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ANALYSIS OF A STOCHASTIC SIS EPIDEMIC
MODEL WITH TRANSPORT-RELATED

INFECTION∗

Rong Liu1 and Guirong Liu2,†

Abstract In this paper, we consider a stochastic SIS epidemic model with
transport-related infection, which is proposed to investigate the dynamics of
disease propagation between two regions. Firstly, we show that the model
has a unique global positive solution. Next, the properties of the solution
are studied. Especially, by constructing a suitable positive-definite decrescent
radially unbounded function and stopping times, we show that the differences
between susceptible populations or infected populations in two regions will
disappear with probability one. Then we show that the diseases in each region
is extinct and the susceptible in each region is stable in the mean. Moreover,
we prove that the model has a stationary distribution and the solution has
the ergodic property. At last, some numerical simulations are introduced to
justify the analytical results.

Keywords Stochastic SIS model, transport-related infection, extinction, sta-
tionary distribution.
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1. Introduction

Mathematical modeling can provide an understanding of the underlying mechanisms
of disease transmission and the control of their spread. Infectious disease dynamics
models can be traced back to the early works by Kermack and McKendrick in
1927 and 1932 (see [9,10]). In the last century, a number of studies appeared on the
topic of infectious disease dynamics models (see [1,5,13,18,25,27] and the references
therein) and we here do not mention them in detail.

All the above studies ignore the possibility for the individuals to become infective
during travel. In [6, 23], the authors proposed the following SIS epidemic model to
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understand the effect of transport-related infection on disease spread

dS1

dt = a− βS1I1
S1+I1

− bS1 + dI1 − αS1 + αS2 − γαS2I2
S2+I2

,

dI1
dt = βS1I1

S1+I1
− (c+ d+ α)I1 + αI2 +

γαS2I2
S2+I2

,

dS2

dt = a− βS2I2
S2+I2

− bS2 + dI2 − αS2 + αS1 − γαS1I1
S1+I1

,

dI2
dt = βS2I2

S2+I2
− (c+ d+ α)I2 + αI1 +

γαS1I1
S1+I1

.

(1.1)

Here Si and Ii represent the number of susceptible and infected individuals in city
i, respectively (i = 1, 2). In this model the authors assumed that both cities are
identical, i.e. demographic parameters are the same for each city. Here a is the
recruitment rate of susceptible individuals per unit time; b represents the natural
death rate for susceptible individuals; d stands for the recovery rate of the infected
individuals; c (c > b) is the mortality rate of the infected individuals, which includes
both natural and disease induced mortality; β represents the contact transmission
rate within a city; βSjIj

Sj+Ij
stands for the number of new cases of infection per unit

time within city j (j = 1, 2); α stands for the per capita rate of susceptible and
infected individuals of every city i leave to j (j ̸= i, i, j = 1, 2); γαSjIj

Sj+Ij
is the

incidence of disease transmission with transmission γα, when the individuals in city
j travel to city i (j = 1, 2). All parameters in model (1.1) are assumed to be positive
and γ ∈ [0, 1].

From [6], the condition 0 ≤ γ ≤ 1 ensures that any solution of model (1.1) is
nonnegative if its initial value is nonnegative. Moreover, model (1.1) has a disease
free equilibrium E0 = (S0, 0, S0, 0) for all parameter values, and an endemic equi-
librium E∗

γ = (S∗
γ , I

∗
γ , S

∗
γ , I

∗
γ ) appears in two cities when R0γ = β

c+d + γα
c+d > 1,

where

S0 =
a

b
, S∗

γ =
a

b+ c(R0γ − 1)
, I∗γ =

a(R0γ − 1)

b+ c(R0γ − 1)
.

From [6, 23], for model (1.1), the disease free equilibrium E0 is locally asymptoti-
cally stable provided R0γ < 1. When R0γ > 1, E0 is unstable and the endemic
equilibrium E∗

γ appears in both cities. Moreover, if |β − γα| < 4(b+2α)(c+d+2α)−d2

4(2d+b+4α+c) ,
then the disease free equilibrium point E0 of model (1.1) is globally asymptotically
stable on X =

{
(S1, I1, S2, I2)|Si ≥ 0, Ii ≥ 0, i = 1, 2

}
for R0γ ≤ 1 and the endemic

equilibrium point E∗
γ is globally asymptotically stable on X0 =

{
(S1, I1, S2, I2) ∈

X|I1 + I2 > 0
}

for R0γ > 1.
However due to the fluctuations in the environment, epidemic models are in-

evitably affected by environmental noises. In general, such environment fluctua-
tions should be modeled by a colored noise. From [17], if the colored noise is not
strongly correlated, then we can approximate the colored noise by a white noise
ẇ(t), and the approximation works quite well. It turns out that white noise ẇ(t) is
formally regarded as the derivative of a Brownian motion w(t), i.e. ẇ(t) = dw(t)/dt
(see [20]). In the few past years, stochastic epidemic models with white noise have
attracted much attention. In [15, 22, 24], the authors discussed stochastic SIS epi-
demic models. [24] is mainly concerned with the persistence and extinction for a
stochastic SIS epidemic model with nonlinear incidence rate. [15] focused the thresh-
old behavior for a stochastic SIS epidemic model with standard incidence. In [22],
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the authors considered a stochastic SIS epidemic model with nonlinear saturated
incidence rate and double epidemic hypothesis. [7] investigated the permanence and
extinction of certain stochastic SIR models perturbed by a complex type of noises.
In [3, 11, 12, 28], the authors discussed the dynamics for stochastic SIRS epidemic
models. [26] considered the long-time behavior of a stochastic epidemic model with
varying population size. [4] discussed a stochastic SIRI epidemic model with relapse
and media coverage.

To the best of our knowledge, so far only Liu and Zheng [19] studied the stochas-
tic disease dynamics of an SIS epidemic model on two patches. In [19], the authors
only investigated the global existence and positivity of the solutions, and the suf-
ficient conditions for almost surely exponentially stability of the disease-free equi-
librium. Motivated by the above discussion, in this paper, we consider a stochastic
SIS epidemic model with transport-related infection.

Parameter perturbation induced by white noise is an important and common
form to describe the effect of stochasticity. May [21] pointed out that all param-
eters involved in the population model exhibit random fluctuation as the factors
controlling them are not constant. Cai, Kang and Wang [3] pointed out that the
death rate is one of the key parameters to disease transmission. In this paper, we
assume that the death rates b and c always fluctuate around some average value
due to continuous fluctuation in the environment. In this sense −b → −b+σ1ẇ1(t),
−c → −c + σ2ẇ2(t). Here ẇi(t) (i = 1, 2) is the white noise. w1(t) and w2(t) are
mutually independent Brownian motions. σ2

1 and σ2
2 are all real constants and are

known as the intensity of the noise. Thus, based on model (1.1), we establish the
following new stochastic SIS epidemic model with transport-related infection

dS1 =
(
a− βS1I1

S1+I1
− bS1 + dI1 − αS1 + αS2 − γαS2I2

S2+I2

)
dt+ σ1S1dw1(t),

dI1 =
(

βS1I1
S1+I1

− (c+ d+ α)I1 + αI2 +
γαS2I2
S2+I2

)
dt+ σ2I1dw2(t),

dS2 =
(
a− βS2I2

S2+I2
− bS2 + dI2 − αS2 + αS1 − γαS1I1

S1+I1

)
dt+ σ1S2dw1(t),

dI2 =
(

βS2I2
S2+I2

− (c+ d+ α)I2 + αI1 +
γαS1I1
S1+I1

)
dt+ σ2I2dw2(t),

(1.2)

with initial value (S1(0), I1(0), S2(0), I2(0)) = (S10, I10, S20, I20) ∈ R4
+ =

{
x =

(x1, x2, x3, x4) ∈ R4
∣∣xi > 0, i = 1, 2, 3, 4

}
. Here w = {w1(t), w2(t), t ≥ 0} repre-

sents the two-dimensional standard Brownian motion defined on a complete proba-
bility space (Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it
is right continuous and F0 contains all P -null sets). All meanings of the parameters
are exact to or similar as those for model (1.1). Here, all parameters in model (1.1)
are assumed to be positive and γ ∈ [0, 1].

The rest of this paper is organized as follows. In the next section, we first
prove existence and uniqueness of global positive solution of model (1.2). Then, we
investigate the asymptotic property of positive solutions of the model. Especially,
we show that the differences between susceptible populations or infected populations
in two cities will disappear with probability one. In Section 3, we show that the
diseases in each region is extinct and the susceptible in each region is stable in the
mean. In Section 4, we prove that model (1.2) has a stationary distribution and the
solution has the ergodic property. Numerical simulations under certain parameters
are presented to illustrate our main results in Section 5. Finally, a few comments
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will conclude the paper.

2. Asymptotic properties of the solution
In this section, we first show that model (1.2) has a unique positive global solution
with positive initial value. Then, we investigate the asymptotic property of positive
solutions of the model. Denote R+ = (0,+∞) and R̄+ = R+∪{0}. Let K denote the
family of all continuous nondecreasing functions µ : R̄+ → R̄+ such that µ(0) = 0
and µ(r) > 0 if r > 0. For h > 0, let Sh = {x ∈ Rd : |x| < h}. For the sake of
simplification, we denote

X(t) = (S1(t), I1(t), S2(t), I2(t)), X0 = (S10, I10, S20, I20),

N(t) = S1(t) + I1(t) + S2(t) + I2(t), ⟨u(t)⟩ = 1

t

∫ t

0

u(s)ds.

Definition 2.1 (see [20]). (i) A continuous function V (x, t) defined on Sh× [t0,∞)
is said to be positive-definite if V (0, t) ≡ 0 and, for some µ ∈ K,

V (x, t) ≥ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

(ii) A non-negative continuous function V (x, t) defined on Sh× [t0,∞) is said to be
decrescent if for some µ ∈ K,

V (x, t) ≤ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

(iii) A function V (x, t) defined on Rd × [t0,∞) is said to be radially unbounded if

lim
|x|→∞

inf
t≥t0

V (x, t) = ∞.

Definition 2.2 (see [14]). Model (1.2) is said to be stochastically permanent if for
any ε ∈ (0, 1), there are positive constants ϱ = ϱ(ε) and χ = χ(ε), such that for any
initial value X0 ∈ R4

+, the solution X(t) of model (1.2) satisfies

lim inf
t→∞

P{|X(t)| ≤ ϱ} ≥ 1− ε, lim inf
t→∞

P{|X(t)| ≥ χ} ≥ 1− ε.

Stochastical permanence of model (1.2) means that the total number of the
individuals in the model (including the susceptible and the infected) is bounded
and permanent. That is, the individuals in the model will not grow wildly or die
out.

Theorem 2.1. For any initial value (S10, I10, S20, I20) ∈ R4
+, model (1.2) has a

unique global positive solution (S1(t), I1(t), S2(t), I2(t)) defined on R+. That is, the
solution will remain in R4

+ with probability one.

Proof. It is easy to show that the coefficients of (1.2) are locally Lipschitz contin-
uous. Thus, for any initial value (S10, I10, S20, I20) ∈ R4

+, model (1.2) has a unique
maximal local solution (S1(t), I1(t), S2(t), I2(t)) on [0, τe), where τe is the explosion
time. Let n0 > 0 be sufficiently large such that S10, I10, S20 and I20 all lie within
the interval (1/n0, n0). For each integer n ≥ n0, define the stopping time

τn = inf

{
t ∈ [0, τe) : min{S1(t), I1(t), S2(t), I2(t)} ≤ 1

n
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or max{S1(t), I1(t), S2(t), I2(t)} ≥ n

}
,

where throughout this paper for the empty set ∅ we set inf ∅ = ∞. Clearly, τn is
increasing as n → ∞. Let τ∞ = limn→∞ τn. It is easy to show that τ∞ is a stopping
time and τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and
(S1(t), I1(t), S2(t), I2(t)) ∈ R4

+ a.s. for all t ≥ 0.
Now, we show that τ∞ = ∞ a.s. Assume that the statement does not hold, then

there are T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Denote Ωn = {ω ∈ Ω :
τn(ω) ≤ T}. Hence,

P(Ωn) > ε, n ≥ n0. (2.1)

Define function V : R4
+ → R+ by

V (S1, I1, S2, I2) =(S1 − 1− lnS1) + (I1 − 1− ln I1) + (S2 − 1− lnS2)

+ (I2 − 1− ln I2).

By the Itô formula, we have, for any t ∈ [0, T ] and n ≥ n0,

EV (S1(t ∧ τn), I1(t ∧ τn), S2(t ∧ τn), S2(t ∧ τn))

=V (S10, I10, S20, I20) + E
∫ t∧τn

0

LV (S1(s), I1(s), S2(s), I2(s)) ds, (2.2)

where LV : R4
+ → R is defined by

LV =2a+ 2b+ 2(c+ d+ 2α) + σ2
1 + σ2

2 +
βI1

S1 + I1
+

βI2
S2 + I2

− b(S1 + S2)

− c(I1 + I2)−
a

S1
− a

S2
− d

I1
S1

− d
I2
S2

− α
I1
I2

− α
I2
I1

− γαS2I2
I1(S2 + I2)

− γαS1I1
I2(S1 + I1)

− βS1

S1 + I1
− βS2

S2 + I2
− 1

S1

(
αS2 −

γαS2I2
S2 + I2

)
− 1

S2

(
αS1 −

γαS1I1
S1 + I1

)
. (2.3)

From γ ∈ [0, 1], it follows that αS1 − γαS1I1
S1+I1

≥ 0 and αS2 − γαS2I2
S2+I2

≥ 0. Hence,

LV ≤2a+ 2b+ 2(c+ d+ 2α) + 2β + σ2
1 + σ2

2 =: K,

where K is a positive constant which is independent of S1, I1, S1, I2 and t. Thus,
from (2.2), it follows that

EV (S1(T ∧ τn), I1(T ∧ τn), S2(T ∧ τn), S2(T ∧ τn)) ≤ V (S10, I10, S20, I20) +KT.
(2.4)

Note that for every ω ∈ Ωn, there is at least one of S1(τn, ω), I1(τn, ω), S2(τn, ω)
and I2(τn, ω) equalling either 1/n or n. Hence

V (S1(τn, ω), I1(τn, ω), S2(τn, ω), I2(τn, ω)) ≥ (n− 1− lnn) ∧
(
1

n
− 1− ln

1

n

)
.

(2.5)
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It then follows from (2.1), (2.4) and (2.5) that

V (S10, I10, S20, I20) +KT ≥E
[
IΩn(ω)V (S1(τn, ω), I1(τn, ω), S2(τn, ω), I2(τn, ω))

]
>ε

[
(n− 1− lnn) ∧

(
1

n
− 1− ln

1

n

)]
,

where IΩn is the indicator function of Ωn. Letting n → ∞ leads to the contradiction

∞ > V (S10, I10, S20, I20) +KT = ∞.

Hence, τ∞ = ∞ a.s. The proof is complete.

Theorem 2.2. For any X0 ∈ R4
+, let X(t) be solution of model (1.2) with initial

value X0. Then

lim sup
t→∞

[S1(t) + I1(t) + S2(t) + I2(t)] < ∞ a.s.

Proof. By model (1.2), we have

dN =
[
2a− b(S1 + S2)− c(I1 + I2)

]
dt+ σ1(S1 + S2)dw1(t) + σ2(I1 + I2)dw2(t),

which implies

dN =
[
2a− bN − (c− b)(I1 + I2)

]
dt+ σ1(S1 + S2)dw1(t) + σ2(I1 + I2)dw2(t).

Solving this equation, we obtain that

N(t) =
2a

b
+

(
N(0)− 2a

b

)
e−bt − (c− b)

∫ t

0

e−b(t−s)(I1(s) + I2(s))ds

+ σ1

∫ t

0

e−b(t−s)(S1(s) + S2(s))dw1(s)

+ σ2

∫ t

0

e−b(t−s)(I1(s) + I2(s))dw2(s)

≤2a

b
+

(
N(0)− 2a

b

)
e−bt +M(t)

=N(0) +
2a

b
(1− e−bt)−N(0)(1− e−bt) +M(t) a.s.,

where

M(t) = σ1

∫ t

0

e−b(t−s)(S1(s) + S2(s))dw1(s) + σ2

∫ t

0

e−b(t−s)(I1(s) + I2(s))dw2(s).

Clearly, M(t) is a continuous local martingale with M(0) = 0. Define

Y (t) = Y (0) +A(t)− U(t) +M(t),

where Y (0) = N(0), A(t) = 2a
b (1− e−bt) and U(t) = N(0)(1− e−bt). It is clear that

N(t) ≤ Y (t) a.s. for all t ≥ 0. Note that A(t) and U(t) are two continuous adapted
increasing processes with A(0) = U(0) = 0 a.s. By Theorem 1.3.9 in [20], we obtain
that limt→∞ Y (t) < ∞ a.s. Thus

lim sup
t→∞

N(t) = lim sup
t→∞

[S1(t) + I1(t) + S2(t) + I2(t)] < ∞ a.s.

The proof is complete.
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Remark 2.1. From Theorem 2.2, it is easy to see that for any given positive initial
value (S10, I10, S20, I20), the solution of model (1.2) has the properties that

lim sup
t→∞

Si(t)

t
≤ 0, lim sup

t→∞

Ii(t)

t
≤ 0 a.s., (i = 1, 2).

Theorem 2.3. For any initial value X0 ∈ R4
+, model (1.2) is stochastically perma-

nent.

Proof. Define V1(X) = N + 1
N , where X = (S1, I1, S2, I2) and N = S1 + I1 +

S2 + I2. It is easy to show

dN =
[
2a− b(S1 + S2)− c(I1 + I2)

]
dt+ σ1(S1 + S2)dw1(t) + σ2(I1 + I2)dw2(t).

(2.6)

By Itô formula, we have

LV1(X)=
(
1− 1

N2

)[
2a−b(S1+S2)−c(I1+I2)

]
+
σ2
1(S1+S2)

2+σ2
2(I1+I2)

2

N3
,

which, together with c > b, yields

LV1(X) =2a− b(S1 + S2)− c(I1 + I2)−
2a− b(S1 + S2)− c(I1 + I2)

N2

+
σ2
1(S1 + S2)

2 + σ2
2(I1 + I2)

2

N3

≤2a− bN − 2a

N2
+

c(S1 + I1 + S2 + I2)

N2
+

σ2[(S1 + S2)
2 + (I1 + I2)

2]

N3

≤− bN − b

N
+ 2a− 2a

N2
+

b+ c+ σ2

N
≤κ− bV1(X(t)), (2.7)

where σ2 = σ2
1 ∨ σ2

2 and κ = 16a2+(b+c+σ2)2

8a . Applying Itô formula again and from
(2.7), it follows that

L(ebtV1(X)) ≤ bebtV1(X) + ebt[κ− bV1(X)] = κebt.

Therefore, E[ebtV1(X(t))] ≤ V1(X0) + E[
∫ t

0
κebsds] = V1(X0) +

κ
b (e

bt − 1), which
implies

lim sup
t→∞

E[V1(X(t))] ≤ lim sup
t→∞

[
e−btV1(X0) +

κ

b
(1− e−bt)

]
=

κ

b
.

Thus

lim sup
t→∞

E[N(t)] ≤ κ

b
, lim sup

t→∞
E
[

1

N(t)

]
≤ κ

b
. (2.8)

Note that N2 = (S1 + I1 + S2 + I2)
2 ≤ 4(S2

1 + I21 + S2
2 + I22 ) = 4|X|2 ≤ 4(S1 + I1 +

S2 + I2)
2 = 4N2. Then

N(t)

2
≤ |X(t)| ≤ N(t),

1

N(t)
≤ 1

|X(t)|
≤ 2

N(t)
.
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This, together with (2.8), yields

lim sup
t→∞

E[|X(t)|] ≤ κ

b
, lim sup

t→∞
E
[

1

|X(t)|

]
≤ 2κ

b
. (2.9)

For any ε ∈ (0, 1), let ϱ = κ
bε . Then, by Chebyshev’s inequality

P{|X(t)| > ϱ} ≤ E[|X(t)|]
ϱ

.

Hence, from (2.9), it follows that

lim sup
t→∞

P{|X(t)| > ϱ} ≤ lim supt→∞ E[|X(t)|]
ϱ

= ε.

This implies

lim inf
t→∞

P{|X(t)| ≤ ϱ} ≥ 1− ε.

Similarly, let χ = bε
2κ . Then, by Chebyshev’s inequality

P{|X(t)| < χ} = P
{

1

|X(t)|
>

1

χ

}
≤ χE

[
1

|X(t)|

]
.

Hence, from (2.9), we have

lim sup
t→∞

P{|X(t)| < χ} ≤ lim sup
t→∞

χE
[

1

|X(t)|

]
= ε.

This implies

lim inf
t→∞

P{|X(t)| ≥ χ} ≥ 1− ε.

According to Definition 2.2, model (1.2) is stochastically permanent. The proof is
complete.

Theorem 2.4. Assume that p ≥ 1 and b̄ > 0, where b̄ = b− p−1
2 σ2 and σ2 = σ2

1∨σ2
2.

Let X(t) be the solution of model (1.2) with any given initial value X0 ∈ R4
+. Then,

there is a positive constant M = M(p) such that

E[Np(t)] ≤ M, t ≥ 0.

Proof. Define V2(X) = Np, where X = (S1, I1, S2, I2) and N = S1+ I1+S2+ I2.
Applying Itô formula, we obtain

dV2(X(t))=LV2(X(t))dt+pNp−1(t)
[
σ1(S1+S2)(t)dw1(t)+σ2(I1+I2)(t)dw2(t)

]
,

(2.10)
where

LV2(X) =pNp−2

[
N [2a− b(S1 + S2)− c(I1 + I2)]

+
(p− 1)

2
[σ2

1(S1 + S2)
2 + σ2

2(I1 + I2)
2]

]
.
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Using b < c and the condition of theorem, we have

LV2(X)

≤pNp−2
[
2aN − b(S1 + S2)N − b(I1 + I2)N +

p− 1

2
σ2
(
(S1 + S2)

2 + (I1 + I2)
2
)]

≤pNp−2
[
2aN −

(
b− p− 1

2
σ2
)
N2
]
. (2.11)

Thus, for k ∈ (0, b̄p), from the Itô formula, it follows that

E
[
ektV2(X(t))

]
= V2(X0) + E

∫ t

0

L(eksV2(X(s)))ds. (2.12)

Note that L(ektV2(X)) = ekt[kV2(X) + LV2(X)]. This, together with (2.11), yields

L(ektV2(X(t))) ≤ pektNp−2
[
−
(
b̄− k

p

)
N2 + 2aN

]
.

Let us consider function f(x) = xp−2
[
−
(
b̄ − k

p

)
x2 + 2ax

]
on (0,∞). It is easy

to show that f(x) reaches it’s maximum value at x = 2a(p − 1)/(pb̄ − k) > 0 and
the maximum value is fmax = 2a

p [ 2a(p−1)

pb̄−k
]p−1. Thus, there is a positive constant

H = 2a
p [ 2a(p−1)

pb̄−k
]p−1 such that L(ektV2(X(t))) ≤ pHekt for any t ≥ 0. This, together

with (2.12), yields

E
[
ektV2(X(t))

]
≤ V2(X0) + E

∫ t

0

pHeksds ≤ V2(X0) +
pH

k
ekt.

Thus, E[Np(t)] ≤ V2(X0)e
−kt + pH

k , which implies lim supt→∞ E[Np(t)] ≤ pH
k .

Hence, there exists a positive constant M = M(p) such that for all t ≥ 0,

E[Np(t)] ≤ M. (2.13)

Then, by the positivity of the solution, we have E[Sp
i (t)] ≤ M , E[Ipi (t)] ≤ M , t ≥ 0,

i = 1, 2. The proof is complete.

Theorem 2.5. For any X0 ∈ R4
+, let X(t) be the solution of model (1.2) with

initial value X0. If

σ2
1

2
< b+ 2α,

σ2
2

2
< c+ d+ 2α, |β − γα| <

4(b+ 2α− σ2
1

2 )(c+ d+ 2α− σ2
2

2 )− d2

4(b+ c+ 2d+ 4α− σ2
1

2 − σ2
2

2 )
,

(2.14)

then
lim
t→∞

E[S1(t)− S2(t)]
2 = 0, lim

t→∞
E[I1(t)− I2(t)]

2 = 0. (2.15)

Further,

P
{

lim
t→∞

[S1(t)− S2(t)] = 0
}
= 1, P

{
lim
t→∞

[I1(t)− I2(t)] = 0
}
= 1. (2.16)
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Proof. Denote x = (x1, x2) = (S1 − S2, I1 − I2) and x0 = (x10, x20) = (S10 −
S20, I10 − I20). Let us consider the function V3(x(t)) =

x2
1+x2

2

2 . From Itô formula, it
follows that

EV3(x(t)) = V3(x0) +

∫ t

0

ELV3(x(s))ds. (2.17)

Here

LV3 =(S1 − S2)
[
(β − γα)

( S2I2
S2 + I2

− S1I1
S1 + I1

)
− (b+ 2α)(S1 − S2) + d(I1 − I2)

]
+ (I1 − I2)

[
(β − γα)

( S1I1
S1 + I1

− S2I2
S2 + I2

)
− (c+ d+ 2α)(I1 − I2)

]
+

σ2
1

2
(S1 − S2)

2 +
σ2
2

2
(I1 − I2)

2

=−
(
b+ 2α− σ2

1

2

)
(S1 − S2)

2 −
(
c+ d+ 2α− σ2

2

2

)
(I1 − I2)

2

+ (β − γα)
( S2I2
S2 + I2

− S1I1
S1 + I1

)
(S1 − S2 − I1 + I2)

+ d(S1 − S2)(I1 − I2). (2.18)

Note that
S2I2

S2 + I2
− S1I1

S1 + I1
=

S1S2(I2 − I1) + I1I2(S2 − S1)

(S1 + I1)(S2 + I2)
≤ |S1 − S2|+ |I1 − I2|.

Thus, from (2.18), it follows that

LV3 ≤−
(
b+ 2α− σ2

1

2
− |β − γα|

)
(S1 − S2)

2

−
(
c+ d+ 2α− σ2

2

2
− |β − γα|

)
(I1 − I2)

2

+
(
d+ 2|β − γα|

)
|S1 − S2||I1 − I2|

:=−A1(S1 − S2)
2 −A2(I1 − I2)

2 +A3|S1 − S2||I1 − I2|.

From (2.14), it is easy to show that the following quadratic form

−A1x
2 −A2y

2 +A3xy

is negative definite. Hence, there exists a positive constant K1 such that

LV3(x) ≤ −K1

[
(S1 − S2)

2 + (I1 − I2)
2
]
= −2K1V3(x), (2.19)

which, together with (2.17), yields EV3(x(t)) ≤ V3(x0)− 2K1

∫ t

0
EV3(x(s))ds. Since

V3(x0) < ∞, we have

EV3(x(t)) + 2K1

∫ t

0

EV3(x(s))ds ≤ V3(x0) < ∞,

which leads to EV3(x(s)) ∈ L1[0,∞). It follows from (2.17) and (2.19) that

dEV3(x(t))

dt
= ELV3(x(t)) ≤ −2K1EV3(x(t)).
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Thus, we get by the comparison theorem that EV3(x(t)) ≤ V3(x0)e
−2K1t, for t ≥ 0.

Further,

lim
t→∞

EV3(x(t)) = lim
t→∞

E[S1(t)− S2(t)]
2 + E[I1(t)− I2(t)]

2

2
= 0.

Therefore, we can get (2.15).
Now, let us prove (2.16). Note that |x|2

3 ≤ V3(x) ≤ |x|2 and lim|x|→∞ V3(x) =

lim|x|→∞
|x|2
2 = ∞ for any x ∈ R2. From Definition 2.1, it follows that V (x) is

positive-define, decrescent and radially unbounded. Therefore, for any ε ∈ (0, 1),
there is an h > |x0| sufficiently large such that

inf
|x|≥h

V3(x) ≥
4V3(x0)

ε
. (2.20)

Define the stopping time τh = inf
{
t ≥ 0 : |x(t)| ≥ h

}
. From (2.19), we can show

that for any t ≥ 0,

EV3(x(τh ∧ t)) =V3(x0) + E
∫ τh∧t

0

LV3(x(s))ds

≤V3(x0)−K1E
∫ τh∧t

0

|x(s))|2ds

≤V3(x0). (2.21)

By (2.20), we have

EV3(x(τh ∧ t)) =

∫
{τh≤t}

V3(x(τh))dP+

∫
{τh>t}

V3(x(t))dP

≥
∫
{τh≤t}

V3(x(τh))dP

≥4V3(x0)

ε
P
{
τh ≤ t

}
,

which, together with (2.21), yields P
{
τh ≤ t

}
≤ ε

4 . Letting t → ∞ gives

P
{
τh < ∞

}
≤ ε

4
. (2.22)

That is

P
{
|x(t)| ≤ h for all t ≥ 0

}
≥ 1− ε

4
. (2.23)

For any χ ∈ (0, |x0|), choose 0 < ϱ < χ sufficiently small such that

3ϱ2

χ2
≤ ε

4
. (2.24)

Define the stopping time τϱ = inf
{
t ≥ 0 : |x(t)| ≤ ϱ

}
. It is clear that |x(t)| ≥ ϱ on

[0, τϱ]. Thus, from (2.19), we can show that for any t ≥ 0,

0 ≤ EV3(x(τϱ ∧ τh ∧ t)) =V3(x0) + E
∫ τϱ∧τh∧t

0

LV3(x(s))ds
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≤V3(x0)−K1E
∫ τϱ∧τh∧t

0

|x(s)|2ds

≤V3(x0)−K1ϱ
2E[τϱ ∧ τh ∧ t],

which implies E[τϱ ∧ τh ∧ t] ≤ V3(x0)
K1ϱ2 . On the other hand,

E
[
τϱ ∧ τh ∧ t

]
=

∫
{(τϱ∧τh)≥t}

tdP+

∫
{(τϱ∧τh)<t}

(τϱ ∧ τh) dP

≥
∫
{(τϱ∧τh)≥t}

tdP = tP{τϱ ∧ τh ≥ t}.

Hence,

P
{
(τϱ ∧ τh) ≥ t

}
≤ V3(x0)

K1ϱ2t
.

Letting t → ∞ gives P
{
(τϱ ∧ τh) = ∞

}
= 0. Therefore, P

{
(τϱ ∧ τh) < ∞

}
= 1,

which, together with (2.22), yields

1 = P
{
(τϱ ∧ τh) < ∞

}
≤ P

{
τϱ < ∞

}
+ P

{
τh < ∞

}
≤ P

{
τϱ < ∞

}
+

ε

4
.

Thus,

P
{
τϱ < ∞

}
≥ 1− ε

4
. (2.25)

Choose θ sufficiently large such that P
{
τϱ < θ

}
≥ 1− ε

2 . Obviously,

{τϱ < (τh ∧ θ)} ⊃ {τϱ < θ and τh = ∞}.

Using P(AB) ≥ P(A)− P(BC) for any A,B ∈ F , we have

P
{
τϱ < (τh ∧ θ)

}
≥P
({

τϱ < θ
}
∩
{
τh = ∞

})
≥P
{
τϱ < θ

}
− P

{
τh < ∞

}
≥1− 3ε

4
. (2.26)

Define two stopping times

ν =

 τϱ, if τϱ < (τh ∧ θ),

∞, otherwise

and

τχ = inf
{
t > ν : |x(t)| ≥ χ

}
.

It is clear that τχ ≥ ν. Moreover, for any t ≥ θ,

EV3(x(τχ ∧ t)) =EV3(x(ν ∧ t)) + E
∫ τχ∧t

ν∧t

LV3(x(s))ds,
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which, together with (2.19), yields EV3(x(τχ ∧ t)) ≤ EV3(x(ν ∧ t)). It is clear that
V3(x(τχ ∧ t)) = V3(x(ν ∧ t)) = V3(x(t)) on

{
τϱ ≥ (τh ∧ θ)

}
. Note that

EV3(x(τχ ∧ t)) =

∫
{τϱ<(τh∧θ)}

V3(x(τχ ∧ t))dP+

∫
{τϱ≥(τh∧θ)}

V3(x(τχ ∧ t))dP

=E
[
I{τϱ<τh∧θ}V3(x(τχ ∧ t))

]
+

∫
{τϱ≥τh∧θ}

V3(x(t))dP. (2.27)

Similarly, for any t ≥ θ,

EV3(x(ν ∧ t)) =E
[
I{τϱ<(τh∧θ)}V3(x(τϱ))

]
+

∫
{τϱ≥(τh∧θ)}

V3(x(t))dP. (2.28)

From (2.27) and (2.28), for any t ≥ θ,

E
[
I{τϱ<(τh∧θ)}V3(x(τχ ∧ t))

]
≤E
[
I{τϱ<(τh∧θ)}V3(x(τϱ))

]
. (2.29)

For any t ≥ θ, using the fact {τχ ≤ t} ⊂ {τϱ < (τh ∧ θ)}, we have

E
[
I{τϱ<(τh∧θ)}V3(x(τχ ∧ t))

]
≥
∫
{τχ≤t}

V3(x(τχ))dP

≥
∫
{τχ≤t}

|x(τχ)|2

3
dP

≥χ2

3
P{τχ ≤ t} (2.30)

and

E
[
I{τϱ<(τh∧θ)}V3(x(τϱ))

]
≤
∫
Ω

V3(x(τϱ))dP ≤
∫
Ω

|x(τϱ)|2dP ≤ ϱ2. (2.31)

From (2.24) and (2.29)–(2.31), it follows that

P{τχ ≤ t} ≤ 3ϱ2

χ2
≤ ε

4
.

Letting t → ∞ we have P{τχ < ∞} ≤ ε
4 . Using (2.26), {ν < ∞ and τχ = ∞} =

{τϱ < τh ∧ θ and τχ = ∞} and P(B) ≥ P(AB) ≥ P(A)− P(BC) for any A,B ∈ F ,
we have

P
{
ν < ∞ and τχ = ∞

}
≥ P

{
τϱ < (τh ∧ θ)

}
− P

{
τχ < ∞

}
≥ 1− ε.

That is P
{
lim supt→∞ |x(t)| ≤ χ

}
≥ 1− ε. Note that χ is arbitrary. Then

P
{

lim
t→∞

x(t) = 0
}
≥ 1− ε.

Furthermore, from the arbitrariness of ε, it follows that P
{
limt→∞ x(t) = 0

}
= 1.

That is

P
{

lim
t→∞

[S1(t)− S2(t)] = 0, lim
t→∞

[I1(t)− I2(t)] = 0
}
= 1.

Thus,

P
{

lim
t→∞

[S1(t)− S2(t)] = 0
}
= 1, P

{
lim
t→∞

[I1(t)− I2(t)] = 0
}
= 1.

The proof is complete.
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Remark 2.2. Theorem 2.5 shows that S1(t) − S2(t) and I1(t) − I2(t) converge
to 0 in mean square. Moreover, from Theorem 2.5 and Chebyshev’s inequality,
P
{
|S1(t) − S2(t)| ≥ ε

}
≤ E[S1(t)−S2(t)]

2

ε2 and P
{
|I1(t) − I2(t)| ≥ ε

}
≤ E[I1(t)−I2(t)]

2

ε2

for any ε > 0. Thus,

lim
t→∞

P
{
|S1(t)− S2(t)| ≥ ε

}
≤ limt→∞ E[S1(t)− S2(t)]

2

ε2
= 0,

lim
t→∞

P
{
|I1(t)− I2(t)| ≥ ε

}
≤ limt→∞ E[I1(t)− I2(t)]

2

ε2
= 0.

That is, S1(t)− S2(t) and I1(t)− I2(t) converge to 0 stochastically.

Remark 2.3. From Theorem 2.5, it follows that under certain conditions the dif-
ferences between susceptible populations or infected populations in two cities will
disappear with probability 1 as time tends to infinity.

3. Extinction
From [6], if R0γ < 1, then disease-free equilibrium E0 = (S0, 0, S0, 0) of the deter-
ministic model (1.1) is locally asymptotically stable. In this section, we provide the
conditions of the extinction of disease in model (1.2). First of all, we define

Rsγ =
β + γα

c+ d+
σ2
2

2

. (3.1)

A similar discussion as Lemma 3.3 in [29], we have the following lemma.

Lemma 3.1. Let X(t) be the solution of model (1.2) with any given initial value
X0 ∈ R4

+. If p ≥ 1 and b̄ > 0, then

lim
t→∞

Si(t)

t
= 0, lim

t→∞

Ii(t)

t
= 0 a.s., (i = 1, 2).

Here b̄ = b− p−1
2 σ2 and σ2 = σ2

1 ∨ σ2
2.

Lemma 3.2. Let X(t) be the solution of model (1.2) with any given initial value
X0 ∈ R4

+. If p ≥ 1 and b̄ > 0, then

lim
t→∞

1

t

∫ t

0

S1(s)dw1(s) = 0, lim
t→∞

1

t

∫ t

0

I1(s)dw2(s) = 0, a.s.

lim
t→∞

1

t

∫ t

0

S2(s)dw1(s) = 0, lim
t→∞

1

t

∫ t

0

I2(s)dw2(s) = 0, a.s.

Here b̄ = b− p−1
2 σ2 and σ2 = σ2

1 ∨ σ2
2.

Proof. Denote

X1(t) =

∫ t

0

S1(s)dw1(s), Y1(t) =

∫ t

0

I1(s)dw2(s),

X2(t) =

∫ t

0

S2(s)dw1(s), Y2(t) =

∫ t

0

I2(s)dw2(s).
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By the Burkholder-Davis-Gundy inequality (see Theorem 1.7.3 in [20]) and the
Hölder inequality, we obtain that for p > 0 and t ≥ 0,

E
[

sup
0≤s≤t

|X1(s)|p
]
≤CpE

[ ∫ t

0

S2(s)ds

] p
2

≤ CpE
[(∫ t

0

1ds
)1− 2

p
(∫ t

0

(S2)
p
2 ds
) 2

p

] p
2

=Cpt
p
2−1E

[ ∫ t

0

Sp(s)ds

]
≤ Cpt

p
2−1

[ ∫ t

0

E(Sp(s))ds

]
. (3.2)

Here Cp (depending only on p) is a positive constant. Making use of (2.13) and
(3.2), for t ≥ 0

E
[

sup
0≤s≤t

|X1(s)|p
]
≤ Cpt

p
2−1

[ ∫ t

0

E(Sp(s))ds

]
≤ CpMt

p
2 .

Thus, for any positive integer n, we have

E
[

sup
n≤t≤n+1

|X1(t)|p
]
≤ E

[
sup

0≤t≤n+1
|X1(t)|p

]
≤ CpM(n+ 1)

p
2 .

Let ε > 0 be arbitrary. Applying Chebyshev’s inequality, we obtain

P
{

sup
n≤t≤n+1

|X1(t)|p > n1+ε+ p
2

}
≤ 1

n1+ε+ p
2

E
[

sup
n≤t≤n+1

|X1(t)|p
]
≤ CpM(n+ 1)

p
2

n1+ε+ p
2

.

(3.3)

Since
∑∞

n=0
CpM(n+1)

p
2

n1+ε+
p
2

< ∞ for ε > 0, the well-known Borel-Cantelli lemma (see
Lemma 1.2.1 in [20]) tells us that for almost all ω ∈ Ω there exists a positive integer
n0 = n0(ω) such that supn≤t≤n+1 |X1(t)|p ≤ n1+ε+ p

2 for any n ≥ n0. That is to
say,

ln |X1(t)|p

ln t
≤
(
1 + ε+ p

2

)
lnn

lnn
= 1 + ε+

p

2
.

Hence lim supt→∞
ln |X1(t)|

ln t ≤ 1+ε+ p
2

p a.s. Let ε ↓ 0, we obtain lim supt→∞
ln |X1(t)|

ln t ≤
1
p + 1

2 a.s. Namely, for any small 0 < ξ < 1
2 − 1

p , there exists a constant T = T (ω)

such that |X1(t)| ≤ t
1
p+

1
2+ξ for t ≥ T . Thus,

lim sup
t→∞

|X1(t)|
t

≤ lim sup
t→∞

t
1
p+

1
2+ξ

t
= 0.

This, together with lim inft→∞
|X1(t)|

t ≥ 0, yields limt→∞
|X1(t)|

t = 0 a.s. Therefore,

lim
t→∞

X1(t)

t
= lim

t→∞

1

t

∫ t

0

S1(s)dw1(s) = 0 a.s.

A similar discussion as in the above, we can get the required assertion.

Theorem 3.1. For any X0 ∈ R4
+, let X(t) be solution of model (1.2) with initial

value X0. Then the solution X(t) has the following property:

lim sup
t→∞

ln(I1(t) + I2(t))

t
≤
(
c+ d+

σ2
2

2

)
(Rsγ − 1) a.s.

Further, if Rsγ < 1, then I1(t) and I2(t) tend to zero almost surely exponentially.



Analysis of a stochastic SIS epidemic model 1311

Proof. Define V (I1, I2) = ln(I1 + I2). Applying Itô formula, we have

ln(I1(t) + I2(t)) =

∫ t

0

[
1

I1(s) + I2(s)

( (β + γα)S1(s)I1(s)

S1(s) + I1(s)
+

(β + γα)S2(s)I2(s)

S2(s) + I2(s)

)
− (c+ d)− σ2

2

2

]
ds+

∫ t

0

σ2dw2(s) + ln(I10 + I20)

≤
[
(β + γα)− (c+ d)− σ2

2

2

]
t+ σ2w2(t) + ln(I10 + I20).

Thus
ln(I1(t) + I2(t))

t
≤
[
(β + γα)− (c+ d)− σ2

2

2

]
+

σ2w2(t)

t
+

ln(I10 + I20)

t
. (3.4)

It is clear that w2(t) is a continuous square-integrable martingale. Thus, from the
strong law of large numbers (see Theorem 1.4.2 in [20]), limt→∞

σ2w2(t)
t = 0 a.s.

Hence

lim sup
t→∞

ln(I1(t) + I2(t))

t
≤(β + γα)−

(
c+ d+

σ2
2

2

)
=
(
c+ d+

σ2
2

2

)
(Rsγ − 1) a.s.,

which, together with the positivity of the solution, yields

lim sup
t→∞

ln Ii(t)

t
≤ lim sup

t→∞

ln(I1(t) + I2(t))

t
< 0 a.s., i = 1, 2.

Thus, limt→∞ I1(t) = limt→∞ I2(t) = 0 a.s. The proof is complete.

Theorem 3.2. For any X0 ∈ R4
+, let X(t) be solution of model (1.2) with initial

value X0. Assume that for some p > 1, b̄ = b− p−1
2 σ2 ≥ 0, where σ2 = σ2

1 ∨ σ2
2. If

Rsγ < 1, then

lim
t→∞

⟨S1(t)⟩ = lim
t→∞

⟨S2(s)⟩ =
a

b
= S0 a.s.

Proof. Integrating from 0 to t on both sides of (2.6) yields

N(t)−N(0)

t
=2a− b⟨S1(t) + S2(t)⟩ − c⟨I1(t) + I2(t)⟩

+
σ1

t

∫ t

0

(S1(s) + S2(s))dw1(s)

+
σ2

t

∫ t

0

(I1(s) + I2(s))dw2(s).

Clearly,

⟨S1(t) + S2(t)⟩ =
2a

b
− c

b
⟨I1(t) + I2(t)⟩+ ϕ(t), (3.5)

where ϕ(t) = 1
b [−

N(t)−N(0)
t +σ1

t

∫ t

0
(S1(s)+S2(s))dw1(s)+

σ2

t

∫ t

0
(I1(s)+I2(s))dw2(s)].

This, together with Lemmas 3.1 and 3.2, yields limt→∞ ϕ(t) = 0 a.s. From Theo-
rem 3.1, it follows that limt→∞(I1(t) + I2(t)) = 0 a.s. Applying L’Hospital’s rule,
it follows that limt→∞⟨I1(t) + I2(t)⟩ = 0 a.s. Thus,

lim
t→∞

⟨S1(t) + S2(t)⟩ =
2a

b
= 2S0 a.s. (3.6)
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Moreover, it follows from (1.2) that

d[S1 + I1] = [a− bS1 − α(S1 − S2)− (c+ α)I1 + αI2] dt+ σ1S1dw1(t)

+ σ2I1dw2(t). (3.7)

Integrating from 0 to t on both sides of (3.7) yields

S1(t) + I1(t)− (S10 + I10)

t
=a− b⟨S1(t)⟩ − α⟨S1(t)− S2(t)⟩ − (c+ α)⟨I1(t)⟩

+ α⟨I2(t)⟩+
σ1

t

∫ t

0

S1(s)dw1(s)+
σ2

t

∫ t

0

I1(s)dw2(s).

Obviously,

⟨S1(t)⟩+
α

b
⟨S1(t)− S2(t)⟩ =

a

b
− c+ α

b
⟨I1(t)⟩+

α

b
⟨I2(t)⟩+ ϕ1(t),

where ϕ1(t) = 1
b [−

S1(t)+I1(t)−(S10+I10)
t + σ1

t

∫ t

0
S1(s)dw1(s) +

σ2

t

∫ t

0
I1(s)dw2(s)].

This, together with Lemmas 3.1 and 3.2, implies limt→∞ ϕ1(t) = 0 a.s. From
Theorem 3.1 and L’Hospital’s rule, limt→∞⟨I1(t)⟩ = limt→∞⟨I2(t)⟩ = 0 a.s. Thus,

lim
t→∞

[
⟨S1(t)⟩+

α

b
⟨S1(t)− S2(t)⟩

]
=

a

b
= S0 a.s. (3.8)

By a similar way, we have

lim
t→∞

[
⟨S2(t)⟩+

α

b
⟨S2(t)− S1(t)⟩

]
=

a

b
= S0 a.s. (3.9)

From (3.6), (3.8) and (3.9), it follows that

lim
t→∞

⟨S1(t)⟩ = lim
t→∞

⟨S2(t)⟩ =
a

b
= S0 a.s.

The proof is complete.

Remark 3.1. Theorem 3.1 indicates that the extinction of disease in (1.2) occurs
if Rsγ = β+γα

c+d+0.5σ2
2
< 1. Note that Rsγ < R0γ . Thus, it is possible that Rsγ < 1 <

R0γ . This is the case when the deterministic model (1.1) has endemic while the
stochastic model (1.2) shows that the disease will go extinct with probability one.

4. Stationary distribution and ergodicity
One of the important properties in infectious disease dynamics is the persistence
which means the disease will never become extinct. The ergodic stationary distribu-
tion reflects the weak stability and persistence of the model to some certain extent.
If model (1.2) has an ergodic stationary distribution, we can say that the disease
can persist in these two cities. Further, it forms an endemic disease. Thus, in this
section, we will show that there is an ergodic stationary distribution for model (1.2).

Let X(t) be a homogeneous Markov process in Ed (denotes d-dimensional Eu-
clidean space), described by the following stochastic differential equation

dX(t) = b(X(t))dt+ g(X(t))dW (t), X(0) = X0. (4.1)

The diffusion matrix of X(t) is defined as J(X) = g(X)gT(X) = (aij(X)).
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Definition 4.1 (see [4]). Let P(t,X, ·) be the probability measure induced by X(t)
with initial value X(0) = X0. That is, P(t,X0, A) = P(X(t) ∈ A|X(0) = X0),
for any Borel set A ∈ B(Rd

+). If there exists a probability measure µ(·) such that
limt→∞ P(t,X0, A) = µ(A) for all X0 ∈ Rd

+ and A ∈ B(Rd
+), then we say that

equation (4.1) has a stationary distribution µ(·).

Lemma 4.1 (see [4]). Assume that there exists a bounded domain D ⊂ Ed with
regular boundary Γ and

(A1) there is a positive number M such that
∑d

i,j=1 aij(X)ξiξj ≥ M |ξ|2, X ∈ D,
ξ ∈ Rd;

(A2) there is a nonnegative C2-function V such that there exists a positive
constant C, such that

LV ≤ −C for any X ∈ Ed\D.

Then the Markov process X(t) has a unique ergodic stationary distribution µ(·).
Moreover, if f(·) is a function integrable with respect to the measure µ, then

P
{

lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
Ed

f(x)µ(dx)

}
= 1.

Consider the following stochastic SIS epidemic model
dS =

[
a− (β+γα)SI

S+I − bS + dI
]
dt+ σ1Sdw1(t),

dI =
[
(β+γα)SI

S+I − (c+ d)I
]
dt+ σ2Idw2(t),

(4.2)

with (S(0), I(0)) = (S0, I0) ∈ R2
+ = {(x, y) ∈ R2 : x > 0, y > 0}. Define parameter

Rs
γ =

b(β + γα)(
b+

σ2
1

2

)(
c+ d+

σ2
2

2

) . (4.3)

Lemma 4.2. Let (S(t), I(t)) be the solution of model (4.2) with any given initial
value (S0, I0) ∈ R2

+. If Rs
γ > 1, then model (4.2) has a stationary distribution µ(·)

and the solution (S(t), I(t)) has the ergodic property.

Proof. By Itô’s formula and model (4.2), we have

L(S + I) = a− bS − cI = a− b(S + I)− (c− b)I,

L(− lnS) = − a

S
+

(β + γα)I

S + I
− dI

S
+ b+

σ2
1

2
,

L(− ln I) = − (β + γα)S

S + I
+ c+ d+

σ2
2

2
.

Define a function V1(S, I) = (S+ I)− k1 lnS− k2 ln I, where k1 and k2 are positive
constants to be determined later. Using Itô’s formula, we have

LV1 =− b(S + I)− k1a

S
− k2(β + γα)S

S + I
+ a+ k1

(
b+

σ2
1

2

)
+ k2

(
c+ d+

σ2
2

2

)
− (c− b)I − k1dI

S
+

k1(β + γα)I

S + I
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≤− 3
[
k1k2ab(β + γα)

] 1
3 + a+ k1

(
b+

σ2
1

2

)
+ k2

(
c+ d+

σ2
2

2

)
+

k1(β + γα)I

S + I
.

Let k1(b+ σ2
1

2 ) = k2(c+d+
σ2
2

2 ) = a, then k1 = a

b+
σ2
1
2

, k2 = a

c+d+
σ2
2
2

. As a consequence

LV1 ≤− 3

( a3b(β + γα)(
b+

σ2
1

2

)(
c+ d+

σ2
2

2

)
) 1

3

− a

+
k1(β + γα)I

S + I

=− 3a
[
(Rs

γ)
1
3 − 1

]
+

k1(β + γα)I

S + I
,

where Rs
γ is defined in (4.3). Further, define

V2(S, I) =MV1(S, I)− lnS + (S + I)

=(M + 1)(S + I)− (k1M + 1) lnS − k2M ln I,

where the positive constant M satisfies the following condition

−Mλ+ a+ b+ β + γα+
σ2
1

2
≤ −2, (4.4)

and λ = 3a[(Rs
γ)

1
3 − 1] > 0. It is easy to see that

lim inf
k→∞,(S,I)∈R2

+\Uk

V2(S, I) = +∞,

where Uk = ( 1k , k)× ( 1k , k). This, together with the continuity of function V2(S, I),
yields V2(S, I) has a minimum point (S̄0, Ī0) in the interior of R2

+. Then we define
a nonnegative C2-function V3: R2

+ → R as follows

V3(S, I) = V2(S, I)− V2(S̄0, Ī0).

Using Itô’s formula, we have

LV3 =MLV1 + L(− lnS) + L(S + I)

≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
+

(β + γα)I

S + I
+ b− dI

S
+

σ2
1

2
+ a− bS − cI

≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
− b(S + I)− (c− b)I + a+ b+ β + γα+

σ2
1

2

≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
− b(S + I) + a+ b+ β + γα+

σ2
1

2
.

Now, define the following bounded closed set

D =

{
(S, I) ∈ R2

+ : S ≥ ϱ, I ≥ ϱ2, S + I ≤ 1

ϱ

}
,

where ϱ > 0 is a sufficiently small constant. In the set R2
+ \ D, we can choose ϱ

sufficiently small such that

ϱ ≤ min

{
a

Mk1(β + γα)
,

b

Mk1(β + γα)
,

1

Mk1(β + γα)

}
. (4.5)
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For convenience, we divide R2
+ \D into the following three domains

D1 =
{
(S, I) ∈ R2

+ : 0 < S < ϱ
}
, D2 =

{
(S, I) ∈ R2

+ : 0 < I < ϱ2, S ≥ ϱ
}
,

D3 =

{
(S, I) ∈ R2

+ : S + I >
1

ϱ

}
.

Clearly, R2
+ \D = D1 ∪D2 ∪D3. Now, we show that LV3(S, I) ≤ −1 on R2

+ \D,
which is equivalent to proving it on the above three domains.

Case 1. If (S, I) ∈ D1, then from (4.4) and (4.5), it follows that

LV3 ≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
− b(S + I) + a+ b+ β + γα+

σ2
1

2

≤− 2 +Mk1(β + γα)− a

ϱ

≤− 1.

Case 2. If (S, I) ∈ D2, then from (4.4) and (4.5), it follows that

LV3 ≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
− b(S + I) + a+ b+ β + γα+

σ2
1

2

≤− 2 +Mk1(β + γα)ϱ

≤− 1.

Case 3. If (S, I) ∈ D3, then from (4.4) and (4.5), it follows that

LV3 ≤−Mλ+
Mk1(β + γα)I

S + I
− a

S
− b(S + I) + a+ b+ β + γα+

σ2
1

2

≤− 2 +Mk1(β + γα)− b

ϱ

≤− 1.

Obviously, one can see that for a sufficiently small ϱ > 0

LV3(S, I) ≤ −1 for all (S, I) ∈ R2
+ \D.

Hence (A2) in Lemma 4.1 is satisfied.
The diffusion matrix of model (4.2) is given by A = diag(σ2

1S
2, σ2

2I
2). Then for

any (S, I) ∈ D and ξ = (ξ1, ξ2) ∈ R2, we have

2∑
i,j=1

aij(S, I)ξiξj = σ2
1S

2ξ21 + σ2
2I

2ξ22 ≥ M |ξ|2,

where M = ϱ2σ2
1 ∧ ϱ4σ2

2 . Thus, condition (A1) of Lemma 4.1 holds. Accord-
ing to Lemma 4.1, model (4.2) has a stationary distribution µ(·) and the solution
(S(t), I(t)) has the ergodic property. The proof is complete.

Theorem 4.1. For any X0 ∈ R4
+, let X(t) be solution of model (1.2) with initial

value X0. Under the conditions of Theorem 2.5, if Rs
γ > 1, then model (1.2) has a

stationary distribution and the solution X(t) has the ergodic property.
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Proof. From Theorem 2.5, it follows that

P
{

lim
t→∞

[S1(t)− S2(t)] = 0
}
= 1, P

{
lim
t→∞

[I1(t)− I2(t)] = 0
}
= 1.

This means that for any small 0 < ε < a
α+2γα , there exists a positive constant T

such that

−αε ≤ α
(
S1(t)− S2(t)

)
≤ αε, − αε ≤ α

(
I1(t)− I2(t)

)
≤ αε a.s. for t ≥ T.

Note that ∣∣∣∣γαS1I1
S1 + I1

− γαS2I2
S2 + I2

∣∣∣∣ ≤ γα|S1 − S2|+ γα|I1 − I2|.

Thus,

−2γαε ≤ γαS1I1
S1 + I1

− γαS2I2
S2 + I2

≤ 2γαε a.s. for t ≥ T.

Consider the following two systems
dY1 =

[
(a+ αε+ 2γαε)− (β+γα)Y1Z1

Y1+Z1
− bY1 + dZ1

]
dt+ σ1Y1dw1(t),

dZ1 =
[
(β+γα)Y1Z1

Y1+Z1
− (c+ d)Z1 + (αε+ 2γαε)

]
dt+ σ2Z1dw2(t),

(4.6)

with (Y1(0), Z1(0)) = (S10, I10) ∈ R2
+, and

dY2 =
[
(a− αε− 2γαε)− (β+γα)Y2Z2

Y2+Z2
− bY2 + dZ2

]
dt+ σ1Y2dw1(t),

dZ2 =
[
(β+γα)Y2Z2

Y2+Z2
− (c+ d)Z2 − (αε+ 2γαε)

]
dt+ σ2Z2dw2(t),

(4.7)

with (Y2(0), Z2(0)) = (S10, I10) ∈ R2
+. Then it follows from the stochastic compar-

ison theorem that

Y2(t) ≤ S1(t) ≤ Y1(t), Z2(t) ≤ I1(t) ≤ Z1(t) a.s., for t ≥ T.

Similarly, we also have

Y2(t) ≤ S2(t) ≤ Y1(t), Z2(t) ≤ I2(t) ≤ Z1(t) a.s., for t ≥ T.

Let ε → 0, then we have limt→∞ |Y1(t)− Y2(t)| = 0 and limt→∞ |Z1(t)−Z2(t)| = 0
a.s. Then we can conclude that limt→∞ |Y1(t)−S1(t)| = 0, limt→∞ |Z1(t)−I1(t)| =
0, limt→∞ |Y1(t) − S2(t)| = 0 and limt→∞ |Z1(t) − I2(t)| = 0 a.s. Moreover, from
the arbitrariness of ε, similar to the proof of Lemma 4.2, we know that if Rs

γ > 1,
then model (4.6) has a stationary distribution and the solution (Y1(t), Z1(t)) has
the ergodic property. Therefore, we can conclude that if Rs

γ > 1, then model (1.2)
has a stationary distribution and the solution X(t) has the ergodic property.
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5. Numerical simulations
In this section, we use the Milstein method (see [8]) to substantiate the main results.
To illustrate the theoretical results, we take a = 0.6, b = 0.3, c = 0.5, d = 0.5,
α = 0.4, β = 0.8, and γ = 0.9 and (S10, I10, S20, I20) = (2.4, 0.2, 2, 0.5). Denote

Q =
4(b+2α−σ2

1
2 )(c+d+2α−σ2

2
2 )−d2

4(b+c+2d+4α−σ2
1
2 −σ2

2
2 )

.

Example 5.1. Let σ2
1 = 0.1 and σ2

2 = 0.1. It is clear that 0.05 =
σ2
1

2 < b+2α = 1.1

and 0.05 =
σ2
2

2 < c+d+2α = 1.8 Moreover, we have 0.44 = |β−γα| < Q = 0.53788.
Thus, from Theorem 2.5, it follows that

P
{

lim
t→∞

[S1(t)− S2(t)] = 0
}
= 1, P

{
lim
t→∞

[I1(t)− I2(t)] = 0
}
= 1.

The numerical simulations in Fig. 1 support these results clearly.
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Figure 1. The differences between susceptible populations or infected populations in two cities of model
(1.2) with σ2

1 = 0.1 and σ2
2 = 0.1.
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(b) The infected I1 and I2.

Figure 2. Numerical simulation of deterministic model (1.1).

Example 5.2. (i) Note that R0γ = 1.16 > 1. Thus form [6], model (1.1) admits a
unique endemic equilibrium E∗

γ = (1.57895, 0.25263, 1.57895, 0.25263) (see Fig. 2).
(ii) For model (1.2), choose σ2

1 = 0.1 and σ2
2 = 0.4. Then Rsγ = 0.96 < 1. If

p = 2, then b̄ = b− p−1
2 σ2 = 0.1 > 0. Then, from Theorems 3.1 and 3.2, it follows

that

lim
t→∞

I1(t) = lim
t→∞

I2(t) = 0, lim
t→∞

⟨S1(t)⟩ = lim
t→∞

⟨S2(t)⟩ =
a

b
= 2 a.s.
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Thus, I1 and I2 tend to zero (see Figs. 3(b) and 3(d)) while S1 and S2 are persistent
in mean (see Figs. 3(a) and 3(c)).

(iii) Set σ2
1 = 0.02 and σ2

2 = 0.03. By a simple calculation, we have

Rs
γ = 1.106 > 1 and 0.44 = |β − γα| < Q = 0.5812.

Then, model (1.2) has a stationary distribution. This means that the disease can
persist. Fig. 4 gives the solution of (1.2) around the equilibrium E∗

γ .
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Figure 3. Numerical simulation of model (1.2) with σ2
1 = 0.1 and σ2

2 = 0.4.

Example 5.3. To illustrate Lemma 4.2, we take a = 0.6, b = 0.3, c = 0.5, d = 0.5,
α = 0.4, β = 0.8, γ = 0.9, σ2

1 = 0.02 and σ2
2 = 0.03. By a simple calculation,

we have Rs
γ = 1.106 > 1. Then, from Lemma 4.2, model (4.2) has a stationary

distribution and the solution has the ergodic property (see Fig 5).

Example 5.4. To illustrate Theorem 4.1, we take a = 0.6, b = 0.3, c = 0.5, d = 0.5,
α = 0.4, β = 0.8, γ = 0.9, σ2

1 = 0.02 and σ2
2 = 0.03. Thus, we have Rs

γ = 1.106 > 1
and 0.44 = |β − γα| < Q = 0.5812. Then, from Theorem 4.1, model (1.2) has a
stationary distribution and the solution has the ergodic property (see Fig 6).

6. Conclusions and discussions
In this work we consider a stochastic SIS epidemic model with transport-related
infection. First, we investigate the existence and uniqueness of a global positive
solution of the model. Next, we show that under certain conditions the differences
between susceptible populations or infected populations in two cities will disappear
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(b) The infected individual I1.
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(c) The susceptible individual S2.
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Figure 4. Numerical simulation of model (1.2) with σ2
1 = 0.02 and σ2

2 = 0.03.
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Figure 5. The density functions of S(t) and I(t) in (4.2) at t = 30000 with (S0, I0) = (2.4, 0.2) and
(S0, I0) = (2, 0.5). (a) the density of S(t); (b) the density of I(t).

with probability 1 as time tends to infinity. Then, we show that I1(t) and I2(t)
in model (1.2) almost surely tend to zero exponentially if Rsγ < 1. Moreover, we
prove that when the difference between the two cities disappears, if Rs

γ > 1, then
the model has a stationary distribution and the solution has the ergodic property.
Numerical simulations are presented to confirm the theoretical results.

Some interesting problems deserve further consideration. From [16], we know
that populations may suffer from sudden environmental fluctuations, such as floods
and earthquakes, which cannot be described by Brownian motions. Thus, one can
introduce the jumps into (1.2). Moreover, from [2], we know that populations may
be perturbed by telegraph noise which is distinguished by factors such as rain falls
and nutrition and can be represented by switching among two or more regimes of
environment. Thus, one may incorporate the Markovian switching into (1.2). We
think that these are challenging problems and leave them to future consideration.
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Figure 6. The density functions of S1(t), S2(t), I1(t) and I2(t) in model (1.2) at t = 30000 with
(S10, I10, S20, I20) = (2.4, 0.2, 2, 0.5). (a) the density functions of S1(t) and S2(t); (b) the density
functions of I1(t) and I2(t).
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