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Abstract In this paper, a stabilized nonconforming mixed finite element
method is used to solve the elliptic eigenvalue problem. Firstly, the lower-
equal order element is used to discretize the space combined with the stabi-
lization term based on the velocity projection method, and the error analysis
is given. Moreover, the upper and lower bounds of eigenvalues are obtained.
Finally, numerical experiments are carried out to verify the effectiveness of
the proposed method.
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1. Introduction
The eigenvalue problems of partial differential equations play an increasingly impor-
tant role in many scientific fields, such as quantum mechanics, structural mechanics
and fluid mechanics. Meanwhile, the numerical solution of eigenvalue problems has
attracted more and more attention in recent decades. For example, the error anal-
ysis of finite element method (FEM) is given in [2, 3], and the upper and lower
bounds of eigenvalues are given in [8,9,17]. The literature [15] proposed multi-level
correction method for eigenvalue problem. The convergence analysis of mixed FEM
for eigenvalue problems is presented in [19]. The literature [7] proposed the acceler-
ated two-grid stabilization FEM to solve Stokes eigenvalue problem. The eigenvalue
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problem is discretized by weak Galerkin method in [27,28].

Compared with the FEM, the mixed element method can approximate both the
original function and the corresponding derivatives function and reduce the smooth-
ness of the problem. The LBB condition plays an important role in the mixed
elements methdos. It can guarantee the stability of numerical schemes. However,
the LBB condition does not allow lower-equal order element interpolation. The
lower-equal order elements are relatively simple and unified data structure. Re-
cently, low-equal order elements combined with pressure projection stabilization
terms [4,12] have been widely used in computational fluid dynamics. The stabiliza-
tion term does not require stabilization parameters and does not need to calculate
any higher derivatives or boundary information.

Recently, a new mixed element scheme [23] based on low regularity of flux func-
tion is proposed to solve elliptic problems. Its characteristic is that the flux function
space is square integrable, not classical divergence space. This variational formula
makes it easy to select two finite element spatial functions and automatically meets
the LBB condition. Subsequently, this method was further applied to different
equations [13, 20, 21, 26]. Especially, the nonconforming mixed element based on
the velocity projection stabilization term are used to solve the second-order ellip-
tic problem in [10], and the corresponding error analysis is given. Compared with
the conforming finite element, the non-conforming element has simple selection and
compact support of the basis function. Moreover, the non-conforming element is
easier to satisfy the discrete LBB condition, and it can relax the high-order conti-
nuity requirement. In the present study, the method is extended to solve elliptic
eigenvalue problems.

One possible way for finding lower bounds of operators’ eigenvalues is noncon-
forming finite element. Many literatures have shown that nonconforming elements
can produce lower bounds from numerical point of view, such as the Wilson ele-
ment [26], the nonconforming rotated Q1 element [21], the Crouzeix-Raviart (CR)
nonconforming linear element [6], and the enriched nonconforming rotated Q1 ele-
ment [13] for second order elliptic problem, the Adini element [11] and the Morley
element [20] for fourth order elliptic problem, and the enriched Crouzeix-Raviart
elements [8, 14, 16]. Especially, the literature [16] gives the lower-bound analysis
of the Stokes eigenvalue problem by four kinds of nonconforming mixed FEM in
detail. Compared with enriched CR elements, it can be found that the original CR
elements can only produce lower bounds of the eigenvalues in singular cases. In
the case of smoothness, original CR elements cannot produce lower bounds of the
eigenvalues. But our approach has the advantages of the mixed finite element.

In this paper, nonconforming mixed FEM combined with the stablized term
based on the velocity projection is studied. The paper is organized as follows. In
Section 2, we will discuss the problem with some basic statements. Stabilized non-
conforming mixed finite element scheme for elliptic eigenvalue problems is given
in Section 3. In Section 4, we establish the error estimates of the nonconforming
mixed scheme for eigenvalue problems. In Section 5, the lower bounds of the eigen-
values are derived. Section 6 gives some numerical results in agreement with our
theoretical analysis, and the last section gives some concluding remarks.
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2. Preliminaries
In this paper, we consider the following elliptic eigenvalue problems

−∆p = λp, in Ω,

p = 0, on ∂Ω,

where Ω ⊂ R2 is a bounded convex polygonal domain with a Lipschitz-continuous
boundary ∂Ω, p(x) represents the eigenfunction and λ ∈ R is the associated eigen-
value.

By the flux u = ∇p, the corresponding mixed variational formulas are given as
follows: find ((u, p), λ) ∈ (V ×W )×R and ∥p∥0 = 1 such that

(u,∇q)L2 = λ(p, q)L2 , ∀q ∈W, (2.1)
(u,v)L2 − (∇p,v)L2 = 0, ∀v ∈ V. (2.2)

Here V = [L2(Ω)]2 and W = H1
0 (Ω).

The spaces [L2(Ω)]m (m = 1, 2) are equipped with the L2-scalar product (·, ·)L2

and L2-norm ∥·∥0. The corresponding norm and seminorm in [Hk(Ω)]d are denoted
by ∥ · ∥k and | · |k, respectively. The space W is equipped with the norm ∥∇ · ∥0.
Note that this norm is equivalent to norm ∥ · ∥1 due to Poincaré inequality. Spaces
consisting of vector-valued functions are denoted in boldface. For convenience,
bilinear forms a(·, ·) and d(·, ·) on V×V and V×W is defined as follows respectively,

a(u,v) = (u,v)L2 , ∀u,v ∈ V,

d(v, q) = (v,∇q)L2 , ∀v ∈ V,∀q ∈W,

and a generalized bilinear form B((·, ·), (·, ·)) on (V ×W )× (V ×W )

B((u, p), (v, q)) = a(u,v)− d(v, p) + d(u, q), ∀(u, p), (v, q) ∈ V ×W.

Using the above bilinear form, the equivalent variational formulation of problem
(2.1)–(2.2) reads as follows: find (u, p;λ) ∈ (V ×W )×R with ∥p∥0 = 1 such that

B((u, p), (v, q)) = λ(p, q)L2 , ∀(v, q) ∈ V ×W. (2.3)

Under the assumptions we have made, (2.3) has a countable sequence of real eigen-
values [2]

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·

and the corresponding eigenfunctions

(u1, p1), (u2, p2), (u3, p3), · · ·

with the property (pi, pj) = δij , where δij denotes the Kronecker symbol.
Moreover, the bilinear form d(·, ·) satisfies the inf-sup condition, i.e. there exists

a constant β > 0 independent of mesh size, such that (see e.g. [23] for its proof)

inf
w∈W

sup
v∈V

−(v,∇w)L2

∥v∥V∥w∥W
≥ β.

The positive constant c or C may change from place to place in this article, but
it has nothing to do with the mesh parameter.
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3. Stabilized nonconforming-mixed finite element
method

Let Th be a regular partition of Ω into triangles in the sense of Ciarlet [5]. Γh

denote the set of all element sides in the mesh. We introduce the non-conforming
Crouzeix-Raviart finite element space of piecewise linears for the velocity and the
conforming finite element space of piecewise linear for pressure as follows:

Vh = {v : vj = v|T ∈ [P1(T )]
2 :

∫
e

[v]ds = 0,∀e ∈ Γh},

Wh = {w ∈ C0(Ω̄) ∩W : w ∈ P1(T ), ∀T ∈ Th},

where P1(T ) represents the space of linear functions on T and [v] denotes the jump
across the edge for internal edges and [v] = v for e ∩ ∂Ω ̸= ∅. Based on the idea
of [4, 10,12], the velocity projection stabilization term is given as follows.

Let Π : V → R0 be the L2- projection as follows:

(u,v)L2 = (Πu,v)L2 , ∀u ∈ V,v ∈ R0,

∥Πu∥0 ≤ ∥u∥0, ∀u ∈ V,

∥u−Πu∥0 ≤ ch∥u∥1, ∀u ∈ H1(Ω), (3.1)

where R0 = {v ∈ V : v|T ∈ P0(T ),∀T ∈ Th}. We introduce the velocity projection
stabilization term

Q(u,v) = (u−Πu,v −Πv)L2 , u,v ∈ Vh. (3.2)

Obviously, the bilinear form Q(u,v) in (3.2) is a symmetric and semi-definite matrix
generated on local set T .

The NCP1-P1 finite element pair defined by the spaces Vh×Wh does not satisfy
the discrete LBB condition in [10]. Thus,

inf
wh∈Wh

sup
vh∈Vh

−(vh,∇wh)L2

∥vh∥V∥wh∥W
= 0.

For the stability of numerical schemes, we employ the local stabilized form based
on the local polynomial velocity projection. The stabilized scheme is as follows: find
((uh, ph), λ) ∈ (Vh ×Wh)×R and ∥ph∥0 = 1 such that

(uh,∇qh)L2 = λ(ph, qh)L2 , ∀qh ∈Wh, (3.3)
(uh,vh)L2 − (∇ph,vh)L2 +Q(uh,vh) = 0, ∀vh ∈ Vh. (3.4)

The bilinear form with the stabilized term are given as follows: ∀(uh, ph), (vh, qh) ∈
Vh ×Wh

Bh((uh, ph), (vh, qh)) = a(uh,vh)− d(vh, ph) + d(uh, qh) +Q(uh,vh).

Next, we will give the continuity property and the weak coercivity property of
the bilinear form Bh((uh, ph), (vh, qh)) for the stabilized nonconforming-mixed the
above pair Vh ×Wh in [10].
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Theorem 3.1. For all (uh, ph), (vh, qh) ∈ Vh ×Wh, there exist positive constants
C and β3 independent of h, such that

|Bh((uh, ph), (vh, qh))| ≤ C(∥uh∥0 + ∥ph∥1)(∥vh∥0 + ∥qh∥1) (3.5)

and
sup

(vh,qh)∈(Vh,Wh)

|Bh((uh, ph), (vh, qh))|
∥vh∥0 + ∥qh∥1

≥ β3(∥uh∥0 + ∥ph∥1). (3.6)

The discrete stabilized scheme reads as follows: find (uh, ph;λh) ∈ (Vh ×
Wh\{0})×R with ∥ph∥0 = 1 such that (3.3)-(3.4) is equivalent to

Bh((uh, ph), (vh, qh)) = λh(ph, qh)L2 , ∀(vh, qh) ∈ Vh ×Wh, (3.7)

where

Bh((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh)) +Q(uh,vh), ∀(vh, qh) ∈ Vh ×Wh.

The continuity property (3.5) and the weak coercivity property (3.6) can guar-
ante the well-posedness of the discrete weak form of (3.7).

Let Y = L2(Ω). For all f ∈ Y , find (uf , pf ) ∈ V ×W such that

(uf ,∇q)L2 = (f, q)L2 , ∀q ∈W, (3.8)
(uf ,v)L2 − (∇pf ,v)L2 = 0, ∀v ∈ V. (3.9)

The corresponding discrete scheme is: find (ufh, pfh) ∈ Vh ×Wh such that

(ufh,∇qh)L2 = (f, qh)L2 , ∀qh ∈Wh, (3.10)
(ufh,vh)L2 − (∇pfh,vh)L2 +Q(uh,vh) = 0, ∀vh ∈ Vh. (3.11)

Similarly to [19], the bounded linear operators are defined as G : Y → V, S :
Y → W such that the pair Gf = uf and Sf = pf are respectively the solution to
the elliptic equation (3.8)-(3.9) and Gh : Y → Vh, Sh : Y → Wh such that the
pair Ghf = ufh and Shf = pfh are the discrete elliptic equation (3.10)-(3.11) with
stabilized NCP1-P1 finite element scheme.

Lemma 3.1. S and Sh are two selfadjoint operators.

Proof. For f ∈ L2(Ω), Eqs. (3.8)–(3.9) can be rewriten as follows:

(Gf,∇q)L2 = (f, q)L2 , ∀q ∈W, (3.12)
(Gf,v)L2 − (∇Sf,v)L2 = 0, ∀v ∈ V. (3.13)

For g ∈ L2(Ω), Eqs. (3.8)–(3.9) can also be rewriten as follows:

(Gg,∇q)L2 = (g, q)L2 , ∀q ∈W, (3.14)
(Gg,v)L2 − (∇Sg,v)L2 = 0, ∀v ∈ V. (3.15)

In Eqs. (3.12)–(3.13), we take q = Sg, v = Gg and obtain

(Gf,∇Sg)L2 = (f, Sg)L2 , (3.16)
(Gf,Gg)L2 − (∇Sf,Gg)L2 = 0. (3.17)
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Let q = Sf , v = Gf , we have

(Gg,∇Sf)L2 = (g, Sf)L2 , (3.18)
(Gg,Gf)L2 − (∇Sg,Gf)L2 = 0, v ∈ V. (3.19)

By Eqs. (3.16)–(3.19), we can obtain

(f, Sg) = (Gf,∇Sg) = (Gg,Gf) = (∇Sf,Gg) = (g, Sf). (3.20)

In addition, the proof of Sh can be proven in a similar way and is omitted.
Due to the selfadjoint operator Sh and the weak coercivity property (3.6), Eq.

(3.7) has a finite sequence of real eigenvalues

0 < λ1,h ≤ λ2,h ≤ λ3,h ≤ · · ·λNh,h

and the corresponding discrete eigenvectors

(u1,h, p1,h), (u2,h, p2,h), (u3,h, p3,h), · · · , (uNh,h, pNh,h)

with the property (pi,h, pj,h) = δij , 1 ≤ i, j ≤ Nh, where Nh is the dimension of Wh.

4. Error estimates for the eigenvalue problem
Since the convergence of the finite element approximation to the eigenvalue problem
depends on the regularity of the original eigenvalue problem, here and hereafter, we
assume the regularity of the eigenfunction (p,u) ∈ H2(Ω)× (H1(Ω))2.

First, the error analysis of the discrete scheme is given. For all f ∈ Y , Eqs.
(3.8)–(3.9) can be rewrite as follows:

B((uf , pf ), (v, q)) = (f, q)L2 , ∀(v, q) ∈ V ×W. (4.1)

The regularity result in the convex domain from [23] shows that

∥uf∥1 + ∥pf∥2 ≤ c∥f∥0. (4.2)

We can rewite discrete scheme (3.10)–(3.11) as follows:

Bh((ufh, pfh), (vh, qh)) = (f, qh)L2 , ∀(vh, qh) ∈ Vh ×Wh. (4.3)

In order to obtain the error estimates, the approximation properties are defined
as follows in [5]: for any (v, q) ∈ [H1(Ω)]2 ×H2(Ω),

∥q − Ihq∥0 + h(∥q − Ihq∥1 + ∥v − Jhv∥0) ≤ ch2(∥q∥2 + ∥v∥1), (4.4)

where the interpolation operator Ih : H2(Ω) ∩W →Wh satisfies

(q − Ihq, q1)L2 = 0, q ∈W, q1 ∈Wh, (4.5)

and the interpolation operator Jh : H1(Ω)2 ∩V → Vh satisfies∫
e

(v − Jhv)ds = 0, ∀e ∈ Γh.
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Lemma 4.1. For error estimate of the bounded linear operators, we have

∥Sf − Shf∥0 + h(∥Sf − Shf∥1 + ∥Gf −Ghf∥0) ≤ ch2∥f∥0.

Proof. By [22, Theorem 3], a priori error estimate for the elliptic equation problem
based on the stabilized nonconforming mixed FEM is given as follows. For any
f ∈ L2(Ω), we have

∥Gf −Ghf∥0 + ∥Sf − Shf∥1 ≤ ch∥f∥0. (4.6)

To obtain the L2-estimation for p, we use a standard duality argument. Define the
dual problem: find (ψ1, ϕ1) ∈ (V,W ) such that

B((ψ1, ϕ1); e, η) = (η, Sf − Shf)L2 , ∀(e, η) ∈ (V,W ). (4.7)

Then, from a priori estimate (4.2), we can get

∥ψ1∥1 + ∥ϕ1∥2 ≤ ∥Sf − Shf∥0. (4.8)

Since (Gf, Sf) and (Ghf, Shf) satisfy (4.1) and (4.3), subtracting (4.1) from (4.3),
we can see that

Bh((Gf −Ghf, Sf − Shf); (ψh, ϕh)) = Q(Gf,ψh), ∀(ψh, ϕh) ∈ (Vh,Wh). (4.9)

Setting e = Gf −Ghf , η = Sf −Shf in (4.7) and taking (ψh, ϕh) = (Jhψ1, Ihϕ1) ∈
(Vh,Wh) in (4.9), then by use of the interpolation theory (4.4) and applying (3.6),
(3.1), (4.6) and (4.8), we can obtain

∥Sf − Shf∥20 = Bh((ψ1 − Jhψ1, ϕ1 − Ihϕ1); (e, η)) +Q(Gf, Jhψ1)−Q(e, ψ1)

≤ C(∥ψ1 − Jhψ1∥0 + ∥ϕ1 − Ihϕ1∥1)(∥e∥0 + ∥η∥1) + Ch2∥Gf∥1∥ψ1∥1
≤ Ch(∥e∥0 + ∥η∥1)(∥ψ1∥1 + ∥ϕ1∥2) + Ch2(∥ψ1∥1 + ∥ϕ1∥2)
≤ Ch2∥Sf − Shf∥0
≤ Ch4∥f∥0,

which completes the proof.
Next, we present the following error estimates of the eigenvalues and eigenfunc-

tions for the eigenvalue problems.

Theorem 4.1. Let (uh, ph;λh) be the i-th discrete solution of (3.7). Then there
exists an i-th solution (u, p;λ) of (2.3) which satisfies the following error estimation:

∥p− ph∥0 + h(∥u− uh∥0 + ∥p− ph∥1) ≤ ch2, (4.10)
|λ− λh| ≤ ch2.

Proof. By Lemma 4.1, errors for the operator norm

∥G−Gh∥0 ≜ sup
f∈Y

∥Gf −Ghf∥0
∥f∥0

, ∥S − Sh∥1 ≜ sup
f∈Y

∥Sf − Shf∥1
∥f∥0

can be estimated by:
∥G−Gh∥0 + ∥S − Sh∥1 ≤ ch.
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Based on the abstract theory of [2] and [19], for the i-th discrete eigenpair
(uh, ph;λh), there exists an i-th eigenpair (u, p;λ) such that

∥u− uh∥0 + ∥p− ph∥1 ≤ c(∥G−Gh∥0 + ∥S − Sh∥1) ≤ ch,

∥λ− λh| ≤ c∥S − Sh∥0 ≤ ch2.

Moreover, by ∥Sf − Shf∥0 ≤ ch2∥f∥0 in Lemma 4.1, the standard argument (cf.
page 448 in [19]) leads to

∥p− ph∥0 ≤ ch2,

which completes the proof.

Remark 4.1. Consider the following finite element spaces

Kh = {vh = (v1, v2) ∈ V : vi|T ∈ P1(T )⊕ span{λ1λ2λ3}, ∀T ∈ Th, i = 1, 2},

where λi (i = 1, 2, 3) are the barycentric coordinates on T and the P1⊕span{λ1λ2λ3}
represents a space of linear functions enriched by a cubic bubble functions. The fi-
nite element space Kh×Wh in [1] satisfies the LBB condition, and the corresponding
error results are the same as follows:

∥p− ph∥0 + h(∥u− uh∥0 + ∥p− ph∥1) ≤ ch2,

|λ− λh| ≤ ch2.

The proof is similar to that of Theorem 4.1, and will be omitted here for the sake
of brevity.

Remark 4.2. For the regularity of the eigenfunction (p,u) ∈ Hr+1(Ω)× (Hr(Ω))2

(0 < r ≤ 1), we can obtain the similar result. Numerical example in Section 6 shows
the second order convergence in the L-shape domain.

5. Eigenvalue approximations from below
The lower bound of the eigenvalue for stabilized nonconforming scheme is given in
this section. The basic expansion form of the eigenvalues is given as follows:

Lemma 5.1. Suppose (u, p;λ) is the solution of the original problem (2.3),
(uh, ph;λh) ∈ (Vh ×Wh)×R is the solution of the discrete problem (3.7), we have
the following expansion

λ− λh =∥u− uh∥20 +Q(uh,uh) + 2a(u,uh)− 2d(uh, qh)

− λh∥qh − ph∥20 + λh(∥qh∥20 − ∥ph∥20). (5.1)

Proof. In view of (2.3) and (3.7), we see that

∥u∥20 = λ, ∥uh∥20 +Q(uh,uh) = λh.

Therefore, we have

∥u− uh∥20 = ∥u∥20 + ∥uh∥20 − 2a(u,uh)

= λ+ λh −Q(uh,uh)− 2a(u,uh). (5.2)
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Adding −2d(uh, qh) to both sides of (5.2) and using (3.3)

−2d(uh, qh) + ∥u− uh∥20 = λ+ λh −Q(uh,uh)− 2a(u,uh)− 2λh(ph, qh)

= λ+ λh −Q(uh,uh)− 2a(u,uh)

+ λh∥qh − ph∥20 − λh(∥qh∥20 − ∥ph∥20)− 2λh.

Thus

λ− λh = ∥u− uh∥20 +Q(uh,uh) + 2a(u,uh)− 2d(uh, qh)

− λh∥qh − ph∥20 + λh(∥qh∥20 − ∥ph∥20).

The proof is completed.

Theorem 5.1. Let an i-th (ui, pi;λi) ∈ (H1(Ω) ×H2(Ω)) × R be i-th solution of
(2.3). Assume that (ui,h, pi,h;λi,h) ∈ (Vh ×Wh)×R is the i-th numerical solution
of scheme (3.7) and ∥ui − ui,h∥20 ≥ ch2−2ε, where ε > 0 can be made arbitrarily
small. Then

λi,h ≤ λi

holds provided h is sufficiently small.

Proof. We choose qi,h = Ihpi with (4.5) in (5.1). For the third and fourth term
in (5.1), applying ui = ∇pi and Green’s formula and interpolation definition (4.5),
it is easy to show that

2a(ui,ui,h)− 2d(ui,h, Ihpi) = 2(∇pi −∇Ihpi,ui,h)L2 = 0.

For the fifth term in (5.1), using (4.4) and (4.10), we arrive at

λi,h∥Ihpi − pi,h∥20 ≤ λi,h(∥Ihpi − pi∥0 + ∥pi − pi,h∥0)2 ≤ ch4. (5.3)

We define the piecewise constant projection operator with scalar function

P0w|T =
1

|T |

∫
T

wdxdy, ∀T ∈ Th, (5.4)

which leads to ∥w − P0w∥ ≤ ch|w|1, ∀w ∈ H1(Ω).
For the sixth term in (5.1), by (4.5), (5.3) and (5.4), it leads directly to

λi,h(∥Ihpi∥20 − ∥pi,h∥20) = λi,h(Ihpi − pi,h, Ihpi + pi,h)L2

= λi,h(Ihpi − pi,h, Ihpi + pi,h − P0(Ihpi + pi,h))L2

≤ ch∥Ihpi − pi,h∥0 ≤ ch3. (5.5)

Moreover, utilizing (3.2), we have

Q(ui,h,ui,h) ≤ ∥ui,h −Πui,h∥20 ≤ ch2.

From (5.3) and (5.5) plus the saturation condition ∥ui − ui,h∥20 ≥ ch2−2ε, we can
find the second term, the fifth term and the sixth term on the right-hand side of
(5.1) is of higher order than the first term, namely

λi − λi,h = ∥ui − ui,h∥20 +O(h2) ≥ ch2−2ε +O(h2). (5.6)

From (5.6), if h is small enough, we obtain

λi,h ≤ λi.
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Remark 5.1. The upper bound of the eigenvalues obtained by conforming element
scheme (P1b-P1 pair and P0-P1 pair) is due to the minimum-maximum principle [18]
for Kh ⊂ V as follows

λi ≤ λi,h.

6. Numerical results
In this section, we use the P0-P1 pair, P1b-P1 pair and NCP1-P1 pair methods to
verify the numerical stability and accuracy and compare these three methods. For
the stabilized nonconforming mixed scheme, the stabilization term [10] is expressed
by the difference between two local Gauss integrals, which is rewritten as follows

Q(u,v) =
∑

K∈Kh

(

∫
K,2

u · vdxdy −
∫
K,1

u · vdxdy), ∀u,v ∈ Vh,

where
∫
K,i

g(x, y)dxdy represents the Gauss integral over the region over K, which
is accurate for polynomials of degree i, i = 1, 2. For more information, please refer
to the literature [12,29].

To solve the eigenvalue problem, we denote by U the vector of the velocity and
by P the vector of the pressure. It is easy to see that (3.7) can be written in matrix
form A+Q B

−BT O

U
P

 = λh

O O

O E

U
P

,
where the matrices A,B,Q and E are deduced in the usual manner, using the basis
functions of Vh and Wh, from the bilinear forms a(·, ·), d(·, ·), Q(·, ·) and (·, ·)L2 ,
respectively, and BT is the transpose of matrix B. The left coefficient matrix is
solved by LU decomposition method with a fixed tolerance as 10−6. The right
coefficient matrix is solved by conjugate gradient method with a fixed tolerance as
10−6. The inverse power method is used for solving generalized eigenvalue problem.

First, the computational region Ω = [0, 1] × [0, 1] in R2 are consider. We just
consider the first eigenvalue of the elliptic eigenvalue problem, that is, the firsr
eigenvalue λ = 2π2. From Tables 1–3, it can be found that the convergence rates of
the three methods are consistent with the theoretical analysis. The lower bounds
of eigenvalues are obtained by nonconforming mixed finite element scheme. The
error of the nonconforming element is smaller than that of the conforming element
conforming P0-P1 version, because the degree of freedom of the nonconforming
element is more than that of the P0-P1 version. Non-conforming element has the
same accuracy as P1b-P1 method, but it takes less CPU-time because the degree of
freedom of NCP1-P1 method is less than that of P1b-P1 version.

Secondly, we consider the first four eigenvalues in L-type calculation region
[0, 1] × [0, 1/2]

∪
[0, 1/2] × [1/2, 1] in R2. Because the exact solution is unknown,

the exact solution is obtained by by the standard Galerkin method (P2 element)
computed on a very fine mesh (35198 triangle elements). Here, we take λ1 =
9.64094, λ2 = 15.1973, λ3 = 19.7392 and λ4 = 29.5215, as the exact eigenvalues.
The notation Nel represents number of elements for triangulation.
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Table 1. Results get from NCP1-P1 element methods on the unit square

1/h λh
|λ−λh|

|λ| Rate CPU time
16 19.6640 3.812E-3 0.156

24 19.7043 1.767E-3 1.895 0.421

32 19.7192 1.014E-3 1.932 0.843

40 19.7262 6.562E-4 1.950 1.453

48 19.7301 4.590E-4 1.961 2.422

56 19.7325 3.389E-4 1.968 3.797

64 19.7341 2.604E-4 1.974 5.453

Table 2. Results get from the P1b-P1 element methods on the unit square

1/h λh
|λ−λh|

|λ| Rate CPU time
16 19.8168 3.929E-3 0.203

24 19.7729 1.709E-3 2.053 0.469

32 19.758 9.513E-4 2.036 0.984

40 19.7511 6.052E-4 2.027 1.734

48 19.7475 4.187E-4 2.021 2.781

56 19.7453 3.068E-4 2.016 4.172

64 19.7438 2.345E-4 2.013 5.875

Table 3. Results get from the P0-P1 element methods on the unit square

1/h λh
|λ−λh|

|λ| Rate CPU time
16 19.9298 9.655E-3 0.078

24 19.8238 4.287E-3 2.002 0.203

32 19.7868 2.411E-3 2.001 0.375

40 19.7697 1.543E-3 2.000 0.625

48 19.7604 1.072E-3 2.000 0.969

56 19.7547 7.874E-4 1.999 1.406

64 19.7511 6.029E-4 2.000 2.016
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The convergence rates of the first eigenvalue in the L-shape domain are reported
in Fig. 1. From Tables 4–6, the lower bounds of the exact solution is obtained by
stabilized nonconforming element scheme, and the upper bounds of the eigenvalue is
obtained by the conforming element scheme, which verifies the previous theoretical
results. Moreover, the velocity streamlines and pressure level lines of numerical
solutions of three schemes are presented in Figs. 2 and 3 by the conforming elements
and stabilized nonconforming element with 11,104 triangle elements for the detail.
On the same grids, though the stability of three schemes is obtained from both Figs
2 and 3, the conforming element (P0-P1) shows more oscillatory than the stabilized
nonconforming element on the velocity streamlines.
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Figure 1. The convergence rate analysis of the stabilized mixed methods for the first eigenvalue in the
L-shape domain

Table 4. Results get from the NCP1-P1 element methods on the L-shape domain

Nel λ1,h λ2,h λ3,h λ4,h

684 9.60571 15.1117 19.6086 29.2229

1548 9.62162 15.1608 19.6803 29.39

2682 9.62903 15.1746 19.7048 29.4451

4354 9.63325 15.1832 19.7168 29.4714

11104 9.63703 15.1916 19.7301 29.5018

16840 9.6382 15.1935 19.7335 29.5089

“Exact” solution trend 9.64094 15.1973 19.7392 29.5215

↗ ↗ ↗ ↗
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Table 5. Results get from the P1b-P1 element methods on the L-shape domain

Nel λ1,h λ2,h λ3,h λ4,h

684 9.70669 15.2545 19.8607 29.7774

1548 9.6752 15.2223 19.788 29.6272

2682 9.66236 15.212 19.7674 29.5838

4354 9.65572 15.2065 19.7568 29.5586

11104 9.64771 15.2009 19.7459 29.5363

16840 9.64569 15.1996 19.7437 29.5315

“Exact” solution trend 9.64094 15.1973 19.7392 29.5215

↘ ↘ ↘ ↘

Table 6. Results get from the P0-P1 element methods on the L-shape domain

Nel λ1,h λ2,h λ3,h λ4,h

684 9.80312 15.3812 20.0791 30.2782

1548 9.72857 15.2786 19.8835 29.8411

2682 9.69618 15.2455 19.8228 29.7086

4354 9.67871 15.227 19.791 29.6342

11104 9.65888 15.209 19.7595 29.5665

16840 9.65366 15.2049 19.7526 29.5516

“Exact” solution trend 9.64094 15.1973 19.7392 29.5215

↘ ↘ ↘ ↘
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Figure 2. Plot of the velocity streamlines at Dof = 11104: numerical solution of P0-P1 element (a),
P1b-P1 element (b) and stabilized nonconforming element(c)
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Figure 3. Plot of the pressure level lines at Dof = 11104: numerical solution of P0-P1 element (a),
P1b-P1 element (b) and stabilized nonconforming element(c)

7. Conclusions
In this work, we used the lower-equal order nonconforming mixed FEM combined
with the velocity projection stabilization term for the elliptic eigenvalue problem.
Moreover, the error analysis of the mixed FEM scheme and the lower bounds of
the eigenvalue are obtained. Numerical experiments show the effectiveness of our
scheme. Obviously, this method can be extended to the case of three dimensions in
the future.
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