population.

3. The delay condition for stochastic stability of E0 in (4.19) can be rewritten as
follows

Tmin ≥ 1

2µ
log

R∗
1

1−R∗
0

=
1

µ
log

(
R∗

1

1−R∗
0

) 1
2

. (4.40)

The condition (4.40) signifies that E0 is stochastically stable, if both the total
incubation period T1+T2 of the disease inside the vector and human, and the ac-

quired immunity period T3 of the disease are larger than the fraction log
(

R∗
1

1−R∗
0

) 1
2

of the average lifespan 1
µ of the human being in the population in the absence of

disease. Since in practice 1
µ is significantly larger than either of T1 + T2 and T3,

it suffices that

0 < log

(
R∗

1

1−R∗
0

) 1
2

<< 1. (4.41)

4. Theorem 4.1 and Theorem 4.2 signify that in the absence of noise in the natural
deathrate of all states (i.e σi, i ∈ {S,E, I,R}), the noise driven system (1.8)–
(1.11), and the corresponding deterministic system (1.1)–(1.4) have the same
infection-free steady state E0. Moreover, all trajectories for both systems that
start near E0, remain near E0, for all time t ≥ t0, and almost surely converge to
E0 over sufficiently long time, whenever the threshold conditions for Theorem 4.1
and Theorem 4.2 are satisfied. That is, 1 ≥ R∗

0 = R̂∗
0, 1 ≥ U0 = Û0 and 1 ≥ V0 =

V̂0, 0 < σβ <∞.
Since the relation (4.41) holds, whenever 0 < σβ <∞, suggesting that the delay
threshold parameters of the noise driven system are inflated by the intensity
0 < σβ < ∞, it is easy to see that certain magnitudes of the intensity, (i.e.
∃σβ >> 1), can lead to very large lower bounds for the delays in the delay
threshold condition (4.19), and consequently the condition (4.19) is violated,
and E0 no longer stable.
In fact, using (4.41) and (4.15)–(4.18), a region denoted D0 (σS , σE , σI , σβ), in
the space for the intensities (σS , σE , σI , σβ) ∈ [0,∞)4, can be constructed, where
the infection-free steady state E0, remains stable with respect to both systems
(1.8)–(1.11) and (1.1)–(1.4). This region D0 (σS , σE , σI , σβ) is defined in the
following theorem.

Theorem 4.3. Suppose the hypotheses of Theorem 4.1 and Theorem 4.2 hold. If
0 < σβ <∞ and σi = 0, i ∈ {S,E, I,R}, then the noise driven system (1.8)–(1.11),
and the corresponding deterministic system (1.1)–(1.4) have the same infection-
free steady state E0. Moreover, all trajectories for both systems that start near E0,
remain near E0, for all time t ≥ t0, and almost surely converge to E0 over sufficiently
long time, whenever the threshold conditions in Theorem 4.1 and Theorem 4.2 are
satisfied. That is, whenever 1 ≥ R∗

0 = R̂∗
0, 1 ≥ U0 = Û0 and 1 ≥ V0 = V̂0, hold.
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In addition, there exists a region D0 (σS , σE , σI , σβ) in the vector space [0,∞)4,
defined as follows

D0 (σS , σE , σI , σβ) = DS,E,I
0 (σS , σE , σI , σβ) ∩Dβ

0 (σS , σE , σI , σβ) , (4.42)

where

DS,E,I
0 (σS , σE , σI , σβ) =

{
(σS , σE , σI , σβ) ∈ [0,∞)4|σi = 0, i = S,E, I

}
, (4.43)

and

Dβ
0 (σS , σE , σI , σβ)

=

{
(σS , σE , σI , σβ) ∈ [0,∞)4

∣∣∣∣∣16 1

(S∗
0 )

2 (µ+ d+ α)
(
1− R̂∗

0

)
− 1

6

1

(S∗
0 )

2 (µ+ d+ α)

(
4R̂∗

0 +
β (S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)

)

< σ2
β << e2

1

6

1

(S∗
0 )

2 (µ+ d+ α)
(
1− R̂∗

0

)
− 1

6

1

(S∗
0 )

2 (µ+ d+ α)

(
4R̂∗

0 +
β (S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)

)}
. (4.44)

And it follows that for any (σS , σE , σI , σβ) ∈ D0 (σS , σE , σI , σβ), the stability condi-
tions for E0 in Theorem 4.2, given by R̂∗

0 ≡ R∗
0 ≤ 1, Û0 ≡ U0 ≤ 1 and V̂0 ≡ V0 ≤ 1,

remain valid for the stochastic stability of E0 characterised in Theorem 4.1.
In other words, for any intensities (σS , σE , σI , σβ) ∈ D0 (σS , σE , σI , σβ), the

stability conditions for E0, in the absence of noise in the system, characterized in
Theorem 4.2, and given by R̂∗

0 ≡ R∗
0 ≤ 1, Û0 ≡ U0 ≤ 1 and V̂0 ≡ V0 ≤ 1, remain

valid for the stochastic stability of E0 characterized in Theorem 4.1.

Proof. The result follow by applying simple algebraic manipulations using (4.41)
and (4.15)–(4.18), to find bounds for 0 < σβ <∞.

5. Stochastic stability in the absence of noise exclu-
sively in the natural deathrate of the susceptible
state

Recall Theorem 2.2(b) asserts that when at least one of 0 < σi <∞, i = E, I,R, S,
then the unit ball D(∞) is no longer a positive self-invariant set for the stochastic
system (1.8)–(1.11). Thus, the unique positive stochastic solution for (1.8)–(1.11)
lies in X(t) ∈ R3

+. Also recall Theorem 3.1 (2.) asserts that when σS = 0 and
0 < σi < ∞, i = E, I,R, then the infection-free steady state E0 exists, and it is
exactly the same infection-free steady state for the deterministic system (1.1)–(1.4).
The following result estimates the stochastic derivative of the Lyapunov function
in (3.7) in R3

+, whenever 0 < σi < ∞, i = S,E, I,R. The supremum G∗ in (3.5) is
used.

Lemma 5.1. Let the hypothesis of Theorem 2.2(b) be satisfied. That is, 0 < σi <
∞, i = S,E, I,R. The differential operator [62,63] applied to the Lyapunov function
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V1 in (3.7) with respect to the system of stochastic differential equation (1.8)–(1.11)
is given by

dV1 =LV1dt− 2σS(U(t) + V (t))(S∗
0 + U(t))dwS(t)

− 2σE(U(t)V (t) + (c+ 1)V 2(t))dwE(t)− 2σIW
2(t))dwI(t)

− 2cσβ(S
∗
0 + U(t))V (t)

∫ h1

t0

fT1(s)e
−µvsG(W (t− s))dsdwβ

− 2σE [U(t) + (c+ 1)V (t) +W (t)]

×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0+U(t−u))G(W (t−s−u))dsdudwβ(t),

(5.1)

where for some positive valued function K̃(µ) that depends on µ, the drift part LṼ1
of dV1 in (5.1), satisfies the inequality

LṼ1(x, t) ≤

(
βS∗

0 + β + α+ 2
µ

K̃(µ)2
+ cβ (G∗)E

(
e−2µvT1

)
+ σ2

β

[
2 + (1− c)2

]
(G∗)E

(
e−2µvT1

)
− 2µ

)
U2(t)

+
[
2µK̃(µ)2 + α+ (1 + c)βS∗

0 + (1 + 2c)β − 2(1 + c)µ
]
V 2(t)

+ [βS∗
0 − 2(µ+ d+ α)]W 2(t)

+ 2α

∫ ∞

t0

fT3(r)e
−2µrW 2(t− r)dr

+
[
βS∗

0 (2 + c) + σ2
βS

∗
0 (1− c)2

] ∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds

+

[
2β (S∗

0 )
2

(
2 +

1

S∗
0

+ c

)
+ σ2

β (S
∗
0 )

2
+ σ2

β(c+ 2)

]
×
∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu

+

[
2

(
2 +

1

S∗
0

+c

)
β (G∗)

2
E
(
e−2µT1

)
+(2c+5)σ2

β (G
∗)

2
E
(
e−2µT1

)]
×
∫ h2

t0

fT2
(u)e−2µuU2(t− u)du

+σ2
S (S∗

0 + U(t))
2
+ σ2

E(c+ 1)V 2(t) + σ2
IW

2(t).

(5.2)

Proof. When 0 < σi < ∞, i = S,E, I,R, the drift part LV (cf. [60, 62]) of the
differential operator dV applied to the Lyapunov function V1 in (3.7) with respect
to the system of stochastic differential equation (1.8)–(1.11) is denoted LṼ1, and is
given by

LṼ1(x, t) = LV1 + σ2
S (S∗

0 + U(t))
2
+ σ2

E(c+ 1)V 2(t) + σ2
EW

2(t), (5.3)

where LV1 is given in (4.3) .
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In R3
+, we consider a different estimation of (4.3) as follows. Applying Theo-

rem 2.2, Cauchy−Schwarz, Hölder inequalities, (8.1), and the algebraic inequality
(4.4) to estimate the terms with integral signs in (4.3), one can see the following:

2α(U(t) + V (t))

∫ ∞

t0

fT3(r)e
−µrW (t− r)dr

≤αU2(t) + αV 2(t) + 2α

∫ ∞

t0

fT3
(r)e−2µrW 2(t− r)dr,

(5.4)

2β [S∗
0U(t) + (1 + c)S∗

0V (t) + cV (t)U(t)]

∫ h1

t0

fT1
(s)e−µvsG(W (t− s))ds

≤[βS∗
0 + cβ(G∗)2E(e−2µT1)]U2(t) + [βS∗

0 (1 + c) + cβ]V 2(t)

+ (2 + c)βS∗
0

∫ h1

t0

fT1(s)e
−2µsG2(W (t− s))ds,

(5.5)

− 2β [U(t) + (1 + c)V (t)−W (t)]

×
∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−(µvs+µu)(S∗
0 + U(t− u))G(W (t− s− u))dsdu

≤βU2(t) + (1 + c)βV 2(t) + βS∗
0W

2(t)

+

[
2

(
2+

1

S∗
0

+c

)
β(S∗

0 )
2

]∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−2µ(s+u)G2(W (t−s−u))dsdu

+ 2

(
2 +

1

S∗
0

+ c

)
β(G∗)2E(e−2µT1)

∫ h2

t0

fT2
(u)e−2µuU2(t− u)du,

(5.6)

σ2
βc (S

∗
0 + U(t))

2

(∫ h1

t0

fT1
(s)e−µvsG(W (t− s))ds

)2

≤2cσ2
β(S

∗
0 )

2

∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds+ 2cσ2

β(G
∗)2E(e−2µT1)U2(t),

(5.7)

σ2
β(c+2)

(∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−(µvs+µu)(S∗

0+U(t−u))G(W (t−s−u))dsdu

)2

≤2(c+ 2)σ2
β(S

∗
0 )

2

∫ h2

t0

∫ h1

t0

fT2(u)fT1(s)e
−2µ(s+u)G2(W (t− s− u))dsdu

+ 2(c+ 2)σ2
β(G

∗)2E(e−2µT1)

∫ h2

t0

fT2
(u)e−2µuU2(t− u)du,

(5.8)

σ2
β(1− c) (S∗

0 + U(t))

(∫ h1

t0

fT1
(s)e−µvsG(W (t− s))ds

)
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×

(∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−(µvs+µu)(S∗
0 + U(t− u))G(W (t− s− u))dsdu

)

≤σ2
β(1− c)2(S∗

0 )
2

∫ h1

t0

fT1
(s)e−2µsG2(W (t− s))ds

+ σ2
β(S

∗
0 )

2

∫ h2

t0

∫ h1

t0

fT2
(u)fT1

(s)e−2µ(s+u)G2(W (t− s− u))dsdu

+ σ2
β(1− c)2(G∗)2E(e−2µT1)U2(t)

+ σ2
β(1− c)2(G∗)2E(e−2µT1)

∫ h2

t0

fT2(u)e
−2µuU2(t− u)du. (5.9)

The result (5.2) follows by combining (5.4)–(5.9), followed by applying the inequality
(4.4).

The following result characterizes the stochastic stability of E0, whenever only
the intensity of the noise from the natural death rate of the susceptible state is
zero, that is, σS = 0, and 0 < σi < ∞, i ∈ {E, I, β}. To emphasize the role of the
delays on the stability of E0, the random variables Ti, i = 1, 2, 3 are assumed to
have the density functions (4.12). That is, the delays Ti, i = 1, 2, 3 are constant.
Theorem 5.1 presents the stochastic stability results for the case of constant and
finite constant delays in the system.

Theorem 5.1. Let the hypotheses of Theorem 2.2, Theorem 3.1[2.] and Lemma 5.1
be satisfied, where 0 < σi < ∞, i = E, I, β, and σS = 0. Also, let T1, T2 and T3 be
constant delay values. There exists a Lyapunov functional

Ṽ (x, t) = V1(x, t) + Ṽ12(x, t), (5.10)

where V1 ∈ C2,1(R3 × R+,R+) is defined by (3.7) and the functional component
Ṽ12 is defined over the functions vector space Ṽ12 :

[
C1(R,R+)

]3 → R+, such that
x = (S − S∗, E, I) → Ṽ12(x, t) ∈ R+. Moreover, Ṽ12 is given as follows:

Ṽ12(x, t)

=2αe−2µT3

∫ t

t−r

I2(v)dv

+
[
βS∗

0 (2 + c) + σ2
β (S

∗
0 )

2
(1− c)2

]
e−2µT1

∫ t

t−T1

G2(I(v))dv

+

[
2

(
1 +

1

S∗
0

+ c

)
β (S∗

0 )
2
+ 4σ2

β(c+ 2) (S∗
0 )

2
+ σ2

β (S
∗
0 )

2

]
× e−2µ(T1+T2)

∫ t

t−(T1+T2)

G2(I(v))dv

+

[
2

(
1 +

1

S∗
0

+ c

)
β (G∗)

2
+ σ2

β (G
∗)

2
(2c+ 5)

]
e−2µ(T1+T2)

∫ t

t−T2

U2(v)dv.

(5.11)
Furthermore, let the threshold values R∗

0 ≡ R̂∗
0,, U0 ≡ Û0 and V0 ≡ V̂0 be as defined

in (4.15)–(4.18) and (4.29)–(4.32). There exists threshold values R1, R0 and U1



1118 D. Wanduku

defined as follows:

R1 = R̂∗
0 +

(
2 +

1

S∗
0

)
β (S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)
+ 9

σ2
β (S

∗
0 )

2

(µ+ d+ α)
, (5.12)

R0 =
βS∗

0

(µ+ d+ α)
+

1
2σ

2
I

(µ+ d+ α)
= R̂∗

0 +
1
2σ

2
I

(µ+ d+ α)
, (5.13)

U1 =

(
2 + 1

S∗
0

)
β (G∗)

2
+ 4σ2

β (G
∗)

2

µ
, (5.14)

V ∗
0 = V0 +

1

2

σ2
E

µ
, (5.15)

and some positive constants ϕ1, ψ1, and φ1, such that under the assumptions that
R0 < 1, U0 < 1, and V ∗

0 ≤ 1, and

Tmin ≥ 1

2µ
log

R1

1−R0
, (5.16)

and
T1 ≥ 1

2µ
log

U1

1− U0
, (5.17)

where
Tmin = min (T1, T1 + T2, T3), (5.18)

the drift part LṼ of the functional Itô differential operator (cf. [13])dV applied to
V with respect to the stochastic dynamic system (1.8)–(1.11) satisfies the following
inequality:

LṼ (x, t) ≤ −
(
ϕ1U

2(t) + ψ1V
2(t) + φ1W

2(t)
)
. (5.19)

In addition, the infection-free equilibrium E0 of the stochastic dynamic system (1.8)–
(1.11) is stochastically asymptotically stable in the large in R3

+. Moreover, the steady
state E0 is exponentially mean square stable.

Proof. By applying the translation properties of the Dirac-Delta function (4.12),
it can be seen from Lemma 4.1 that the drift part LV of the functional Itô differential
operator (cf. [13])dV applied to the Lyapunov functional defined in (5.10), (3.7) and
(5.11), with respect to the system (1.8)–(1.11), leads to the following:

LṼ (x, t)

=LṼ1(x, t) + 2αe−2µT3W 2(t)

+
[
βS∗

0 (2 + c) + σ2
β (S

∗
0 )

2
(1− c)2

]
e−2µT1G2(W (t))

+

[
2

(
1 +

1

S∗
0

+c

)
β (S∗

0 )
2
+ 4σ2

β(c+ 2) (S∗
0 )

2
+ σ2

β (S
∗
0 )

2

]
e−2µ(T1+T2)G2(W (t))

+

[
2

(
1 +

1

S∗
0

+ c

)
β (G∗)

2
+ σ2

β (G
∗)

2
(2c+ 5)

]
e−2µ(T1+T2)U2(t)

− 2αe−2µT3W 2 (t− T3)

−
[
βS∗

0 (2 + c) + σ2
β (S

∗
0 )

2
(1− c)2

]
e−2µT1G2 (W (t− T1))

−
[
2

(
1 +

1

S∗
0

+ c

)
β (S∗

0 )
2
+ 4σ2

β(c+ 2) (S∗
0 )

2
+ σ2

β (S
∗
0 )

2

]
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× e−2µ(T1+T2)G2 (W (t− T1 − T2))

−
[
2

(
1 +

1

S∗
0

+ c

)
β (G∗)

2
+ σ2

β (G
∗)

2
(2c+ 5)

]
e−2µ(T1+T2)U2 (t− T2) . (5.20)

It follows that under the assumptions for 0 < σi < ∞, i = E, I, β, and σS = 0 in
Theorem 3.1[2.], and for some suitable choice of the positive constant c, it is easy to
see from (4.3), (5.20), the statements of Assumption 1.1, A5 (i.e. G2(x) ≤ x2, x ≥ 0)
and some further algebraic manipulations and simplifications that

LṼ (x, t) ≤ −
(
ϕ1U

2(t) + ψ1V
2(t) + φ1W

2(t)
)
, (5.21)

where,

ϕ1 =2µ−
(
βS∗

0 + β + α+ 2
µ

K̃(µ)2

)
−
[
3σ2

β (G
∗)

2
+ cβ (G∗)

2
+ σ2

β (G
∗)

2 (
c2 − 2c

)]
e−2µT1

−
[
2

(
1+

1

S∗
0

+c

)
β (G∗)

2
+5σ2

β (G
∗)

2
+2c

(
β (G∗)

2
+σ2

β (G
∗)

2
)]
e−2µ(T1+T2)

≥2µ
[
(1− U0)− U1e

−2µT1
]
− 2c

[
β (S∗

0 )
2
+ σ2

β (G
∗)

2
]
e−2µ(T1+T2)

−
[
cβ (G∗)

2
+ σ2

β (G
∗)

2 (
c2 − 2c

)]
e−2µT1 ,

(5.22)

ψ1 =2µ−
[
2µK̃(µ)2 + α+ βS∗

0 + β + σ2
E

]
+ c

[
2µ−

(
2β + βS∗

0 + σ2
E

)]
≥2µ [1− V0] + 2µc

[
1−

(
2β + βS∗

0 + σ2
E

)
2µ

]
,

(5.23)

φ1 =2(µ+ d+ α)−
(
βS∗

0 + σ2
I

)
− 2αe−2µT3 −

[
2βS∗

0 + σ2
βS

∗
0

]
e−2µT1

−
[
2

(
2 +

1

S∗
0

)
β (S∗

0 )
2
+ 9σ2

β (S
∗
0 )

2

]
e−2µ(T1+T2)

−
[
cβS∗

0 +
(
c2 − 2c

)
σ2
β (S

∗
0 )
]
e−2µT1 − c

[
2β (S∗

0 )
2
+ 4σ2

β (S
∗
0 )

2
]
e−2µ(T1+T2)

≥2(µ+ d+ α)
[
1−R0 −R1e

−2µTmin
]

−
[
cβS∗

0 +
(
c2 − 2c

)
σ2
β (S

∗
0 )
]
e−2µT1 − c

[
2β (S∗

0 )
2
+ 4σ2

β (S
∗
0 )

2
]
e−2µ(T1+T2).

(5.24)

It is now easy to see that under the assumptions of R0, R1, U0, and V ∗
0 in the

hypothesis, i.e. R0 < 1, U0 < 1, and V ∗
0 ≤ 1, and also for a suitable choice of

the positive constant c, it follows that ϕ1, ψ1, and φ1 are positive constants and
(5.18) follows immediately. Also, the stochastic stability result follows very easily
by applying the comparison stability results (cf. [60, 67]).

Remark 5.1.

1. It follows from (5.13) that when 0 < σi < ∞, i ∈ {E, I,R, β} and σS = 0, the
BRN in Theorem 4.2, for the deterministic system (1.1)–(1.4) is modified by the
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intensity of the intensity of the noise in the natural death rate of the infectious
state σI . Clearly from (5.13), (4.36) and (4.16), it is easy to see that

R0 ≥ R∗
0 ≡ R̂∗

0. (5.25)

Also, from (5.15) and (4.18), observe that V ∗
0 ≥ V0 ≡ V̂0, whenever σi > 0, i ∈

{E, I,R, β}. These observations suggest that the occurrence of noise in the
disease dynamics with significant magnitudes of the intensities 0 < σi < ∞, i ∈
{E, I,R, β}, inflate the BRN and the threshold values (i) for the stability of
the infection-free steady state E0, and hence (ii) for disease control, or disease
eradication. The inflation of disease control parameters by the noise terms can
hinder disease control conditions as explained further below.

2. Theorem 5.1 and Theorem 4.2 signify that in the absence of noise in the natural
deathrate of the susceptible state (i.e. σS = 0), the noise driven system (1.8)–
(1.11) and the noise-free system (1.1)–(1.4) have the same infection-free steady
state E0. Moreover, all trajectories of the systems that start near E0, tend
to remain near E0 for all time t ≥ t0, and almost surely converge to E0, over
sufficiently long time, whenever the threshold conditions for Theorem 5.1 and
Theorem 4.2 are satisfied, i.e. , whenever the following hold 1 > R0 > R̂∗

0,
1 > U0 = Û0, 1 ≥ V ∗

0 > V̂0 = V0, and 0 < σi <∞,∀i = E, I,R, β.
Since the threshold values are related as follows: R0 > R̂∗

0, U0 = Û0 and V ∗
0 >

V̂0 = V0 hold, whenever 0 < σi <∞, i ∈ {E, I,R, β}, it is easy to see that certain
magnitudes of the intensities, (i.e. ∃σi >> 1,∀i = E, I, β), can lead to violation
of at least one of the following stability conditions for E0: 1 > R0, 1 > U0 and
1 ≥ V0. Thus, it is necessary to characterize a parameter region for the intensities
of the noises in the system, 0 < σi < ∞,∀i = E, I,R, β, and σS = 0, in which
the infection-free steady state E0 is stochastically stable, and the disease can be
eradicated.

3. The delay conditions in (5.16)–(5.17), for the stochastic stability of E0, can be
written as follows

Tmin ≥ max

{
1

µ
log

{
R1

1−R0

} 1
2

,
1

µ
log

(
U1

1− U0

) 1
2

}
. (5.26)

Applying similar argument in Remark 4.1[3.-4.], it follows that from a practical
point of view, the condition (5.26 ) requires that

0 < log

(
R1

1−R0

) 1
2

<< 1, and 0 < log

(
U1

1− U0

) 1
2

<< 1. (5.27)

6. Effect of increasing white noise intensity on the
stability of the infection-free steady state

From Remark 5.1 , it is apparent that when we are given the threshold conditions
R0 < 1, U0 < 1, and V ∗

0 ≤ 1 hold in Theorem 5.1, the steady state E0 is stochas-
tically stable in the large, for some magnitudes of the intensities 0 < σi < ∞,∀i =
E, I,R, β, and may become unstable for other values of 0 < σi <∞,∀i = E, I,R, β.

Recall, the behavior of the trajectories of the deterministic system (1.1)–(1.4),
near the infection-free steady state E0 is characterized in Theorem 4.2. The question
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of the extend that the white noises, introduced into the ideal deterministic disease
dynamics (1.1)–(1.4), influence the behavior of the paths of the ensuing stochastic
system (1.8)–(1.11) near E0 is answered in this section. That is, the question
about how much the stability conditions in Theorem 4.2, are affected by the noises
introduced into (1.1)–(1.4), is answered in this section.

Using the stability conditions in Theorem 5.1 and Theorem 4.2, a noise intensity
region, denoted by D1 (σS , σE , σI , σβ) is determined for the stochastic system (1.8)–
(1.11), in which E0 stable with respect to the deterministic system (1.1)–(1.4),
remains stable with respect to the ensuing stochastic system (1.8)–(1.11).

Theorem 6.1. Suppose the conditions of Theorem 4.2 are satisfied. That is, R̂∗
0 <

1, Û0 < 1 and V̂0 ≤ 1, where R̂∗
0, Û0, and V̂0 are given Theorem 4.2, (4.29)–(4.32).

Define the following sets

DS
1 (σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ) ∈ [0,∞)4|σS = 0

}
, (6.1)

DE
1 (σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ) ∈ [0,∞)4|0 < σ2

E ≤ 2(µ)(1− V̂0)
}
, (6.2)

DI
1(σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ)∈ [0,∞)4|0<σ2

I ≤ 2(µ+d+α)(1−R̂∗
0)
}
, (6.3)

and

Dβ
1 (σS , σE , σI , σβ)

=

{
(σS , σE , σI , σβ) ∈ [0,∞)4

∣∣∣∣∣19 1

(S∗
0 )

2
(µ+ d+ α)(1− R̂∗

0)

− 1

9

1

(S∗
0 )

2
(µ+ d+ α)

[
R̂∗

0 +

(
2 +

1

S∗
0

)
β(S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)

]
− 1

9

1

(S∗
0 )

2
(µ+ d+ α)

1
2σ

2
I

(µ+ d+ α)
< σ2

β << e2
1

9

1

(S∗
0 )

2
(µ+ d+ α)(1− R̂∗

0)

− 1

9

1

(S∗
0 )

2
(µ+ d+ α)

[
R̂∗

0 +

(
2 +

1

S∗
0

)
β(S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)

]
− e2

1

9

1

(S∗
0 )

2
(µ+ d+ α)

1
2σ

2
I

(µ+ d+ α)

}
. (6.4)

Furthermore, using (6.1)–(6.4), let the region D1(σS , σE , σI , σβ) be as defined below

D1(σS , σE , σI , σβ)

=DS
1 (σS , σE , σI , σβ)∩DE

1 (σS , σE , σI , σβ)∩DI
1(σS , σE , σI , σβ)∩D

β
1 (σS , σE , σI , σβ).

(6.5)

It follows that the infection-free equilibrium E0 is both uniformly asymptoti-
cally stable with respect to the deterministic system (1.1)–(1.4), and stochastically
asymptotically stable in the large, with respect to the stochastic system (1.8)–(1.11),
regardless of the source of the noise in the system (1.8)–(1.11), provided that the
intensities lie in (σS , σE , σI , σβ) ∈ D1(σS , σE , σI , σβ).

Proof. Suppose R̂∗
0 < 1, Û0 < 1, and V̂0 ≤ 1, where R̂∗

0, Û0, and V̂0 are given in
(4.29)–(4.32). It is easy to see that for (σS , σE , σI , σβ) ∈ D1 (σS , σE , σI , σβ), and
(5.27) satisfied, then Theorem 5.1 is also satisfied, and E0 is stochastically stable
in the large in R3

+.
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Remark 6.1. Theorem 6.1 signifies that the when there is no noise from the natural
deathrate of the susceptible state (i.e. σS = 0), the infection-free steady state
E0 continues to exists, regardless of fluctuations from the other sources: natural
deathrates of exposed, infectious, removed states, and the disease transmission rate.
Moreover, if the intensities of the noises from these sources lie in (σS , σE , σI , σβ) ∈
D1(σS , σE , σI , σβ), then the disease eradication conditions (i.e. R̂∗

0 < 1, Û0 ≤ 1,
and V̂0 ≤ 1) required for the deterministic system (i.e. (1.1)–(1.4)), are still valid
for the stochastic dynamics (1.8)–(1.11).

7. Asymptotic behavior of the stochastic system
when there is no infection-free steady state

Recall Theorem 3.1[3.] asserts that the stochastic system (1.8)–(1.11) has no infec-
tion free steady state for the population, whenever the intensity of the noise in the
natural death rate of the susceptible state is positive, i.e. σS > 0. The question re-
mains about the extend that the intensity σS > 0 deviates the paths of the ensuing
system (1.8)–(1.11) from the steady state E0 characterized in Theorem 6.1.

Since the stochastic system has a unique stochastic solution process X(t) ∈
R3

+, t ≥ t0, whenever at least one of σi > 0, i = S,E, I,R (see Theorem 2.2),
and the solution has continuous sample paths which are nowhere differentiable, the
question above is answered by applying the mean value theorem to examine the
average distance of every path of the stochastic solution from the steady state E0

over sufficiently long time.

Theorem 7.1. Let the hypothesis of Theorem 3.1[3.] be satisfied. Let R̂∗
1, R̂∗

0, Û0

and V̂0 be as defined in Theorem 4.2, (4.29)–(4.32) and R1, R0, U1, U0 and V ∗
0 be

as defined in Theorem 5.1 (5.12)–(5.15). Also let

U∗
0 = U0 +

σ2
S

µ
= Û0 +

σ2
S

µ
. (7.1)

Suppose the following conditions hold: R0 < 1, U∗
0 < 1, and V ∗

0 ≤ 1, and

Tmin ≥
{

1

2µ
log

R1

1−R0
,
1

2µ
log

U1

1− U∗
0

}
, (7.2)

where
Tmin = min (T1, T1 + T2, T3) , (7.3)

it follows that there exists a positive constant m > 0, such that the following inequal-
ity holds

lim sup
t→∞

1

t
E
∫ t

0

[∥X(v)− E0∥2]
2
dv ≤ 2σ2

S (S∗
0 )

2

m
, (7.4)

where X(t) = (S(t), E(t), I(t)), and ||.||2 is the Euclidean norm on R3
+.

Proof. Let Theorem 3.1[3.] be satisfied, i.e. σS > 0. Applying the functional
Itô differential operator (cf. [13]) dV to Ṽ defined in (5.10), and utilizing (5.3) and
(5.20), it is easy to see that

dṼ =LṼ dt− 2σS(U(t) + V (t)) (S∗
0 + U(t)) dwS(t)
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−2σE
(
U(t)V (t) + (c+ 1)V 2(t)

)
dwE(t)− 2σIW

2(t)
)
dwI(t)

− 2cσβ (S
∗
0 + U(t))V (t)e−µvT1G (W (t− T1)) dwβ

− 2σE [U(t) + (c+ 1)V (t) +W (t)]

× e−µvT1−µT2 (S∗
0 + U (t− T2))G (W (t− T1 − T2)) dwβ(t), (7.5)

where for some positive constant valued function K̃(µ), the drift part of (7.5), LṼ ,
satisfies the inequality

LṼ (x, t) ≤ −
(
ϕ̃1U

2(t) + ψ̃1V
2(t) + φ̃1W

2(t)
)
, (7.6)

where

ϕ̃1=2µ−
(
βS∗

0+β+α+2
µ

K̃(µ)2
+2σ2

S

)
−
[
3σ2

β (G
∗)

2
+cβ (G∗)

2
+σ2

β (G
∗)

2 (
c2−2c

)]
e−2µT1

−
[
2

(
1+

1

S∗
0

+c

)
β (G∗)

2
+5σ2

β (G
∗)

2
+2c

(
β (G∗)

2
+σ2

β (G
∗)

2
)]
e−2µ(T1+T2)

≥2µ
[
(1− U∗

0 )− U1e
−2µT1

]
− 2c

[
β (S∗

0 )
2
+ σ2

β (G
∗)

2
]
e−2µ(T1+T2)

−
[
cβ (G∗)

2
+ σ2

β (G
∗)

2 (
c2 − 2c

)]
e−2µT1 ,

(7.7)

ψ̃1=2µ−
[
2µK̃(µ)2 + α+ βS∗

0 + β + σ2
E

]
+ c

[
2µ−

(
2β + βS∗

0 + σ2
E

)]
≥2µ [1− V0] + 2µc

[
1−

(
2β + βS∗

0 + σ2
E

)
2µ

]
,

(7.8)

φ̃1=2(µ+ d+ α)−
(
βS∗

0 + σ2
I

)
− 2αe−2µT3 −

[
2βS∗

0 + σ2
βS

∗
0

]
e−2µT1

−
[
2

(
2 +

1

S∗
0

)
β (S∗

0 )
2
+ 9σ2

β (S
∗
0 )

2

]
e−2µ(T1+T2)

−
[
cβS∗

0 +
(
c2 − 2c

)
σ2
β (S

∗
0 )
]
e−2µT1 − c

[
2β (S∗

0 )
2
+ 4σ2

β (S
∗
0 )

2
]
e−2µ(T1+T2)

≥2(µ+ d+ α)
[
1−R0 −R1e

−2µTmin
]

−
[
cβS∗

0 +
(
c2 − 2c

)
σ2
β (S

∗
0 )
]
e−2µT1 − c

[
2β (S∗

0 )
2
+ 4σ2

β (S
∗
0 )

2
]
e−2µ(T1+T2).

(7.9)

Under the assumption of R0, U
∗
0 and V ∗

0 in the hypothesis, and for suitable choice of
the positive constant c, it follows that ϕ̃, ψ̃, and φ̃ are positive constants. Therefore,
by integrating (7.5) from 0 to t, and taking expectation, it follows from (7.5)–(7.9)
that

E(V (t)−V (0)) ≤ −mE
∫ t

0

[
(S(v)− S∗

0 )
2
+ E2(v) + I2(v)

]
dv+2σ2

S (S∗
0 )

2
t, (7.10)

where V (0) is constant and
m = min(ϕ̃, ψ̃, φ̃). (7.11)
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Hence, diving both sides of (7.10) by t and m, and taking the limit supremum as
t→ ∞, then (7.4) follows immediately.

Remark 7.1.
1. Theorem 7.1 signifies that when noise from the natural deathrate of the susceptible
state with intensity σS > 0 is introduced into the disease dynamics characterized
earlier in Theorem 5.1, the initially stochastically stable steady state E0 ceases
to exist. Nevertheless, the sample paths of the ensuing stochastic system (1.8)–
(1.11) (with σS > 0) continue to oscillate near E0 as shown in (7.4). Moreover, as
the intensity σS → 0, then the average value of every sample path of the system
(1.8)–(1.11) in the phase space R3

+ is expected to converge to E0.
This result suggests that for small magnitudes of the intensity 0 < σS << 1,

the disease dynamics is still controllable near a potential infection-free state E0,
provided that all other threshold conditions of Theorem 7.1 are satisfied. However,
if the intensity 1 << σS < ∞, then all paths of the stochastic system (1.8)–(1.11)
are expected to deviate further away, on average, from the infection-free steady
state E0. Deviation from E0 may imply that the disease becomes endemic in the
population, or it may imply that the population is becoming extinct over time.

2. It is also easy to see from Theorem 7.1 that there is another parameter region
D2(σS , σE , σI , σβ) for the intensities of the noises (σS , σE , σI , σβ) in which the paths
of the stochastic system are expected to remain in the neighborhood of the E0.

It is easy to see that, if the conditions for stability of E0 in Theorem 4.2 (4.29)–
(4.32) for the deterministic system (1.1)–(1.4), are satisfied (i.e. R̂∗

0 < 1, U0 ≡ Û0 ≤
1 and V̂0 ≤ 1), then in the region D2 (σS , σE , σI , σβ) defined in (7.12), the result
in Theorem 7.1, (7.4) holds. In other words, the paths of the stochastic solution
process of (1.8)–(1.11) will remain near E0, depending on the magnitude of the
intensity σS . This result is stated formally in Theorem 7.2.

Theorem 7.2. Suppose the conditions in Theorem 4.2 hold. That is, R̂∗
0 < 1, Û0 <

1 and V̂0 ≤ 1, where R̂∗
0, Û0, and V̂0 are given in Theorem 4.2 (4.29)–(4.32). Let

the region D2 (σS , σE , σI , σβ) be as defined in (7.12). That is,

D2 (σS , σE , σI , σβ)

=DS
2 (σS , σE , σI , σβ) ∩DE

2 (σS , σE , σI , σβ) ∩DI
2 (σS , σE , σI , σβ) ∩D

β
2 (σS , σE , σI , σβ) ,

(7.12)

where

DS
2 (σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ) ∈ [0,∞)4|0 < σS ≤ µ

(
1− Û0

)}
, (7.13)

DE
2 (σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ) ∈ [0,∞)4|0 < σ2

E ≤ 2(µ)
(
1− V̂0

)}
, (7.14)

DI
2(σS , σE , σI , σβ)=

{
(σS , σE , σI , σβ)∈[0,∞)4|0<σ2

I ≤2(µ+d+α)
(
1−R̂∗

0

)}
, (7.15)

and

Dβ
2 (σS , σE , σI , σβ)

=

{
(σS , σE , σI , σβ) ∈ [0,∞)4|1

9

1

(S∗
0 )

2 (µ+d+α)
(
1−R̂∗

0

)
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−1

9

1

(S∗
0 )

2 (µ+d+α)

(
R̂∗

0+

(
2+

1

S∗
0

)
β (S∗

0 )
2

(µ+d+α)
+

α

(µ+d+α)

)

−1

9

1

(S∗
0 )

2 (µ+ d+ α)
1
2σ

2
I

(µ+ d+ α)
< σ2

β << e2
1

9

1

(S∗
0 )

2 (µ+ d+ α)
(
1− R̂∗

0

)
−1

9

1

(S∗
0 )

2 (µ+ d+ α)

(
R̂∗

0 +

(
2 +

1

S∗
0

)
β (S∗

0 )
2

(µ+ d+ α)
+

α

(µ+ d+ α)

)

−e2 1
9

1

(S∗
0 )

2 (µ+ d+ α)
1
2σ

2
I

(µ+ d+ α)

}
, (7.16)

and e is the base of the natural logarithm.
It follows that there exists a positive constant m > 0, such that the following

inequality holds

lim sup
t→∞

1

t
E
∫ t

0

[∥X(v)− E0∥2]
2
dv ≤ 2σ2

S (S∗
0 )

2

m
, (7.17)

regardless of the source of the noise in the system (1.8)–(1.11), provided that the in-
tensities lie in (σS , σE , σI , σβ) ∈ D2 (σS , σE , σI , σβ), where X(t) = (S(t), E(t), I(t)),
and ∥ · ∥2 is the Euclidean norm on R3

+.

Proof. Suppose R̂∗
0 < 1, Û0 ≤ 1, and V̂0 ≤ 1, where R̂∗

0, Û0, and V̂0 are given in
(4.29)–(4.32). It is easy to see that for (σS , σE , σI , σβ) ∈ D2 (σS , σE , σI , σβ), and
(5.27) satisfied, then Theorem 7.1 is also satisfied.

8. Conclusion
The presented classes of stochastic and deterministic SEIRS epidemic models with
nonlinear incidence rates, and white noise processes characterize the general dy-
namics of vector-borne diseases such as malaria and dengue fever etc. that are
influenced by random environmental fluctuations from (1.) the disease transmis-
sion rate, and from (2.) the natural death rate of humans of all states - susceptible,
exposed, infectious and removed. The random incubation periods of the parasites
or virus in the vectors (e.g. mosquitoes) and humans are considered. Moreover, the
random acquired natural immunity period for the disease is also considered.

The model validation results for both stochastic and deterministic systems are
presented. The impacts of each source of variability in the stochastic disease dynam-
ics are examined. Comparative threshold conditions for the stability of equilibria of
both systems are presented. Moreover, white noise intensity regions within which
both systems exhibit similar asymptotic characteristics near the equilibria are com-
puted.
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Appendix A.
Derivation of the Model (1.1)–(1.4) from the mosquito-host
dynamics
The assumptions for the family of malaria models in [56] are adopted and modified
in the following. (A) The delays represent the incubation period of the infectious
agents (plasmodium or dengue fever virus etc.) in the vector T1, and in the human
host T2. The third delay represents the naturally acquired immunity period of the
disease T3, where the delays are random variables with density functions fT1 , t0 ≤
T1 ≤ h1, h1 > 0, and fT2

, t0 ≤ T2 ≤ h2, h2 > 0 and fT3
, t0 ≤ T3 < ∞. All other

assumptions for T1, T2 and T3 are similar to the study [56].
(B) The vector (e.g. mosquito) population consists of two main classes namely:

the susceptible vectors Vs and the infectious vectors Vi. Moreover, it is assumed that
the total vector population denoted V0 is constant at any time, that is, Vs(t)+Vi(t) =
V0,∀t ≥ t0, where V0 > 0 is a positive constant. The susceptible vector population
Vs are infected by infectious human beings Î, and after the incubation period T1
of the infectious agent, the exposed vector become infectious Vi. Moreover, it is
assumed that there is homogenous mixing between the vector-host populations.
Therefore, the birth rate and death rate of the vectors must be equal, and denoted
µ̂v. It is further assumed that the turnover of the vector population is very high, and
the total number of vectors V0 at any time t, is a very large, and as a consequence,
µ̂v is sufficiently large number. In addition, it is assumed that the total number
of vectors V0 is exceedingly larger than the total human population present at any
time t, denoted N̂((t), t ≥ t0. That is, V0 >> N̂((t), t ≥ t0.

(C) The human population is similarly defined as in Wanduku [56], and consists
of susceptible (Ŝ), Exposed (Ê), Infectious (Î) and removed (R̂) classes. The sus-
ceptible humans are infected by the infectious vectors Vi, and become exposed (E).
The infectious agent incubates for T2 time units, and the exposed individuals be-
come infectious Î. The infectious class recovers from the disease with temporary or
sufficiently long natural immunity and become (R̂). Therefore, the total population
present at time t, N̂(t) = Ŝ(t) + Ê(t) + Î(t) + R̂(t),∀t ≥ t0.

Furthermore, it is assumed that the interaction between the infectious vectors
Vi and susceptible humans Ŝ exhibits nonlinear behavior, due to the overcrowding
of the vectors as described in (B), and resulting in psychological effects on the
susceptible individuals which leads to change of behavior that limits the disease
transmission rate, and consequently result in a nonlinear character for the incidence
rate characterized by the nonlinear incidence function G. G satisfies the conditions
of Assumption 1.1.

(D) There is constant birthrate of human beings B̂ in the population, and all
births are susceptible individuals. It is also assumed that the natural deathrate
of human beings in the population is µ̂ and individuals die additionally due to
disease related causes at the rate d̂. From a biological point of view, the average
lifespan of vectors 1

µ̂v
, is much less than the average lifespan of a human being in the

absence of disease 1
µ̂ . It follows very easily that assuming exponential lifetime for all

individuals (both vector and host) in the population, then the survival probability
over the time intervals of length T1 = s ∈ [t0, h1], and T2 = s ∈ [t0, h2], satisfy

e−µ̂vT1 << e−µ̂T1 and e−µ̂vT1−µ̂T2 << e−µ̂(T1+T2). (8.1)
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That is, (8.1) signifies that the survival chance of the mosquitoes, and consequently
the parasites or virus inside the mosquitoes (and inside humans) over the complete
life cycle of the parasites lasting for T1+T2 time units, is less than the survival chance
of human beings over the same period of time. Furthermore, recall [Theorem 5.1,
[56]] asserts that it is necessary for the expected survival rate E(e−µ̂vT1−µ̂T2) to
be significant for the disease to establish a steady endemic population. All other
assumptions for the malaria model (1.1)–(1.4) remain the same as in [56].

Applying similar ideas in [54], the vector dynamics from (A)-(D) follows the
system

dVs(t) = [−Λe−µ̂vT1 Î(t− T1)Vs(t− T1)− µ̂vVs(t) + µ̂v(Vs(t) + Vi(t))]dt, (8.2)
dVi(t) = [Λe−µ̂vT1 Î(t− T1)Vs(t− T1)− µ̂vVi(t)]dt, (8.3)
V0 = Vs(t) + Vi(t),∀t ≥ t0, t0 ≥ 0, (8.4)

where Λ is the effective disease transmission rate from an infectious human being to
a susceptible vector. Observe that the incidence rate of the disease into the vector
population Λe−µ̂vT1 Î(t−T1)Vs(t−T1) represents the rate of new infectious vectors
occurring at time t, which became exposed at earlier time t− T1 after obtaining an
infected blood meal from an infectious person, and surviving over the incubation
period T1, with the exponential survival probability rate e−µ̂vT1 , the vectors become
infectious at time t. The detailed host population dynamics is derived as follows.

At time t, it follows from (C) that when susceptible humans Ŝ and infectious
vectors Vi interact with β̂ effective contacts per vector, per unit time, then under the
assumption of homogenous mixing, the incidence rate of the disease into the human
population is given by the term β̂Ŝ(t)Vi(t). With the assumption of crowding effects
of the vector population, it follows from (C) that the incidence rate of the disease
can be written as

β̂Ŝ(t)G(Vi(t)), (8.5)

where G is the nonlinear incidence function satisfying the conditions in Assump-
tion 1.1.

The susceptible individuals Ŝ who have acquired infection from infectious vectors
Vi, but are non infectious form the exposed class Ê. The population of exposed
individuals at time t is denoted Ê(t). After the incubation period, T2 = u ∈ [t0, h2],
of the infectious agent in the exposed human host, the individual becomes infectious,
Î(t), at time t. Applying similar reasoning in [15], the exposed population, Ê(t), at
time t can be written as follows

Ê(t) = Ê(t0)e
−µ̂(t−t0)p1(t− t0) +

∫ t

t0

β̂Ŝ(ξ)G(Vi(ξ))e
−µ̂(t−ξ)p1(t− ξ)dξ, (8.6)

where

p1(t) =

0, t ≥ T2,

1, t < T2
(8.7)

represents the probability that an individual remains exposed over the time interval
[0, t]. It is easy to see from (8.6) that under the assumption that the disease has
been in the population for at least a time t > maxt0≤T1≤h1,t0≤T2≤h2

(T1 + T2), in
fact, t > h1 + h2, so that all initial perturbations have died out, the number of
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exposed individuals at time t is given by

Ê(t) =

∫ t

t−T2

β̂Ŝ(v)G(Vi(v))e
−µ̂(t−T2)dv. (8.8)

Moreover, since T2 = u ∈ [t0, h2] is a random variable, it follows from (8.8) that the
expected number of exposed individuals at time t is given by

Ê(t) =

∫ h2

t0

fT2(u)

∫ t

t−u

β̂Ŝ(v)G(Vi(v))e
−µ̂(t−u)dvdu. (8.9)

Similarly, for the removal population, R̂(t), at time t, individuals recover from
the infectious state Î(t) at the per capita rate α̂ and acquire natural immunity. The
natural immunity wanes after the varying immunity period T3 = r ∈ [t0,∞], and
removed individuals become susceptible again to the disease. Therefore, at time
t, individuals leave the infectious state at the rate α̂Î(t) and become part of the
removal population R̂(t). Thus, at time t the removed population is given by the
following equation

R̂(t) = R̂(t0)e
−µ̂(t−t0)p2(t− t0) +

∫ t

t0

α̂Î(ξ)e−µ̂(t−ξ)p2(t− ξ)dξ, (8.10)

where

p2(t) =

0, t ≥ T3,

1, t < T3
(8.11)

represents the probability that an individual remains naturally immune to the dis-
ease over the time interval [0, t]. But it follows from (8.10) that under the as-
sumption that the disease has been in the population for at least a time t >
maxt0≤T1≤h1,t0≤T2≤h2,T3≥t0 (T1 + T2, T3) = Tmax ≥ maxT3≥t0 (T3), in fact, the dis-
ease has been in the population for sufficiently large amount of time so that all
initial perturbations have died out, then the number of removed individuals present
at time t from (8.10), is given by

R̂(t) =

∫ t

t−T3

α̂Î(v)e−µ̂(t−v)dv. (8.12)

Since T3 is distributed, the expected number of removal individuals at time t can
be written as

R̂(t) =

∫ ∞

t0

fT3(r)

∫ t

t−r

α̂Î(v)e−µ̂(t−v)dvdr. (8.13)

It follows from the assumptions (A)-(D), (8.5), (8.8), (8.9), and (8.13) that for
Tj , j = 1, 2, 3 fixed in the population, the dynamics of malaria in the human popu-
lation is given by the system

dŜ(t) =
[
B̂ − β̂Ŝ(t)G(Vi(t))− µ̂Ŝ(t) + α̂Î(t− T3)e

−µ̂T3

]
dt, (8.14)

dÊ(t) =
[
β̂Ŝ(t)G(Vi(t))− µ̂Ê(t)− β̂Ŝ(t− T2)e

−µ̂T2G(Vi(t− T2))
]
dt, (8.15)

dÎ(t) =
[
β̂Ŝ(t− T2)e

−µ̂T2G(Vi(t− T2))− (µ̂+ d̂+ α̂)Î(t)
]
dt, (8.16)
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dR̂(t) =
[
α̂Î(t)− µ̂R̂(t)− α̂Î(t− T3)e

−µ̂T3

]
dt. (8.17)

Furthermore, the incidence function G satisfies the conditions in Assumption 1.1.
And the initial conditions are given in the following:(

Ŝ(t), Ê(t), Î(t), R̂(t)
)
= (φ1(t), φ2(t), φ3(t), φ4(t)) , t ∈ (−Tmax, t0],

φk ∈ C((−Tmax, t0],R+),∀k = 1, 2, 3, 4, (8.18)
φk(t0) > 0,∀k = 1, 2, 3, 4, and max

t0≤T1≤h1,
t0≤T2≤h2,

T3≥t0

(T1 + T2, T3) = Tmax

where C((−Tmax, t0],R+) is the space of continuous functions with the supremum
norm

||φ||∞ = sup
t≤t0

|φ(t)|. (8.19)

It is shown in the following that the vector-host dynamics in (8.2)–(8.4) and
(8.14)–(8.18) lead to the model (1.1)–(1.4), which omits the dynamics of the vector
population, under the assumptions (A)–(D).

Firstly, observe that the system (8.14)–(8.18) satisfies [56, Theorem 3.1], and
the total human population N̂(t) = Ŝ(t)+ Ê(t)+ Î(t)+ R̂(t),∀t ≥ t0 obtained from
system (8.14)–(8.18) with initially condition that satisfies N(t0) ≤ B̂

µ̂ , must satisfy

lim sup
t→∞

N̂(t) =
B̂

µ̂
. (8.20)

Therefore, the assumption (B) above, interpreted as N̂(t)
V0

<< 1,∀t ≥ t0 implies
that

lim sup
t→∞

N̂(t) =
B̂

µ̂
, and

(
B̂
µ̂

)
V0

<< 1. (8.21)

Define

ϵ =

(
B̂
µ̂

)
V0

, (8.22)

then from (8.21)–(8.22), it follows that ϵ =
(

B̂
µ̂

)
V0

<< 1.
Employing similar reason in [54], define two natural dimensionless time scales

η and ϱ for the joint vector-host dynamics (8.2)–(8.4) and (8.14)–(8.18) in the
following.

η =

(
B̂

µ̂

)
Λt, (8.23)

ϱ = V0Λt. (8.24)

Note that since the total vector population V0 from (B) above is constant, that is,
Vs(t) + Vi(t) = V0,∀t ≥ t0, and from (8.20) and [56, Theorem 3.1] the total human
0 < N̂(t) ≤ B̂

µ̂ ,∀t ≥ t0, whenever N̂(t0) ≤ B̂
µ̂ , then the time scales η and ϱ arise

naturally to rescale the total vector and maximum total human populations V0 and(
B̂
µ̂

)
, respectively, at any time.
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The time scales (8.23)–(8.24) can be distinguished as “fast” and “slow” using
the following example. A particle’s movement on the ϱ time scale covers one unit
of time ϱ = 1 at much early time tϱ = 1

V0Λ
on the t time scale, compared to the

particle’s movement on the η time scale, where the particle overs one unit of time
η = 1 at much later time tη = 1

(B
µ )Λ

>> tϱ, since (8.21) holds. Thus, movement on
the time scale ϱ is “fast”, and on η is “slow”. See [54] for more information.

Therefore, from above, let

V̂i(t) =
Vi(t)

V0
, and V̂s(t) =

Vs(t)

V0
, (8.25)

be the dimensionless vector variables, and

S(t) =
Ŝ(t)(
B̂
µ̂

) , I(t) = Î(t)(
B̂
µ̂

) , E(t) =
Ê(t)(
B̂
µ̂

) , R(t) = R̂(t)(
B̂
µ̂

) and N(t) =
N̂(t)(

B̂
µ̂

) ,
(8.26)

be the dimensionless human variables. And since 0 < N̂(t) ≤ B̂
µ̂ ,∀t ≥ t0, whenever

N̂(t0) ≤ B̂
µ̂ , it follows from (8.26) that

0 < S(t) + E(t) + I(t) +R(t) = N(t) ≤ 1,∀t ≥ t0. (8.27)

Applying (8.25)–(8.26) to (8.2)–(8.4) leads to the following

dV̂i(t) = ϵ

e−µ̂vT1I(t− T1)V̂s(t− T1)−
µ̂v

Λ
(

B̂
µ̂

) V̂i(t)
 dϱ, (8.28)

dV̂s(t) = −dV̂i(t), (8.29)
1 = V̂s(t) + V̂i(t),∀t ≥ t0, t0 ≥ 0. (8.30)

Observe from (8.27)–(8.30) that for nonnegative values for the vector variables
V̂i(t) ≥ 0, V̂s(t) ≥ 0,∀t ≥ t0, and positive values for the human variables S(t), E(t),
I(t), R(t) > 0,∀t ≥ t0, it is follows that

− ϵ
µ̂v

Λ
(

B̂
µ̂

) ≤ dV̂i(t)

dϱ
≤ ϵe−µ̂vT1 . (8.31)

Thus, on the time scale ϱ which is “fast”, it is easy to see from (8.28)–(8.31),
that under the assumption that ϵ from (8.22) is infinitesimally small, that is ϵ→ 0,
then

dV̂i(t)

dϱ
= −dV̂s(t)

dϱ
= 0, (8.32)

which implies that the dynamics of V̂i and V̂s behaves as in steady state. And thus,
it follows from (8.28)–(8.32) that

V̂i(t) =
e−µ̂vT1

µ̂v
Λ

(
B̂

µ̂

)
I(t− T1)V̂s(t− T1),

1 = V̂s(t) + V̂i(t). (8.33)
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It follows further from (8.33) that

V̂s(t) =
1

1 + e−µ̂vT1

µ̂v
Λ
(

B̂
µ̂

)
I(t− T1)

. (8.34)

For sufficiently large value of the birth-death rate µ̂v (see assumption (B)), such that
µ̂ve

µ̂vT1 >> Λ
(

B̂
µ̂

)
, then it follows from (8.34) that V̂s(t) ≈ 1, and consequently

from (8.30) and (8.25), Vs(t) ≈ V0. Moreover, it follows further from (8.33) that

V̂i(t) ≈
e−µ̂vT1

µ̂v
Λ

(
B̂

µ̂

)
I(t− T1), (8.35)

and equivalently from (8.25)–(8.26) that (8.35) can be rewritten as follows

Vi(t) ≈
e−µ̂vT1

µ̂v
ΛV0Î(t− T1). (8.36)

While on the fast scale ϱ the term Î(t − T1) behaves as the steady state, on the
slow scale η, it is expected to still be evolving. In the following, using (8.25)–(8.26),
the dynamics for the human population in (8.14)–(8.18) is nondimensionalized with
respect to the slow time scale η in (8.23).

Without loss of generality(as it is usually the case e.g. G(x) = x
1+αx , G(x) =

x
1+αx2 ), it is assumed that on the η timescale, the nonlinear term G(Vi(t)) expressed
as G(V0V̂i(η)), can be rewritten from (8.36) as

G(V0V̂i(η)) ≡
ΛV0

(
B̂
µ̂

)
µ̂v

Ĝ(V̂i(η))e
−µ̂vT1 , (8.37)

by factoring a constant term
ΛV0

(
B̂
µ̂

)
µ̂v

, and the function Ĝ carries all the properties
of Assumption 1.1. Thus, from the above and (8.36), the system (8.14)–(8.18) is
rewritten in dimensionless form as follows:

dS(η) = [B−βS(η)Ĝ(I(η−T1η))e−µvT1η−µS(η)+αI(η−T3η)e−µT3η ]dη, (8.38)
dE(η) = [βS(η)Ĝ(I(η − T1η))e

−µvT1η − µE(η)

− βS(η − T2η)Ĝ(I(η − T1η − T2η))e
−µvT1η−µT2η ]dη, (8.39)

dI(η) = [βS(η − T2η)Ĝ(I(η − T1η − T2η))e
−µvT1η−µT2η − µI(η)

− (µ+ d+ α)I(η)]dη, (8.40)
dR(t) = [αI(η)− µR(η)− αI(η − T3η)e

−µT3η ]dη, (8.41)

where

B =
B̂(

B̂
µ̂

)2
Λ
, β =

β̂V0
µ̂v

, µ =
µ̂(

B̂
µ̂

)
Λ
, α =

α̂(
B̂
µ̂

)
Λ

µv =
µ̂v(
B̂
µ̂

)
Λ
, d =

d̂(
B̂
µ̂

)
Λ
, Tjη =

(
B̂

µ̂

)
ΛTj ,∀j = 1, 2, 3. (8.42)
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The system (8.38)–(8.41) describes the dynamics of malaria on the slow scale η.
Furthermore, moving forward, the analysis of the model (8.38)–(8.41) is consid-
ered only on the η timescale. To reduce heavy notation, the following substitu-
tions are made. Substitute t for η, and the delays Tj ,∀j = 1, 2, 3 will substitute
Tjη,∀j = 1, 2, 3. Moreover, since the delays are are distributed with density func-
tions fTj

,∀j = 1, 2, 3, it follows from (A)–(D), (8.6)–(8.13), (8.38)–(8.41) and (8.18)
that the expected SEIRS model for malaria is given as follows:

dS(t) =

[
B − βS(t)

∫ h1

t0

fT1(s)e
−µvsG(I(t− s))ds− µS(t)

+ α

∫ ∞

t0

fT3(r)I(t− r)e−µrdr

]
dt,

(8.43)

dE(t) =

[
βS(t)

∫ h1

t0

fT1
(s)e−µvsG(I(t− s))ds− µE(t)

−β
∫ h2

t0

fT2
(u)S(t− u)

∫ h1

t0

fT1
(s)e−µvs−µuG(I(t− s− u))dsdu

]
dt,

(8.44)

dI(t) =

[
β

∫ h2

t0

fT2
(u)S(t− u)

∫ h1

t0

fT1
(s)e−µvs−µuG(I(t− s− u))dsdu

− (µ+ d+ α)I(t)

]
dt,

(8.45)

dR(t) =

[
αI(t)− µR(t)− α

∫ ∞

t0

fT3(r)I(t− r)e−µsdr

]
dt, (8.46)

where the initial conditions are given in the following: let h = h1 + h2 and define

(S(t), E(t), I(t), R(t)) = (φ1(t), φ2(t), φ3(t), φ4(t)) , t ∈ (−∞, t0],

φk ∈ C((−∞, t0],R+),∀k = 1, 2, 3, 4, φk(t0) > 0,∀k = 1, 2, 3, 4,
(8.47)

where C((−∞, t0],R+) is the space of continuous functions with the supremum norm

||φ||∞ = sup
t≤t0

|φ(t)|. (8.48)

Also, the function G satisfies the conditions of Assumption 1.1.
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