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FLOW OF MAXWELL FLUID IN A CHANNEL
WITH UNIFORM POROUS WALLS

Tahira Haroon1, Abdul Majeed Siddiqui1, Hameed Ullah2,3,†

and Dianchen Lu2

Abstract In this paper a theoretical study of incompressible Maxwell fluid
in a channel with uniform porous walls is presented. Along with the viscoelas-
ticity, inertial effects are also considered. Six nonlinear partial differential
equations (PDEs) with non-homogeneous boundary conditions in two dimen-
sions are solved using recursive approach. Expressions for stream function,
velocity components, volumetric flow rate, pressure distribution, shear and
normal stresses in general and on the walls of the channel, fractional absorp-
tion and leakage flux are obtained. The volumetric flow rate and mean flow
rate are found to be very useful to understand the flow phenomena through
the channel and while defining non-dimensional parameters. Points of max-
imum velocity components are also identified. A graphical study is carried
out to show the effect of absorption, Reynolds number, material parameter
on above mentioned resulting expressions. It is observed that velocity of the
fluid decreases with the increase in absorption parameter, Reynolds number
and also with Maxwell parameter. These results enforce the presence of inertia
terms. As all three parameters, mentioned above play very important role in
the stability of fluid flow. The limited cases are in full agreement with the
available literature. Above mentioned solution technique proved itself a best
and easy to handle technique for the solutions of highly nonlinear PDEs with
non-homogeneous boundary conditions, a great help to mathematical commu-
nity. This theoretical study has significant importance in industry and also in
biosciences.

Keywords Maxwell fluid, laminar flow, porous walls, constant absorption,
recursive approach.
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1. Introduction
Absorption of the fluid from the tubes or channel walls are very important phe-
nomena in geothermal energy extraction, nuclear waste disposal, drying of food,
insulation of buildings. Its importance in biomedical engineering can also not be
denied. The process of filtration and mass transfer is occurred in the desalination
with reverse osmosis, in the circulation of blood through an artificial kidney, that
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is, in the haemodialyses in the lymphatic flow in human body through network of
lymphatic capillaries and in the flow through renal tubules of nephron in kidneys.
Berman [3] has solved Navier-Stokes equations for rectangular duct with two porous
walls using similarity along with the perturbation method. Yuan [29], Terril [23,24]
and Cox [4] also investigated the flow through porous channel using different tech-
niques. Siddiqui et al. [7, 19, 20] have published work using channel with different
absorption patterns at permeable walls for Stokes problem. Rashevski [16] studied
the channel flow by considering one porous wall and investigated the significance
impact of heat transfer inside the channel. Recently, Ullah et al [27,28] studied the
creeping flow of slightly viscoelastic fluid flows through permeable channel using
recursive approach, Kahshan et al [10, 11] studied the Micropolar and Jeffery fluid
flow through porous walled channel and many authors [1, 2, 8, 22] have also shown
keen interest in the channel flow problems with different restrictions.

Biological fluids are not simple fluids, they contain different types of minerals,
proteins, like sodium, calcium, potassium, hydrogen, ammonium, magnesium etc..
In the kidneys where filtration, absorption and reabsorption of the fluid occur and
urine as a bi product is obtained, fluid cannot be considered as Newtonian. Lots
of constitutive models are proposed by the researchers. Few of these models are
developed from the classical theory but mostly are based on experimental data,
which are known as empirical models. But, per our knowledge, no such constitutive
model exists which can define such type of fluids, completely. So one of the rea-
sons for investigation is to find the appropriate model which can fit closely to the
experimental data so that using that model we can reach to some useful results for
practical purposes. For this purpose we start with a non-Newtonian, viscoelastic
rate type fluid model known as Maxwell fluid model, a subclass of Oldroyd fluid
model (suggested by Maxwell [15]). Choi et al. [5] discussed the channel flow of
Maxwell fluid with suction. A thermodynamic approach for modeling a class of
rate type fluids was developed by Rajagopal and Srinivasa [17]. Tan and Xu [25]
described the unidirectional flow of viscoelastic fluid with fractional Maxwell model.
Sadeghy et al. [21] studied the Sakiadis flow of Maxwell fluid.

We are trying to solve full momentum equations for incompressible Maxwell fluid
model, combining the effects of viscoelasticity and inertia in a channel with uniform
porous walls. This leads to six two-dimensional highly non-linear partial differential
equations along with the non-homogeneous boundary conditions. In general it is
very difficult to solve these type of equations either analytically or numerically.
Analytical study of such type of nonlinear problem is important not only because
of its technological significance but also due to the interesting mathematical features
presented by these equations.

Generally, the methods of solution of the nonlinear differential equations are
restricted to a variety of special classes of equations and usually involves a lim-
ited number of techniques to achieve analytical approximations to the solutions.
There are some common approaches for approximating solutions of a non-linear
system such as the perturbation methods [6,18] based on an assumption of a small
parameter which must exist in the equation, greatly restricting applications of per-
turbation techniques. In this article we have used a recursive approach proposed
by Langlois [12, 13]. He used this approach to solve slow viscoelastic fluids flow
problems neglecting inertial part. But, we have generalized this approach to solve
highly non-linear full two-dimensional momentum equations including inertial part
for incompressible Maxwell fluid model along with non-homogeneous boundary con-
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ditions. Expressions for the velocity components, flow rate, pressure field, mean
pressure drop, wall shear stress, normal stresses, leakage flux and fractional absorp-
tion are obtained. Graphical results and discussion are also presented. We hope
that this article will be useful in understanding the mechanism of flows through uni-
form porous boundaries in industry and also in biosciences. This will also attract
the mathematical community.

2. Basic Equations
The basic equations governing the steady, laminar flow of an incompressible Maxwell
fluid, neglecting thermal effects and body forces are

∇ ·V = 0, (2.1)
ρ [(V · ∇)V] = −∇p+∇ · τ , (2.2)

where V is the velocity vector, ρ is the density of the fluid, p is the hydrodynamic
pressure and τ is the extra stress tensor.

Constitutive equation for incompressible Maxwell fluid [5, 14,21] is:

τ + λ
▽
τ = µA1, (2.3)

λ is relaxation time and overhead “▽” stands for the contravarient or upper con-
vected derivative, µ is the coefficient of viscosity and A1 is the first Rivlin-Erickson
tensor given by

A1 = (∇V) + (∇V)
T
, (2.4)

and
▽
τ = (V · ∇) τ −

[
(∇V)

T
τ + τ (∇V)

]
, (2.5)

where superscript T denotes the transpose of the given matrix.

3. Problem Statement
We consider steady, laminar, isothermal flow of an incompressible Maxwell fluid
through an infinite channel with uniform porous walls. A rectangular Cartesian
coordinate system (x, y, z) is chosen with x-axis aligned with the center line of the
channel in the direction of flow, and y normal to it. Let the width of the channel
be 2H. The entering volume flow rate Q0, and absorption velocity V◦ from the
channel walls, are assumed constants. Since channel is considered infinite, the third
component of velocity can be neglected and the flow field became two dimensional.

Due to symmetry condition, we choose half of the channel, then the boundary
conditions of the problem under consideration (Figure 1) become

u = 0, v = V◦, at y = H, (3.1)
∂u

∂y
= 0, v = 0, at y = 0, (3.2)

Q0 =

∫ H

−H

u(0, y)dy, (3.3)
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Figure 1. Geometry of the Problem

For steady two-dimensional flow we choose velocity profile of the form

V = [u(x, y), v(x, y)] , (3.4)

then equations (2.1)–(2.2) reduce to

∂u

∂x
+
∂v

∂y
= 0, (3.5)

ρ

[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+

[
∂τxx
∂x

+
∂τxy
∂y

]
, (3.6)

ρ

[
u
∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+

[
∂τyx
∂x

+
∂τyy
∂y

]
, (3.7)

and constitutive equation (2.3) with the help of relations (2.4)–(2.5) becomes

[
1 + λ

(
u
∂

∂x
+ v

∂

∂y
− 2

∂u

∂x

)]
τxx − 2λτyx

∂u

∂y
= 2µ

∂u

∂x
, (3.8)[

1 + λ

(
u
∂

∂x
+ v

∂

∂y

)]
τxy − λτxx

∂v

∂x
− λτyy

∂u

∂y
= µ

[
∂u

∂y
+
∂v

∂x

]
, (3.9)[

1 + λ

(
u
∂

∂x
+ v

∂

∂y
− 2

∂v

∂y

)]
τyy − 2λτyx

∂v

∂x
= 2µ

∂v

∂y
. (3.10)

These are six highly non-linear coupled partial differential equations having six un-
knowns namely, u(x, y), v(x, y), p(x, y), τxx(x, y), τxy(x, y), τyy(x, y), as τxy(x, y)
= τyx(x, y), along with non-homogeneous boundary conditions (3.1)–(3.3). It is still
a challenge for researcher community to find exact solution of such type of equa-
tions, even finding analytical or numerical solution is very laborious. In the next
sections, we will use Langlois recursive approach [12, 13] to find analytical solution
of the above system of equations.
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4. Solution of the Problem
Following Langlois approach we expand velocity V, pressure p and extra stress
tensor τ as

V =

∞∑
i=1

ϵi V(i), (4.1)

p = C +

∞∑
i=1

ϵi p(i), (4.2)

τ =

∞∑
i=1

ϵi τ (i), (4.3)

where V(i), p(i) and τ (i) are functions of (x, y) only and ϵ is a small, dimensionless
constant, C is also a constant. Using expansions (4.1)–(4.3) in equations (3.5)–
(3.10) and boundary conditions (3.1)–(3.3), we get:

4.1. First order problem:
Equating the coefficients of ϵ, we obtain

∂u(1)

∂x
+
∂v(1)

∂y
= 0, (4.4)

∂p(1)

∂x
=

[
∂τ

(1)
xx

∂x
+
∂τ

(1)
xy

∂y

]
, (4.5)

∂p(1)

∂y
=

[
∂τ

(1)
yx

∂x
+
∂τ

(1)
yy

∂y

]
. (4.6)

Constitutive equations transform to

τ
(1)
xx = 2µ

∂u(1)

∂x
, τ

(1)
yy = 2µ

∂v(1)

∂y
, τ

(1)
xy = µ

(
∂u(1)

∂y
+
∂v(1)

∂x

)
(4.7)

and the boundary conditions

u(1) = 0, v(1) = V◦, at y = H, (4.8)
∂u(1)

∂y
= 0, v(1) = 0, at y = 0, (4.9)

Q
(1)
0 = 2

∫ H

0

u(1)(0, y)dy. (4.10)

Substituting expressions from (4.7) in system of equations (4.5)–(4.6) and using
equation of continuity (4.4), we get

∂p(1)

∂x
= µ∇2u(1), (4.11)

∂p(1)

∂y
= µ∇2v(1), (4.12)
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where ∇2 =
∂2

∂x2
+

∂2

∂y2
.

Eliminating pressure from these equations and using stream function

u(1) =
∂ψ(1)

∂y
, v(1) = −∂ψ

(1)

∂x
, (4.13)

we reach at

∇4ψ(1) = 0 (4.14)

and boundary conditions in term of stream function become

∂ψ(1)

∂y
= 0,

∂ψ(1)

∂x
= −V◦, at y = H, (4.15)

∂2ψ(1)

∂y2
= 0,

∂ψ(1)

∂x
= 0, at y = 0, (4.16)

ψ(1)(0,H) =
Q◦

2
, ψ(1)(0, 0) = 0. (4.17)

We notice that the problem (4.14)–(4.17) at this order reduces to classical Stokes
flow.

Equation (4.14) is a fourth oder partial differential equation. To solve this
equation let us assume

ψ(1) = xF (1)(y) +G(1)(y), (4.18)

where F (1)(y) and G(1)(y) are unknown functions of their arguments. The solution
of equation (4.14) using boundary conditions (4.15)–(4.17) become

F (1)(y) = −V◦
2

[
3
( y
H

)
−
( y
H

)3
]

(4.19)

G(1)(y) =
Q◦

4

[
3
( y
H

)
−

( y
H

)3
]
, (4.20)

which after using (4.19) and (4.20) in (4.18), become

ψ(1)(x, y) =
1

2

(
Q◦

2
− V◦x

)[
3
( y
H

)
−
( y
H

)3
]
, (4.21)

u(1) =
3

2H

(
Q◦

2
− V◦x

)[
1−

( y
H

)2
]
, (4.22)

v(1) =
V◦
2

[
3
( y
H

)
−

( y
H

)3
]
. (4.23)

It can be easily verified that in the absence of porosity, (4.21)–(4.23) reduce to the
classical solution of flow between two parallel plates.

4.2. Second order problem:
Equations of motion along with constitutive equation components after collecting
terms for coefficients of ϵ2 are
∂u(2)

∂x
+
∂v(2)

∂y
= 0, (4.24)
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ρ

[
u(1)

∂u(1)

∂x
+ v(1)

∂u(1)

∂y

]
= −∂p

(2)

∂x
+

[
∂τ

(2)
xx

∂x
+
∂τ

(2)
xy

∂y

]
, (4.25)

ρ

[
u(1)

∂v(1)

∂x
+ v(1)

∂v(1)

∂y

]
= −∂p

(2)

∂y
+

[
∂τ

(2)
yx

∂x
+
∂τ

(2)
yy

∂y

]
, (4.26)

τ (2)xx + λ

[
u(1)

∂τ
(1)
xx

∂x
+ v(1)

∂τ
(1)
xx

∂y
− 2τ (1)xx

∂u(1)

∂x
− 2τ (1)yx

∂u(1)

∂y

]
= 2µ

∂u(2)

∂x
, (4.27)

τ (2)xy + λ

[
u(1)

∂τ
(1)
yx

∂x
+ v(1)

∂τ
(1)
yx

∂y
− τ (1)xx

∂v(1)

∂x
− τ (1)yy

∂u(1)

∂y

]
= µ

[
∂u(2)

∂y
+
∂v(2)

∂x

]
,

(4.28)

τ (2)yy + λ

[
u(1)

∂τ
(1)
yy

∂x
+ v(1)

∂τ
(1)
yy

∂y
− 2τ (1)yy

∂v(1)

∂y
− 2τ (1)yx

∂v(1)

∂x

]
= 2µ

∂v(2)

∂y
. (4.29)

Boundary conditions for the second order problem are now homogeneous at the
order of ϵ2 :

u(2) = 0, v(2) = 0, at y = H, (4.30)
∂u(2)

∂y
= 0, v(2) = 0, at y = 0, (4.31)

Q
(2)
◦ = 0. (4.32)

Substituting the expressions of u(1), v(1) and their derivatives from (4.22) and (4.23)
in system of equation (4.24)–(4.26), we get

− 3

4

ρV◦
H2

(
Q◦

2
− V◦x

)[
3 +

( y
H

)4
]
= −∂p

(2)

∂x
+
∂τ

(2)
xx

∂x
+
∂τ

(2)
xy

∂x
, (4.33)

3

4

ρV 2
◦ y

H2

[
3− 4

( y
H

)2

+
( y
H

)4
]
= −∂p

(2)

∂y
+
∂τ

(2)
yx

∂x
+
∂τ

(2)
yy

∂x
. (4.34)

Eliminating p from these two equations, and substituting from (4.27)–(4.29), and
defining stream function as

u(2) =
∂ψ(2)

∂y
, v(2) = −∂ψ

(2)

∂x
, (4.35)

we find that the equation (4.24) is satisfied identically and (4.33)–(4.34) reduce to
single partial differential equation:

− 3
ρV◦
H3

(
Q◦

2
− V◦x

)( y
H

)3

= µ∇2
(
∇2ψ(2)

)
= µ∇4ψ(2). (4.36)

Boundary conditions in terms of stream function can be written as

∂ψ(2)

∂y
= 0,

∂ψ(2)

∂x
= 0, at y = H, (4.37)

∂2ψ(2)

∂y2
= 0,

∂ψ(2)

∂x
= 0, at y = 0, (4.38)
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ψ(1)(0, 0) = 0, ψ(1)(0,H) = 0. (4.39)

In view of differential equation (4.36) we suggest the solution of this equation of the
form

ψ(2) = ϕ(2)(x)F (2)(y) +G(2)(y), (4.40)

where ϕ(2) is an unknown linear function of x. Using (4.40) in (4.37)–(4.39), bound-
ary conditions transformed to

F (2)(H) = 0, F (2)
y (H) = 0, F (2)(0) = 0, F (2)

yy (0) = 0, (4.41)
G(2)(H) = 0, G(2)

y (H) = 0, G(2)(0) = 0, G(2)
yy (0) = 0. (4.42)

Using (4.40) in (4.36) results

− 3
ρV◦
H3

(
Q◦

2
− V◦x

)( y
H

)3

= µ
[
ϕ(2)(x)F (2)

yyyy(y) +G(2)
yyyy(y)

]
, (4.43)

where the subscripts show the differentiation with respect to y. From (4.43), we
can write

ϕ(2)(x)F
(2)
yyyy(y) = 3ReV◦x

y3

H7
, G

(2)
yyyy(y) = −3

2
ReQ◦

y3

H7
, (4.44)

where Re =
ρV◦H

µ
is the Reynolds number.

Let ϕ(2)(x) = 3ReV◦x, then

F (2)(y)yyyy =
y3

H7
, (4.45)

⇒ F (2)(y) =
1

840

y7

H7
+ C1

y3

6
+ C2

y2

2
+ C3y + C4. (4.46)

Boundary conditions (4.41) lead to

F (2)(y) =
1

840

( y
H

)7

− 1

280

( y
H

)3

+
1

420

( y
H

)
, (4.47)

and

G(2)(y)yyyy = −3

2
ReQ◦

y3

H7
,

⇒ G(y) = − 1

560
ReQ◦

y7

H7
+ C5

y3

6
+ C6

y2

2
+ C7y + C8. (4.48)

Using boundary conditions (4.42) we get

G(2)(y) = − 1

560
ReQ◦

(( y
H

)7

− 3
( y
H

)3

+ 2
( y
H

))
. (4.49)

Therefore,

ψ(2)(x, y) = − Re

280

(
Q◦

2
− V◦x

)[( y
H

)7

− 3
( y
H

)3

+ 2
( y
H

)]
, (4.50)
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u(2)(x, y) = − Re

280H

(
Q◦

2
− V◦x

)[
7
( y
H

)6

− 9
( y
H

)2

+ 2

]
, (4.51)

v(2)(x, y) = −ReV◦
280

[( y
H

)7

− 3
( y
H

)3

+ 2
( y
H

)]
. (4.52)

We notice that ψ(2)(x, y), u(2)(x, y) and v(2)(x, y) are contributing in the solution
due to the inertial forces otherwise they do not appear in the solution (Re = 0) [26].
It must be noted that up till second order solution the Maxwell material parameter
is not contributing.

We have also observed that solutions obtained up till second order using recursive
approach are very similar with results obtained by Berman [3] using perturbation
method.

4.3. Third order problem:
Equating the coefficients of ϵ3 from equations of motion along with constitutive
equation components, we get system of equations as:

∂u(3)

∂x
+
∂v(3)

∂y
= 0, (4.53)

ρ

[
u(1)

∂u(2)

∂x
+u(2)

∂u(1)

∂x
+v(1)

∂u(2)

∂y
+v(2)

∂u(1)

∂y

]
=−∂p

(3)

∂x
+

[
∂τ

(3)
xx

∂x
+
∂τ

(3)
xy

∂y

]
,

(4.54)

ρ

[
u(1)

∂v(2)

∂x
+ u(2)

∂v(1)

∂x
+v(2)

∂v(1)

∂y
+v(1)

∂v(2)

∂y

]
=−∂p

(3)

∂y
+

[
∂τ

(3)
yx

∂x
+
∂τ

(3)
yy

∂y

]
,

(4.55)

τ (3)xx + λ

[
u(1)

∂τ
(2)
xx

∂x
+ u(2)

∂τ
(1)
xx

∂x
+ v(1)

∂τ
(2)
xx

∂y
+ v(2)

∂τ
(1)
xx

∂y
− 2τ (2)xx

∂u(1)

∂x

−2τ (1)xx

∂u(2)

∂x
− 2τ (1)yx

∂u(2)

∂y
− 2τ (2)yx

∂u(1)

∂y

]
= 2µ

∂u(3)

∂x
, (4.56)

τ (3)xy + λ

[
u(1)

∂τ
(2)
yx

∂x
+ u(2)

∂τ
(1)
yx

∂x
+ v(1)

∂τ
(2)
yx

∂y
+ v(2)

∂τ
(1)
yx

∂y
− τ (1)xx

∂v(2)

∂x

−τ (2)xx

∂v(1)

∂x
− τ (1)yy

∂u(2)

∂y
− τ (2)yy

∂u(1)

∂y

]
= µ

[
∂u(3)

∂y
+
∂v(3)

∂x

]
, (4.57)

τ (3)yy + λ

[
u(1)

∂τ
(2)
yy

∂x
+ u(2)

∂τ
(1)
yy

∂x
+ v(1)

∂τ
(2)
yy

∂y
+ v(2)

∂τ
(1)
yy

∂y
− 2τ (1)yy

∂v(2)

∂y

−2τ (2)yy

∂v(1)

∂y
− 2τ (1)yx

∂v(2)

∂x
− 2τ (2)yx

∂v(1)

∂x

]
= 2µ

∂v(3)

∂y
. (4.58)

Corresponding boundary conditions

u(3) = 0, v(3) = 0, at y = H, (4.59)
∂u(3)

∂y
= 0, v(3) = 0, at y = 0, (4.60)
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Q
(3)
◦ = 0. (4.61)

Following the same procedure as above, we found

∇4ψ(3) =
3

35

(
Q◦

2
− V◦x

)[
R2

ey
7

H11
− 21R2

e

2

y5

H9
+

3

2

(
R2

e − 70Reδ − 560δ2
) y3
H7

]
(4.62)

where δ = λV◦
H

is the Maxwell material parameter, also known as Deborah number,
which characterizes the fluidity of material under specific flow conditions.

Assuming ψ(3) of the form

ψ(3) = ϕ(3)(x)F (3)(y) +G(3)(y), (4.63)

where ϕ(3) is a linear function of x and F (3) and G(3) are the functions of y, we
obtain

∇4ψ(3) = ϕ(3)(x)F (3)(y)yyyy +G(3)(y)yyyy. (4.64)

Comparing with equation (4.62), we can write

ϕ(3)(x)F (3)(y)yyyy=− 3

35
V◦x

[
R2

ey
7

H11
− 21R2

e

2

y5

H9
+
3

2

(
R2

e − 70Reδ−560δ2
) y3
H7

]
,

(4.65)

G(3)(y)yyyy=
3

70
Q◦

[
R2

ey
7

H11
− 21R2

e

2

y5

H9
+
3

2

(
R2

e−70Reδ−560δ2
) y3
H7

]
, (4.66)

and boundary conditions transformed to

F (3)(H) = 0, F (3)(H)y = 0, F (3)(0) = 0, F (3)(0)yy = 0, (4.67)
G(3)(H) = 0, G(3)(H)y = 0, G(3)(0) = 0, G(3)(0)yy = 0. (4.68)

Let ϕ(3)(x) = − 3

35
V◦x then

F (3)(y)yyyy =
R2

ey
7

H11
− 21R2

e

2

y5

H9
+

3

2

(
R2

e − 70Reδ − 560δ2
) y3
H7

)
. (4.69)

Integrating equation (4.69) four times with respect to y gives

F (3)(y) =
R2

e

7920

( y
H

)11

− R2
e

288

( y
H

)9

−
(
δ2 +

Reδ

8
− R2

e

560

)( y
H

)7

+ C13
y3

6
+ C14

y2

2
+ C15y + C16, (4.70)

and integrating equation (4.66) four times with respect to y gives

G(y) =
3

70
Q◦

{
1

7920

( y
H

)11

− 1

288

( y
H

)9

−
(
δ2 +

δ

8
− 1

560

)( y
H

)7

+ C17
y3

6
+ C18

y2

2
+ C19y + C20

}
. (4.71)
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Using above boundary conditions we get

F (3) (y) =
R2

e

7920

( y
H

)11

− R2
e

288

( y
H

)9

−
(
δ2 +

Re

8
δ − R2

e

560

)( y
H

)7

+

(
3 δ2 +

3

8
δRe +

73R2
e

9240

)( y
H

)3

−
(
2 δ2 +

1

4
δRe +

703R2
e

110880

)( y
H

)
,

(4.72)

G(3)(y) =
3

70
Q◦

[
R2

e

7920

( y
H

)11

− R2
e

288

( y
H

)9

−
(
δ2 +

Re

8
δ − R2

e

560

)( y
H

)7

+

(
3 δ2 +

3

8
δRe +

73R2
e

9240

)( y
H

)3

−
(
2 δ2 +

1

4
δRe +

703R2
e

110880

)( y
H

)]
.

(4.73)

Therefore, relation (4.63) transformed to

ψ(3)(x, y) =
3

35

(
Q◦

2
− xV◦

)[
R2

e

7920

( y
H

)11

− R2
e

288

( y
H

)9

−
(
δ2 +

1

8
δRe

− R2
e

560

)( y
H

)7

+

(
3 δ2 +

3

8
δRe +

73R2
e

9240

)( y
H

)3

−
(
2 δ2 +

1

4
δRe +

703R2
e

110880

)( y
H

)]
. (4.74)

u(3)(x, y) =
3

35H

(
Q◦

2
− V◦x

)[
R2

e

720

( y
H

)10

− R2
e

32

( y
H

)8

−
(
7δ2 +

7

8
δRe −

R2
e

80

)( y
H

)6

+

(
9δ2 +

9

8
δRe +

73R2
e

3080

)( y
H

)2

−
(
2δ2 +

1

4
δRe +

703R2
e

110880

)]
. (4.75)

v(3)(x, y) =
3

35
V◦

[
R2

e

7920

( y
H

)11

− R2
e

288

( y
H

)9

−
(
δ2 +

1

8
δRe −

R2
e

560

)( y
H

)7

+

(
3 δ2 +

3

8
δRe +

73R2
e

9240

)( y
H

)3

−
(
2 δ2 +

1

4
δRe +

703R2
e

110880

)( y
H

)]
.

(4.76)

Ultimately, we get

ψ(x, y) =
1

35

(
Q◦

2
− V◦x

)[
R2

e

2640

( y
H

)11

− R2
e

96

( y
H

)9

−
{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}( y
H

)7

+

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}( y
H

)3

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}( y
H

)]
. (4.77)

u(x, y) =
1

35H

(
Q◦

2
− V◦x

)[
R2

e

240

( y
H

)10

− 3

32
R2

e

( y
H

)8
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− 7

{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}( y
H

)6

+ 3

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}( y
H

)2

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}]
. (4.78)

v(x, y) =
V◦
35

[
R2

e

2640

( y
H

)11

− R2
e

96

( y
H

)9

−
{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}( y
H

)7

+

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}( y
H

)3

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}( y
H

)]
. (4.79)

Volumetric flow rate is calculated as

Q(x) = Q◦ − 2V◦x. (4.80)

The maximum axial velocity occurs at the center of the channel

umax = −Q(x)

70H

[
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

]
. (4.81)

Transverse velocity
v = 0 at y = 0,

and
v = V◦ at y = H.

Pressure is calculated using equation (4.11)–(4.12)

∂p(1)

∂x
= − 3µ

H3

(
1

2
Q◦ − V◦x

)
, (4.82)

∂p(1)

∂y
= − 3µ

H3
V◦y. (4.83)

Integrating equation (4.82) with respect to x gives

p(1) = − 3µ

2H3

(
Q◦x− V◦x

2
)
+A (y) . (4.84)

Now differentiating with respect to y, and comparing with the equation (4.83),
yields

d

dy
A (y) = −3µV◦y

H3
, (4.85)

which implies

p(1) = − 3µ

2H3
(Q◦ − V◦x)x− 3µV◦y

2

2H3
+ p

(1)
◦ , (4.86)
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where p(1)◦ = p(1)(0, 0) is the pressure at the entrance of the channel at (x, y) = (0, 0).
The mean pressure drop p̄ at any position in channel can be obtained from the

formula

p̄(1) =
1

H

∫ H

0

[
p(1) − p

(1)
◦

]
dy,

= − µ

2H

[
3 (Q◦ − V◦x)x

H2
+ V◦

]
. (4.87)

Similarly, we can obtain

p(2) − p
(2)
◦ =

µV◦
H

[
− 3Re

20

( y
H

)6

+

(
3δ +

3Re

4

)( y
H

)4

+
(
− 9δ

2
− 153Re

140

)
×
( y
H

)2

+
(9δ
2

− 81Re

70

)( x2
H2

− xQ◦

H2v◦

)]
,

(4.88)

p̄(2) =
µV◦
H

[
−3

140
(42δ + 11Re) +

(9δ
2

− 81Re

70

)( x2
H2

− xQ◦

H2v◦

)]
, (4.89)

p(3) − p
(3)
◦ =

µV◦
H

[
− R2

e

600

( y
H

)10

+

(
3Re (24δ +Re)

1120

)( y
H

)8

+

(
9R2

e

1400
− 18δ2

5

)( y
H

)6

+

(
−9δRe

70
− 1

560
11R2

e

)( y
H

)4

+

(
−891δ2

70
+

3δRe

14
+

687R2
e

53900

)( y
H

)2

+

(
−891δ2

70
+

3δRe

14
− 117R2

e

13475

)(
xQ◦

H2v◦
− x2

H2

)]
,

(4.90)

p̄(3) =
µV◦
H

[
− 333δ2

70
+

37δRe

700
+

597R2
e

431200

+

(
−891δ2

70
+

3δRe

14
− 117R2

e

13475

)(
xQ◦

H2v◦
− x2

H2

)]
.

(4.91)

Total pressure difference is then obtained as

∆p = p− p◦,

=
(
p(1) + p(2) + p(3) + · · ·

)
−
(
p
(1)
◦ + p

(2)
◦ + p

(3)
◦ + · · ·

)
. (4.92)

The wall shear stress is obtained as

τw = −τxy
∣∣
y=H

=
µ

35 H2

(
Q◦

2
− V◦x

)
[
1647δ2 − 105δ + (3− 15δ)Re +

394R2
e

1155
+ 105

]
, (4.93)

which decays from entrance to exit of the channel.
The fractional absorption in a length L is defined as

Fa =
Q◦ −QL

Q◦
=

2V◦L

Q◦
. (4.94)
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The leakage flux q(x) is defined as

q(x) = −dQ
dx

= 2V◦. (4.95)

Normal stresses are given by

τxx − τyy =
µV◦

H

[
− R2

e

2100

( y

H

)10

+

(
3

280
Re (32δ +Re)

)( y

H

)8

+

{
342δ2

5
+

1

10
(1− 6δ)Re −

3R2
e

700
+

9δRe (Q◦ − 2xv◦)
2

20H2v2◦

}( y

H

)6

+

{
−216δ2 + 6δ − 9δRe

35
− 27δ2 (Q◦ − 2xv◦)

2

2H2v2◦

}( y

H

)4

+

{
6− 18δ +

7452δ2

35
+

3

70
(2δ − 3)Re −

219R2
e

26950

− 9δ (3Re − 70) (Q◦ − 2xv◦)
2

140H2v2◦

}( y

H

)2

− 6− 1866δ2

35
+

1

35
(3δ + 1)Re +

703R2
e

323400

]
. (4.96)

Normal stresses at the wall and at the center of the channel are given by

τxx − τyy

∣∣∣
y=H

=
µV◦
H

[(
12(δ − 1)δ − 12δRe

35

)
−

(
9δ (105δ − 2Re − 35) (Q◦ − 2xv◦)

2

70H2v2◦

)]
, (4.97)

τxx − τyy

∣∣∣
y=0

=
µV◦
H

[
−6− 1866δ2

35
+

1

35
(3δ + 1)Re +

703R2
e

323400

]
. (4.98)

5. Non-dimensional form of Solution
The expression obtained for volumetric flow rate (4.80) suggest us that 2V◦x

Q◦
must

be less than one otherwise back flow will occur, therefore, we define non-dimensional
parameters of the form

x∗ =
x

H
, ξ =

y

H
, u∗ =

u

Q◦/H
,

v∗ =
v

Q◦/H
, ψ∗ =

ψ

Q◦
,

(5.1)

then equations (4.77)–(4.79) transformed to

ψ∗ =
1

70
(1− Sx∗)

[
R2

e

2640
ξ11 − R2

e

96
ξ9 −

{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}
ξ7

+

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}
ξ3

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}
ξ

]
, (5.2)
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u∗ =
1

70
(1− Sx∗)

[
R2

e

240
ξ10 − 3

32
R2

e ξ
8 − 7

{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}
ξ6

+ 3

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}
ξ2

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}]
, (5.3)

v∗ =
S

70

[
R2

e

2640
ξ11 − R2

e

96
ξ9 −

{
3δ2 +

(
3δ

8
+

1

8

)
Re −

3R2
e

560

}
ξ7

+

{
9δ2 +

3

8
(3δ + 1)Re +

73R2
e

3080
− 35

2

}
ξ3

−
{
6δ2 +

1

4
(3δ + 1)Re +

703R2
e

36960
− 105

2

}
ξ

]
, (5.4)

where dimensionless parameters S, τ∗ij , and p∗ are the absorption parameter, stresses
and pressure, respectively, given by

S =
2V◦H

Q◦
, τ∗ij =

τij
µV◦/H

, p∗ =
p− p◦
µV◦/H

. (5.5)

Therefore, we obtain skin friction as:

τ∗w =
(1− Sx∗)

35S

[
1647δ2 − 105δ + (3− 15δ)Re +

394R2
e

1155
+ 105

]
. (5.6)

Normal stresses difference between two porous walls is calculated as

τ∗xx − τ∗ξξ =

[
− R2

e

2100
ξ10 +

(
3

280
Re (32δ +Re)

)
ξ8

+

{
342δ2

5
+

1

10
(1− 6δ)Re −

3R2
e

700
+

9δRe (1− Sx∗) 2

5S2

}
ξ6

+

{
−216δ2 + 6δ − 9δRe

35
− 54δ2 (1− Sx∗) 2

S2

}
ξ4

+

{
6− 18δ +

7452δ2

35
+

3

70
(2δ − 3)Re −

219R2
e

26950

− 9δ (3Re − 70) (1− Sx∗) 2

35S2

}
ξ2 − 6− 1866δ2

35

+
1

35
(3δ + 1)Re +

703R2
e

323400

]
,

(5.7)

τ∗xx − τ∗ξξ

∣∣∣
ξ=1

=

[(
12(δ − 1)δ − 12δRe

35

)
−

(
18δ (105δ − 2Re − 35) (1− Sx∗) 2

35S2

)]
,

(5.8)

τ∗xx − τ∗ξξ

∣∣∣
ξ=0

=

[
−6− 1866δ2

35
+

1

35
(3δ + 1)Re +

703R2
e

323400

]
. (5.9)

Expressions (5.8) and (5.9) are the normal stresses differences at the upper wall and
at the center of the channel, respectively.
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Pressure difference in non-dimensional form becomes

∆p∗ =
−R2

e

600
ξ10 +

(
3Re (24δ +Re)

1120

)
ξ8 +

(
−18δ2

5
+

9R2
e

1400
− 3Re

20

)
ξ6

+

(
3δ +

(
3

4
− 9δ

70

)
Re −

1

560
11R2

e

)
ξ4

+

(
− 3

2
− 891δ2

70
− 9δ

2
δ +

3

140
(10− 51)Re +

687R2
e

53900

)
ξ2

+

(
3

2
+

891δ2

70
+

9δ

2
− 3

70
(5δ + 27)Re +

117R2
e

13475

)(
(x∗)2 − 2x∗

S

)
. (5.10)

6. Results and discussion
Analytical solution of full momentum equations for incompressible Maxwell fluid
between two porous walls is obtained. The expressions for velocity components,
streamlines, pressure distribution, normal and shear stresses, skin friction, volumet-
ric flow rate, fractional absorption and leakage flux are calculated. Their behavior
at different positions in the channel with the change in absorption parameter S,
Maxwell fluid parameter δ, Reynolds number Re, are discussed and also presented
graphically. The mathematical expression obtained for volumetric flow rate equa-
tion (4.80) suggest that forward flow is possible only if Q(x) > 0, otherwise back
flow will occur. Keeping this consideration in mind, we defined dimensionless ab-
sorption parameter S =

2V◦H

Q◦
, such that S must be less than 1 to maintain forward

flow i.e., to get Q(x) > 0. We non-dimensionlized equations, keeping physics of the
problem in mind using parameters given by equations (5.1) and (5.5).

Figures 2(a–c) are showing the variation in u, axial velocity component of creep-
ing Newtonian fluid (Re = 0) at different positions along the channel with changing
S. we notice that when there is no porosity (S = 0) the same parabolic profile
(Poiseuille flow) is obtained through out the channel, but by introducing the poros-
ity, magnitude of u is decreasing and also it is decreasing downstream [19]. Figures

Figure 2. Variation in axial velocity due to absorption S when Re = 0, δ = 0, at (a) x = 0.1, (b)
x = 0.5, (c) x = 0.9

3(a–c) show the graphs of u when Re = 15 for Newtonian fluid at different posi-
tions along the flow channel with changing S. We noticed the reduction in the
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Figure 3. Variation in axial velocity due to absorption when Re = 15, δ = 0, at (a) x = 0.1, (b)
x = 0.5, (c) x = 0.9

magnitude of u, flattening near the centerline (effect of boundary is reducing) and
increase in the boundary layer thickness due to absorption (increasing porosity).
By introducing porosity, parabolicity is diminishing along the channel.

Figures 4(a–c) are drawn to show the variation in u at different axial positions
due to δ, Maxwell material parameter (Deborah number). For Newtonian fluid,
(δ = 0) keeping S = 0.4 and Re = 15, we observe that u is decreasing with increasing
δ and it is also reducing downstream. By increasing the value of δ (from 0 to 0.4),
a transition of fluid from Newtonian to non-Newtonian can be observed. As it
becomes non-Newtonian (Maxwell), fluid moves faster near the walls as compared
to the position near the center line, we can observe decrease in the magnitude of
u in the central region. Also, decreasing boundary layer thickness can be noticed.
This behavior of slow down the velocity, is showing thickening behavior of Maxwell
fluid, which is realistic in nature [9].

Figure 4. Variation in axial velocity due to δ when Re = 15, S = 0.4, at (a) x = 0.1, (b) x = 0.5, (c)
x = 0.9

In figures 5(a–c) and 6(a–c) variation in u with S for Maxwell fluid with δ = 0.4
and two different Reynolds numbers i.e., Re = 5 and Re = 15, can be observed
at different axial positions in the channel. A comparison between u profiles of
Newtonian and Maxwell fluids downstream due to S when Re = 15 can also be
drawn from figs. 3(a–c) and 6(a–c). These figures are showing shear thickening
behavior. It can be clearly seen from figs. 6(a–c) that with increasing Re fluid
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velocity increases near the walls but thick fluidity causes reduction in u in the
central region. With increasing Re, 6(a–c), plug flow then slow flow in the central
region of the channel can be observed.

Figure 5. Variation in axial velocity due to S when Re = 5, δ = 0.4, at (a) x = 0.1, (b) x = 0.5, (c)
x = 0.9

Figure 6. Variation in axial velocity due to S when Re = 15, δ = 0.4, at (a) x = 0.1, (b) x = 0.5, (c)
x = 0.9

In figs. 7(a–c) we can compare the effect of Re on u for Newtonian fluid (a)
without porosity (b) with porosity and Maxwell fluid (c) without porosity. In figs.
7(a–b) we see decrease in u with the increase in porosity. With the increase in
Reynolds number, in both cases (with and without porosity) boundary layer thick-
ness is decreasing (u near the boundaries is increasing) but the effect of boundaries
is decreasing toward central region. We observe from Figs. 7(a–c), shear thicken-
ing behavior of Maxwell fluid, even back flow at higher Reynolds number can be
observed for Maxwell fluid.

Figs. 8(a–c) and 9(a–c) are showing the effect of porosity at different positions in
the channel on Newtonian and Maxwell fluids, respectively for different Re numbers.
In the case of Newtonian fluid we see reduction in u in the central region but no back
flow. For Maxwell fluid, we noticed the back flow for the same values of Reynolds
number, the thickening behavior.

Figs. 10(a–c) are showing the effect of Re on u for Maxwell fluid in porous
channel for δ = 0.2 and S = 0.4 at different positions downstream the channel. We
observe that boundary layer thickness is decreasing in Maxwell fluid as compare to
Newtonian fluid under the same conditions. Here, once again thickening behavior
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Figure 7. Variation in axial velocity at x = 0.5 due to Re when (a) S = 0.0, δ = 0.0, (b) S = 0.4, δ =
0.0, (c) S = 0.0, δ = 0.4.

Figure 8. Variation in axial velocity due to Re when S = 0.4, δ = 0.0, at (a) x = 0.1, (b) x = 0.5, (c)
x = 0.9

Figure 9. Variation in axial velocity due to Re when S = 0.4, δ = 0.4, at (a) x = 0.1, (b) x = 0.5, (c)
x = 0.9

of Maxwell fluid is confirmed.
Figs. 11(a–c) are showing the change in radial velocity profile v for Newtonian

and Maxwell fluids due to S when Re = 45 and (a) δ = 0.0 (b) δ = 0.4 (c) δ = 0.8
while in figs. 12(a–c) the effect of S on v when δ = 0.4 and (a) Re = 5 (b) Re = 25
(c) Re = 45 can be noticed.
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Figure 10. Variation in axial velocity due to Re when S = 0.4, δ = 0.2, at (a) x = 0.1, (b) x = 0.5,
(c) x = 0.9

Figure 11. Variation in radial velocity due to absorption for Re = 45, and (a) δ = 0.0 (b) δ = 0.4 (c)
δ = 0.8

Figure 12. Radial velocity due to variation in S for δ = 0.4 and (a) Re = 5, (b) Re = 25, (c) Re = 45.

In figs. 13(a–c) the streamlines are drawn for Newtonian fluid using different
values of S. As we increase absorption, the point where back flow starts, move
upstream in the channel.

Figs 14(a–c) are showing the streamlines for Maxwell fluid at different values
of δ when S = 0.4, Re = 45. As we increase the value of δ, streamlines pattern
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Figure 13. Stream lines for Re = 15, δ = 0.0 (a) S = 0.2, (b) S = 0.4, (c) S = 0.8.

changed due to shear thickening property of the Maxwell fluid. In figs. 15(a–c)
variation in streamlines for Maxwell fluid due to Re is predicted keeping δ = 0.4
and S = 0.4.

Figure 14. Stream lines for Re = 45, S = 0.4 (a) δ = 0.4, (b) δ = 0.6, (c) δ = 0.8.

Figure 15. Stream lines for δ = 0.4, S = 0.4 (a) Re = 60, (b) Re = 80, (c) Re = 100.

Figs. 16(a–c)–18(a–c) are showing the variations in wall shear stress, τw due to
different parameters. Fig. 16(a) is showing that when the walls are solid (S = 0)
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and Re = 0 then τw remain constant along the channel. The magnitude of wall
shear stress increases with increasing δ. Figs. 16(b–c) are drawn to show the effect
in the presence of porosity (i.e., S = 0.4) when Re = 0 and Re = 15, respectively.
Fig. 16(b) is showing that τw is decreasing in x direction with the increase in δ
when the walls are porous, even the flow is creeping flow (Re = 0). In the absence
of inertial forces (i.e., Re = 0) porosity effects for Newtonian and Maxwell fluids
are shown in figs. 17(a,c). From these figs. we can also see that for Re = 0, δ = 0
results match with the results given in [7]. Figs. 17(a–b) are drawn to analyze the
behavior of Newtonian fluid in porous channel with and without inertial forces. It is
observed that drop in τw can be controlled by decreasing inertial forces. We observe
from fig. 18(a) that τw for Maxwell fluid decreases along x by increasing S. We
have noticed from Fig. 18(b–c) that if δ is increased then τw has very high value
near the entrance for the same value of Re but it drop down very fast as compare
to its magnitude at low δ.

Figure 16. Variation in wall shear stress with δ when (a) S = 0.0, Re = 0, (b) S = 0.4, Re = 0, (c)
S = 0.4, Re = 15.

Figure 17. Variation in wall shear stress due to S when (a) δ = 0.0, Re = 0, (b) δ = 0.0, Re = 15, (c)
δ = 0.4, Re = 0.

It is noticed from Figs.19(a–c) that porosity has prominent effect on normal
stress difference (i.e., τn) away from boundaries in Maxwell fluid. τn decreases
near the boundaries with increasing S. Thickening effect of Maxwell fluid is very
obvious in figs. 19(a–b). The effect of S on τn is shown in figs. 19(c) and 20(a). The
effect of Re on Maxwell fluid in non-porous channel is depicted in figs. 20(b–c)).
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Figure 18. Variation in wall shear stress due to (a) S when δ = 0.2, Re = 15.0, (b) Re when δ =
0.2, S = 0.4, (c) Re when δ = 0.6, S = 0.4,

Pressure difference due to porosity for Newtonian fluid at different Re are drawn
in figs. 21(a–c). As we increase Maxwell material parameter δ in figs. 22(a–c), the
pressure drops downstream and have negative value for low Reynolds number (i.e.,
Re = 0.5) but with increasing Re, ∆p increases down stream and its magnitude
becomes positive.

Figure 19. Effect on normal stresses difference of δ when (a) S = 0.2, Re = 15, (b) S = 0.4, Re = 15,
and of S when (c) δ = 0.2, Re = 15,

Figure 20. Effect on normal stresses difference of S when (a) δ = 0.6, Re = 15, and of Re when (b)
δ = 0.2, S → 0, (c) δ = 0.6, S → 0.
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Figure 21. Pressure difference ∆p due to S when δ = 0, (a) Re = 0.5, (b) Re = 5, (c) Re = 15.

Figure 22. Pressure difference ∆p due to δ when S = 0.4 (a) Re = 0.5, (b) Re = 5, and (c) Re = 15.
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