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Abstract In this paper, we focus on a general state-dependent Kolmogorov
predator-prey model subject to non-selective harvesting along with delivery.
Certain criteria are established for the existence, non-existence and multi-
plicity of order-1 impulsive periodic solutions to the system. Based on the
geometric phase analysis and the method of Poincaré map or successor func-
tion with Bendixson domain theory, three typical types of Bendixson domains
(i.e., Parallel Domain, Sub-parallel Domain and Semi-ring Domain) are intro-
duced to deal with the discontinuity of the Poincaré map or successor function.
We incorporate two discriminants ∆1 and ∆2 to link with the existence, non-
existence and multiplicity as well as the stability of order-1 periodic solutions.
At the same time, we locate the order-1 periodic solutions with the help of
three characteristic points and the parameters ratio of delivery over harvesting.
The results show that there must exist at least one order-1 periodic solution
when the trajectory, that is tangent to the mapping line, can hit the impulsive
line. While the trajectory tangent to the mapping line cannot hit the impul-
sive line, there is not necessary the existence of an order-1 periodic solution,
which means the impulsive control may be invalid after finite times stimula-
tion or suppression. In conclusion, we reveal that the delivery can prevent the
predator from extinction and stabilize the order-1 periodic solution.
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1. Introduction
It is well known that competition between intra-species or inter-species is ubiquitous
in nature, causing various phenomena such as co-existence or extinction of certain
species. Alternatively, many species such as fish, forest species and wildlife survive in
an environment with enemies and the dynamics of their behaviors can be described
by the so-called predator-prey system. Microscopically, certain kinds of virus and
healthy cells also act as predator and prey species in human body. Mathematical
models in this topic have attracted considerable attention from researchers (Butler
etc [1]; Smith and Schwartz [11]).

Let x(t), y(t) denote the densities for the prey and predator species at time t.
Consider the following Kolmogorov-type predator-prey system:


dx

dt
= xF (x, y),

dy

dt
= yG(x, y),

(1.1)

where F,G ∈ C2(R2,R), with the assumptions:

Assumption 1.1. (A1) There exist two positive numbers m < K such that F (K, 0) =
0 and G(m, 0) = 0.

Assumption 1.2. (A2) Fx < 0, Fy < 0, Gx > 0 and Gy < 0 for x ∈ [0,K].

It is not difficult to find that system (1.1) has a trivial equilibrium (0, 0), a
boundary equilibrium (K, 0) and a unique positive stable equilibrium (x∗, y∗) which
will be shown in the next section. Biologically speaking, these three equilibria are
corresponding to three rest states: the extinction of two species, the extinction of
predator species and the co-existence of two species.

In many cases, one expects to attain more ideal states than the natural ones by
implementing a biological control, which depends on the property of the species.
To keep a more ideal balance of the system, biological control can be carried out by
suppressing certain species, or stimulating others. However, due to the structure
of food chain, it is often unrealistic to control a single species only, because the
suppression of one species synchronously causes the reduction of other species pop-
ulation, and the protection of one species may correspondingly have negative effects
on another one. For example, in the integrated management of pest, spraying pes-
ticides to insects will lead to the damage of plants or the wholesome natural enemy
when the pests are killed. Similarly, it is possible to kill healthy cells in human
body when one is treated with Antiretroviral Therapy. Such an effect is so-called
non-selective harvesting, which originates from fishery industry (Kar etc [7] and
Chakraborty etc [4]).

From the perspective of better biological control, the intervention on species,
regarded as an impulsive action, can be introduced when the density of a species
population reaches a threshold rather than taking measures at fixed moments, which
leads us to model the control with a state dependent impulsive system. Assume
that the strategy of impulsive control is to suppress the prey in a smaller scale,
and to keep the predator in a larger scale with a delivery of predator when a non-
selective harvesting occur. This results in the following Komogolov predator-prey
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model subject to impulsive control:

dx

dt
= xF (x, y)

dy

dt
= yG(x, y)

}
, x ̸= h,

∆x(t) = −px(t)

∆y(t) = −qy(t) + τ

}
, x = h,

0 < x(0+) = x+
0 < h, y(0+) = y+0 > 0,

(1.2)

where h and p are positive constants, and q, τ satisfy q ∈ [0, 1) and τ ≥ 0. When
the density of prey increases to h, one harvests or suppresses the prey at a rate p.
Non-selective harvesting will also lead to the reduction of the predator at a rate
q. To maintain the population of the predator at a relatively larger scale, people
deliver or stimulate the predator at an average amount τ .

Naturally, the property of a semi-continuous impulsive system is different from
and hence more complicated than that of the continuous one. The complexity lies
in the fact that we have to consider the impulsive strategy, the initial values and
the construction of the trajectories. While the state-dependent impulsive differential
equations have attracted much attention in recent years ( Simeonov and Bainov [10];
Bainov and Simeonov [2]; Chavez etc [3]; Tang etc [13–15]; Zeng etc [21]; Jiang
etc [6]; Nie etc [8,9]; Xiao etc [19,20]; Hakl etc [5]; Tang and Fu [12]; Zhang etc [22];
Wang etc [16]; Wang and Xiao [18]; Wang etc [17]). The focus of this paper is on
the existence and stability of positive periodic solutions of the realistic model (1.2).

We will propose criteria on the existence, non-existence, multiplicity and the
stability of impulsive order-1 periodic solution(s). Notice that there is not only
negative effect but also positive one in the impulse function of y. The model is
different from most of past references.

The paper is organized as follows. We begin with the phase-plane analysis for
system (1.1) in Section 2. Three categories of Bendixson domains are introduced. In
section 3, we obtain the main results under cases when the successor function of the
tangent point on the mapping line is well defined or not well defined. Furthermore,
the stability of the order-1 periodic solution is studied in section 4. Finally, the
work ends by conclusion and discussion.

2. Preliminaries
First, we start from system (1.1). For system (1.1), denote any solution

(
x(t), y(t)

)
in the phase plane by (x, y).

Under the assumptions (A1)–(A2), the solution of system (1.1) is positive for
positive initial values and the solution is continuously-dependent on them. There
are two implicit functions y = φ1(x) and y = φ2(x) such that φ1(K) = 0 and
φ2(m) = 0, which are defined by the equations F (x, y) = 0 and G(x, y) = 0,
respectively. Denote the isolines F (x, y) = 0 and G(x, y) = 0 by c1 and c2

Let H(x) = φ1(x) − φ2(x). From the assumptions (A1)–(A2) and the differen-
tiation for implicity functions, we have

dφ1

dx
= −Fx

Fy
< 0,

dφ2

dx
= −Gx

Gy
> 0, x ∈ [0,K],
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which implies the function φ1(x) is decreasing and φ2(x) is increasing, and hence
H(x) is continuous and decreasing on [0,K].

Lemma 2.1. For system (1.1), the equilibria (0, 0) and (K, 0) are unstable saddles,
and the unique positive equilibrium (x∗, y∗) is a globally asymptotically stable node or
focus, where (x∗, y∗) is the positive solution of the equations F (x, y) = 0, G(x, y) = 0.
The region

Ω =
{
(x, y)|x > 0, y > 0, x ≤ K, y ≤ σ

}
is positively invariant and there is no positive limit cycle in Ω, where σ ≜ max{φ1(0),
φ2(K)}+ ε and ε is a positive small number.

Proof. Firstly, we verify that there is a unique positive equilibrium (x∗, y∗). Since
H(x) is a continuous and monotonically decreasing function such that

H(0) = φ1(0)− φ2(0) > φ1(K)− φ2(m) = 0

and

H(K) = φ1(K)− φ2(K) = 0− φ2(K) < −φ2(m) = 0,

by the Intermediate Value Theorem for continuous functions, it follows that there is
a unique positive solution x = x∗ for equation H(x) = 0, which corresponds to the
unique positive solution (x∗, y∗) for equations F (x, y) = 0 and G(x, y) = 0. Hence
there is a unique positive equilibrium (x∗, y∗) for system (1.1).

Next, calculating the Jacobian matrix along system (1.1) gives

J =
[F (x, y) + x∂F

∂x x∂F
∂y

y ∂G
∂x G(x, y) + y ∂G

∂y

]
.

At the equilibrium E0(0, 0), the Jacobian matrix is given by

J0 =
[F (0, 0) 0

0 G(0, 0)

]
,

which admits two eigenvalues λ1 = F (0, 0) > 0 and λ2 = G(0, 0) < 0. Hence, E0 is
an unstable saddle.

The Jacobian matrix at the equilibrium E1(K, 0) is

J1 =
[F (K, 0) +K ∂F

∂x |(K,0) K
∂F
∂y |(K,0)

0 G(K, 0)

]
with two eigenvalues λ1 = F (K, 0) +K ∂F

∂x |(K,0) < 0 and λ2 = G(K, 0) > 0, which
means the equilibrium E1 is an unstable saddle.

The Jacobian matrix at E2(x
∗, y∗) is

J2 =

[
x∂F

∂x x∂F
∂y

y ∂G
∂x y ∂G

∂y

]
(x∗,y∗)

.
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Since the trace of J2 is negative, and the determinate is positive, it yields that E2

is an asymptotically stable node or focus.
In the following, we prove that the domain Ω is positively invariant.
Denote l1 : x = K and l2 : y = σ. Calculating the time derivative of l1 and l2

along the trajectories of system (1.1) gives

dl1
dt

=
dx

dt

∣∣∣
x=K

= KF (K, y) < 0, y ≥ 0

and
dl2
dt

=
dy

dt
|y=σ = σG(x, σ) < σG(x, φ2(K)) < σG(K,φ2(K)) = 0, x ∈ [0,K],

which means that the flow of system (1.1) moves from the right to the left on l1
and from the upper to the bottom on l2.

Consequently, the region Ω is positively invariant.
Finally, taking a Dulac function D = 1

xy , it follows from assumption (A2) that

∂(xF (x, y)D)

∂x
+

∂(yG(x, y)D)

∂y
=

1

y

∂F

∂x
+

1

x

∂G

∂y
< 0, (x, y) ∈ Ω.

Therefore there is no limit cycle or positive periodic solution in Ω, and the unique
positive equilibrium is also globally asymptotically stable.

The first quadrant can be divided into four parts by the curves c1 and c2 which
intersect at point E2(x

∗, y∗), and four sections of c1 and c2 are obtained accordingly.
Define four domains as follows

D1 = {(x, y)|F (x, y) > 0, G(x, y) < 0, (x, y) ∈ Ω},

D2 = {(x, y)|F (x, y) > 0, G(x, y) > 0, (x, y) ∈ Ω},
D3 = {(x, y)|F (x, y) < 0, G(x, y) > 0, (x, y) ∈ Ω},
D4 = {(x, y)|F (x, y) < 0, G(x, y) < 0, (x, y) ∈ Ω}.

Then the signs of the derivative (ẋ, ẏ) are (+,−), (+,+), and (−,+) and (−,−) in
the four domains, respectively.

Lemma 2.2. Under the assumptions (A1)–(A2), the direction of the flow of system
(1.1) is counter clockwise.

Proof. Denote the downward normal vectors of c1 and c2 by n⃗1 and n⃗2, re-
spectively, and the normal vector of trajectories of system (1.1) by n⃗t. Then
n⃗1 = (Fx, Fy), n⃗2 = (Gx, Gy) and n⃗t = (yG(x, y),−xF (x, y)), which implies n⃗t|c1 =
(yG(x, y), 0) and n⃗t|c2 = (0,−xF (x, y)).

Multiplying n⃗t|c1 by n⃗1 = (Fx, Fy) gives

n⃗1 · n⃗t|c1 = Fx[yG(x, y)]|c1

> 0, x < x∗,

< 0, x > x∗.

Similarly, we have

n⃗2 · n⃗t|c2 = −Gy[xF (x, y)]|c2

> 0, x < x∗,

< 0, x > x∗.
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Thus, the manifolds are downward and rightward on the left sections of c1 and c2
respectively, and are upward and leftward on the right parts of c1 and c2 respectively,
that is, the vector fields is counter clockwise.

The direction of the manifolds is illustrated in Fig.1. Similar results can be
obtained on the line x = x∗.

1
E

0
E

2
E

x

y

1
l

2
l

1
c

2
c

1
D

2
D

3
D

4
D

Figure 1. The positive invariant set Ω and four parts of it, and the direction of the manifolds, where
c1 : F (x, y) = 0 or y = φ1(x), c2 : G(x, y) = 0 or y = φ2(x) and l1 : x = K and l2 : y = σ.

Let the impulsive function be I and two subsects M and N of R2 be

M =
{
(x, y)|y > 0, x = h

}
, N =

{
(x, y)|y > 0, x = h

}
.

Then I(M) ⊂ N .
Denote

T (h, yT ) = N ∩ c1, W (h, yW ) = M ∩ c1, R(h, yR) = N ∩ c2,

where

h = (1− p)h, yT = φ1(h), yW = φ1(h), yR = φ2(h).

Obviously, there are two trajectories of system (1.1) tangent vertically to the line
x = h at T and tangent to the line x = h at W , respectively. Also, R is the horizontal
tangent point of system (1.1). The location of the three points are illustrated in
Fig.2.
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(b) h < x∗ < h

Figure 2. The location of the three characteristic points T,W,R.

Throughout this paper, we assume that
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Assumption 2.1. (A3) m < h < x∗, h < K.

Lemma 2.3. For system (1.2), under the assumptions (A1)–(A3), we have

yT > yW , yT > yR. (2.1)

Proof. Under the assumptions (A1)–(A3), the monotonicity of φ1(x) yields

yT = φ1(h) > φ1(h) = yW .

The monotonicity of H(x) and h < x∗ give

H(h) = φ1(h)− φ2(h) > H(x∗) = 0,

that is yT − yR > 0. Hence, yT > yW and yT > yR.
We define the positive orbit (or solution) starting from Q

(
x(t), y(t)

)
∈ R2

+ by
O+(Q) and the negative orbit arriving at it by O−(Q).

For any point Q(h, yQ) ∈ N , if the trajectory O+(Q) hits M at Q̄(h, yQ̄) firstly
and the impulsive map I maps Q̄ to Q+(h, yQ+), we denote the Poincaré maps P ,
PN and successor function S as the following

P (yQ) = yQ̄, PN (yQ) = I(yQ̄) = (I ◦ P )(yQ) = yQ+ ,

S(yQ) = PN (yQ)− yQ = yQ+ − yQ.
(2.2)

For the sake of convenience, we denote S(yQ) and S(Q) indiscriminately, so does
for the other functions I, P and PN . Further, we denote A > B if the point A lies
above the point B and A−B = yA − yB .

Thus for a point Q ∈ N , P (Q), PN (Q) and S(Q) are continuous on Q (provided
that they are well defined) due to the continuity of I and the continuous dependence
on the initial values of the solutions to system (1.1). If O+(Q) ∩M ̸= ∅, then we
call that PN (Q) and S(Q) are well defined, or PN (yQ) and S(yQ) are well defined.

Lemma 2.4. For system (1.2), the Poincaré map PN (y) and successor function
S(y) are continuous for y ∈ [a, b] provided that they are well defined on [a, b].

Definition 2.1. A trajectory O+(Q) along with the line segment Q+Q is said to
be an order-1 periodic circle of system (1.2) if Q+ = Q.

From equation (2.2), if any one of the equations I(Q̄) = Q, PN (Q) = Q and
S(Q) = 0 holds for a certain point Q ∈ N , then there exists an order-1 periodic
solution for equation (1.2).

Remark 2.1. There may be no zero point for the successor function S when point
Y ∈ (Y1, Y2) ⊂ N even if S(Y1)S(Y2) < 0. And there may exist a periodic solution
in a Bendexion domain even if S(Y1)S(Y2) > 0. Moreover, there may exist multiple
order-1 periodic solutions in a domain. Whether the Poincaré map or successor
function is well defined depends on the initial values, impulsive strategy and the
construction of trajectories (see Fig.3).

To ensure the successor function to be well defined, we consider three categories
of Bendexion domains.

Definition 2.2. For system (1.2), suppose that a Bendexion domain D is composed
of M,N,L1 and L2, and such that
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M

D

N

2
Y

1
Y

(a) S(Y1) · S(Y2) < 0

MN

1
Y

2
Y

D

(b) S(Y1) · S(Y2) > 0

MN

1
Y

2
Y

D3
Y

(c) S(Y1) ·S(Y2) < 0 and
S(Y1) · S(Y3) < 0

Figure 3. (a) There is no order-1 periodic solution in D even if S(Y1) · S(Y2) < 0 holds (b) There is
an order-1 periodic solution in D in spite of S(Y1) · S(Y2) > 0 (c) There may exist two order-1 periodic
solutions in D in view of S(Y1) · S(Y2) < 0 and S(Y1) · S(Y3) < 0.

(i) there is no singularity (equilibrium) in it;
(ii) trajectory L1 intersects with N , M at A and Ā successively; trajectory L2

intersects with N , M at B and B̄ successively;
(iii) line segments AB and ĀB̄ can not be tangent to trajectories of system (1.2)

except at the end point.

If A < B gives Ā < B̄, then we call the region D a Parallel Trajectory
Rectangle (see Figure 4(a));

If L2 is tangent to N at B, and A > B gives Ā < B̄, then we call the region D
a Sub-parallel Trajectory Rectangle (see Figure 4(b));

If L1 intersects with N at A and A′ successively, and intersects consecutively
with M at Ā; L2 intersects with N at B and B′ successively, and is consecutively
tangent to M at B̄; then we call the region D a Semi-ring Domain provided
A > B gives Ā < B̄. (see Figure 4(c)).
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(a) Parallel domain
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(b) Sub-parallel domain

M

2
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D

1
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N

A

'A
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B

A

(c) Semi-ring domain

Figure 4. The illustration for three categories of Bendexion domain. N is a tangent line of the orbit
L2 at B in (b), and M is a tangent line to the orbit L2 at B̄ in (c).

For any Q ∈ N and Q > T , if the trajectory O+(Q) intersects with N at Q′ and
hits M at Q̄ subsequently, we define π : N → N, π(Q) = Q′ (for example, in Fig.4
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(c),O+(A) intersects subsequently with N at A′, so we define π(A) = A′ ). Then the
function π is a homeomorphic mapping which is continuous and decreasing when
O+(Q) is in a sub-parallel or semi-ring domain.

According to Lemma 2.4, the Intermediate Value Theorem or Compressing Map
Principle for continuous functions leads to the following lemmas.

Lemma 2.5. Suppose that a parallel domain D is composed of the trajectories AĀ
and BB̄, and the line segments AB and ĀB̄. If S(A) ·S(B) < 0 or PN (AB) ⊆ AB,
then there exists at least one order-1 periodic solution in D.

Lemma 2.6. Suppose that a sub-parallel domain D is composed of the trajectories
AĀ,BB̄ and the line segments AB and ĀB̄, and π(A) = A′. If S(A)S(B) < 0 or
PN (AA′) ⊂ AA′, then there exists at least one order-1 periodic solution in D.

Proof. Since D is sub-parallel, PN (Y ) is well defined for any Y ∈ AB ⊂ AA′.
Therefore S(A) · S(B) < 0 implies the existence of a zero point between A and B.

If PN (AA′) ⊂ AA′, we consider three cases for the function PN :
Case 1. PN (AB) ⊆ AB; Case 2. PN (AB) ⊆ A′B; Case 3. PN (A) ∈ A′B and

PN (B) ∈ AB .
Case 1 implies that PN is a compressing map. Case 2 means that (PN◦π)(A′B) ⊆

A′B and hence (PN ◦π) is a compressing map. Thus, there must exist a fixed point
in AB and A′B, which admits an order-1 periodic solution initiating from AB and
A′B, respectively.

As for the Case 3, since the function S is well defined and continuous on AB,
it follows from PN (A) ∈ A′B and PN (B) ∈ AB that S(A) < 0 and S(B) > 0, and
hence there must exist a Y ∗ ∈ AB such that S(Y ∗) = 0, which implies the existence
of an order-1 periodic solution initiating from AB .

Remark 2.2. If PN (A) < A′ and PN (B) > B, we have S(A′)S(B) < 0, which
means that there are two order-1 periodic solutions initiating respectively from AB
and A′B.

Lemma 2.7. Suppose that a semi-ring domain D is composed of the trajectories
AĀ, BB̄, and the line segments AB and ĀB̄ with π(A) = A′, π(B) = B′.

Assume that one of the following condition holds true:

(i) PN (AB) ⊆ AB;
(ii) PN (A′B′) ⊆ A′B′;

(iii) PN (A′B′) ⊆ AB

(iv) PN (AB) ⊆ A′B′.

Then there exists an order-1 periodic solution which is initiating from AB or A′B′.
If PN (AB) ⊆ BB′ or PN (A′B′) ⊆ BB′, then there is no order-1 periodic solution
in D.

Proof. If PN (AB) ⊆ AB, then the continuous map PN is a compressive map.
Thus there exists a fixed point ∗ ∈ AB such that PN (∗) = ∗, which implies the
existence of order-1 periodic solution initiating from AB. Similarly, PN (A′B′) ⊆
A′B′ admits an order-1 periodic solution initiates from A′B′. Further, PN (A′B′) ⊆
AB implies (PN ◦ π)(AB) ⊆ AB, and which admits a fixed point between A and B
for the compressing map PN ◦ π. Therefore, there is a periodic solution initiating
from AB. Similarly, PN (AB) ⊆ A′B′ implies (PM ◦ π−1)(A′B′) ⊆ A′B′, and
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PN ◦ (π−1) is a compressing map, which implies the existence of an order-1 periodic
solution initiating from A′B′.

If PN (AB) ⊆ BB′ or PN (A′B′) ⊆ BB′, then all the trajectories initiating from
AB or A′B′ will be mapped onto BB′, from which the trajectories will not hit M.

To obtain the existence and non-existence of multiple order-1 periodic solutions,
we state the following lemma without proof.

Lemma 2.8. Suppose that a function g is continuous and concave downward on
[a, b]. Then the following statements hold true:

(i) if g(a) < 0 and g(b) < 0, then there maybe exist a zero point in (a, b) for g;
(ii) if g(a) > 0 and g(b) > 0, then it is impossible for g to exist a zero point in

(a, b).

Suppose that g is continuous and concave upward on [a, b]. Then we have the
statements as follows:

(i) if g(a) > 0 and g(b) > 0, then there maybe exist a zero point in (a, b) for g;
(ii) if g(a) < 0 and g(b) < 0, then it is impossible for g to exist a zero point in

(a, b).

3. Main results
3.1. Some Lemmas
Firstly, we give some lemmas which will be applied to obtain the existence results.

Lemma 3.1. For system (1.2), if O+(T ) ∩M ̸= ∅, then S(Y ) is well defined for
any Y ∈ N .

Proof. Since T is a tangent point to the line x = h or N , based on the phase
analysis for system (1.1), it is obvious that O+(T )∩M ̸= ∅ means O+(Y )∩M ̸= ∅
whenever Y < T . Since the vector fields for system (1.1) is counter clockwise and
the equilibrium E0 is an unstable saddle, all the trajectories initiating above T will
be mapped onto the section below T by function π. Thus the fact that S(T ) is well
defined implies S(Y ) is well defined for any Y ∈ N .

Denote the trajectory O+(Y ) by function y = y(x, Y ). We have the following
lemma.

Lemma 3.2. Under the assumptions (A1)–(A3), suppose that S(T ) is well defined.
Then for any x ∈ (h, h), we have

(i) y(x, T ) < φ1(x) and yT̄ < yW < yT ;
(ii) y(x,R) < φ2(x) and yR < yR̄ < yT̄ < yT .

Proof. Under the assumptions, the geometrical analysis is utilize

(i) It follows from the vector fields analysis in Lemma 2.2 that the trajectories
pass through the curve y = φ1(x) downward when x < x∗. Therefore, it
follows that y(x, T ) < φ1(x) for x < x∗. We are left to show that y(x, T ) <
φ1(x) when x∗ < x < h. Assume to the contrary that there exists a point
x1 ∈ (x∗, h) such that y(x1, T ) = φ1(x1). Then the trajectory O+(T ) is
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tangent to the line x = x1 and goes further leftward, which means that the
trajectory O+(T ) cannot hit the line x = h. It will contradict the condition
that F (T ) is well defined. Therefore y(x, T ) < φ1(x) when x∗ < x < h. By
the monotonicity of y = φ1(x) and y(x, T ) < φ1(x) for x ∈ (h, h), we have
that yT̄ = y(h, T ) < φ1(h) = yW < φ1(h) = yT .

(ii) Since S(T ) is well defined, we have O+(R) ∩ M ̸= ∅. According to Lemma
2.1, it gives φ1(x) > φ2(x) for x < x∗ and φ1(x) < φ2(x) for x > x∗.
The vector field analysis shows that the trajectories pass through the curve
y = φ2(x) downward when x < x∗, and hence y(x,R) < φ2(x) < φ1(x) holds
for x ∈ (h, x∗]. It follows from Lemma 2.3 and (2.1) that y(x,R) < y(x, T ) in
view of the uniqueness of the solutions. Thus, y(x,R) < φ1(x) < φ2(x) when
x ∈ (x∗, h), which means that y(x,R) locates in D2, where the trajectories
are increasing in x. Accordingly, yR = y(h,R) < y(h,R) = yR̄. Furthermore,
yR < yT implies yR̄ < yT̄ . Combining (i), we have yR < yR̄ < yT̄ < yT .

In the following, for point Y ∈ N , the letter ′Y ′ also represents the ordinate of
point Y .

Denote
f(x, y) =

xF (x, y)

yG(x, y)
.

Lemma 3.3. Suppose that PN (T ) is well defined. Then PN (Y ) is increasing in Y
for Y < yT and decreasing for Y > yT , and S(Y ) is decreasing for Y > yT .

Proof. Based on the differentiability of the solutions on the initial values, we have
∂y(x, Y )

∂Y
= exp

(∫ x

h

∂f(z, y(z, Y ))

∂y
dz

)
, Y < yT ,

which means

P ′(Y ) =
∂y(x, Y )

∂Y
|x=h= exp

(∫ h

h

∂f(z, y(z, Y ))

∂y
dz

)
, Y < yT .

It follows from PN (Y ) = I(P (Y )) that

P ′
N (Y ) =

dI

dP

dP

dY
= (1− q)P ′(Y ) = (1− q) exp

(∫ h

h

∂f(z, y(z, Y ))

∂y
dz

)
, Y < yT .

(3.1)
Obviously, P ′

N (Y ) > 0 holds for Y < yT .
When Y > yT , the trajectory O+(Y ) will intersect with N at a point Y ′ such

that π(Y ) = Y ′ and Y ′ < yT , while π(Y ) is decreasing with Y . Therefore

P ′
N (Y ) = (1− q)

dP

dY ′π
′(Y ).

Since dP
dY ′ > 0 and π′(Y ) < 0, then P ′

N (Y ) < 0, which also implies S′(Y ) =
P ′
N (Y )− 1 < 0 for Y > yT .

Define

∆1(Y ) =
∣∣∣ F G

Fy Gy

∣∣∣
(x,y(x,Y ))

, ∆2(Y ) =
∣∣∣ F G

Fyy Gyy

∣∣∣
(x,y(x,Y )),
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where h ≤ x ≤ h, 0 < Y < yT .

Lemma 3.4. Assume that S(T ) is well defined and Y < yT . If ∆2(Y ) < 0, then
∆1(Y ) is decreasing in Y . If ∆2(Y ) > 0, then ∆1(Y ) is increasing in Y .

Proof. From the definition of ∆1(Y ) and ∆2(Y ), it follows that

∂∆1(Y )

∂Y
=

∂

∂y
(FGy −GFy) ·

∂y(x, Y )

∂Y
= ∆2(Y ) · ∂y(x, Y )

∂Y
.

Since ∂y(x,Y )
∂Y > 0, the sign of ∂∆1(Y )

∂Y is the same as that of ∆2(Y ). Hence, if
∆2(Y ) < 0, then ∆1(Y ) is decreasing on Y , and ∆2(Y ) > 0 means that ∆1(Y ) is
increasing in Y .

Lemma 3.5. Suppose S(T ) is well defined and Y < yT . We have:

(i) for Y ∈ [yR, yT ], if ∆2(Y ) ≤ 0 and ∆1(yR) < 0 hold, then S′′(Y ) < 0.
Particularly, if y(x, Y ) ⊂ D1, then we have S′(Y ) < 0;

(ii) if ∆2(Y ) ≥ 0 for Y ∈ (0, yR] and there exists a Y ∗ ∈ (0, yR] such that
∆1(Y

∗) > 0, then S′′(Y ) > 0 for Y ∈ (Y ∗, yR] . Particularly, if q = 0, then
we have S′(Y ) > 0 for Y ∈ (Y ∗, yR].

Proof. From (3.1), we have

P ′′
N (Y ) = (1− q)P ′(Y )

∫ h

h

∂2f(z, y(z, Y ))

∂y2
· ∂y(z, Y )

∂Y
dz. (3.2)

Computing the derivative ∂f
∂y and ∂2f

∂2y , we have

∂f

∂y
=

xF (G+ yGy)− xyGFy

(xF )2
=

FG+ y∆1(Y )

xF 2
(3.3)

and
∂2f

∂2y
=

2(F − yFy)∆1(Y ) + y∆2(Y )

xF 3
. (3.4)

(i) By Lemma 3.4, the conditions ∆1(yR) < 0 and ∆2(Y ) ≤ 0 for yR ≤ Y ≤ yT

imply ∆1(Y ) < 0 for yR ≤ Y ≤ yT . It follows from (3.4) that ∂2f
∂2y < 0,

which means P ′′
N (Y ) < 0. Henceforth, S′′(Y ) = P ′′

N (Y ) < 0 for yR ≤ Y ≤ yT .
Particularly, in D1, we have F > 0, G < 0, Gy ≤ 0 and Fy < 0. If y(x, Y ) ⊂
D1, then ∆1(Y ) < 0, and hence ∂f

∂y < 0. (3.1) and (3.3) give P ′
N (Y ) < 1.

Henceforth, S′(Y ) = P ′
N (Y )− 1 < 0.

(ii) Since y(x,R) ⊂ D2, we have y(x, Y ) ⊂ D2 for 0 < Y ≤ yR, and hence F > 0
and G > 0 hold true. If ∆2(Y ) > 0 and ∆1(Y

∗) > 0, then ∆1(Y ) > 0

for Y ∈ (Y ∗, yR]. Therefore ∂2f
∂2y > 0, which means P ′′

N (Y ) > 0, that is
S′′(Y ) > 0. Particularly, if q = 0, then P ′

N (Y ) = P ′(Y ) > 1, which means
S′(Y ) = P ′

N (Y )− 1 > 0 as Y ∗ < Y ≤ yR.

Remark 3.1. The conditions ∆1(Y ) < 0 and ∆2(Y ) ≤ 0 are sufficient for P ′′
N (Y ) <

0, which is expressed by the integral of (3.2). It is possible for P ′′
N (Y ) < 0 even if

∆1(Y ) < 0 and ∆2(Y ) ≤ 0 do not hold.
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Remark 3.2. Noticing that F > 0, G > 0 and Fy < 0, Gy < 0 hold in D2, it is
possible for ∆1(Y ) ≤ 0 or ∆1(Y ) ≥ 0 when y(x, Y ) ⊂ D2.

Lemma 3.6. For Ȳ ∈ M , if Ȳ = τ
q , then I(Ȳ ) = Ȳ ; if Ȳ > τ

q , then τ
q < I(Ȳ ) < Ȳ ;

if Ȳ < τ
q , then Ȳ < I(Ȳ ) < τ

q .

Proof. Obviously, I( τq ) =
τ
q . If Ȳ > τ

q , on the one hand, I(Ȳ ) > I( τq ) =
τ
q as I is

increasing. On the other hand, I(Ȳ ) = (1− q)Ȳ + τ = Ȳ + τ − qȲ < Ȳ . Similarly,
Ȳ < τ

q implies Ȳ < I(Ȳ ) < τ
q .

We illustrate the above lemma geometrically by Fig.5.

Y

N M

Y

0
qy=

Figure 5. If (̄Y ) = q0, then I(Ȳ ) = Ȳ ; If Ȳ > q0, then q0 < I(Ȳ ) < Ȳ ; If Ȳ < q0, then Ȳ < I(Ȳ ) < q0,
where q0 = τ

q .

Lemma 3.7. Suppose that S(T ) is well defined. Then we have

(i) if S(yT ) > 0, then τ
q > yT ;

(ii) for any Y ∈ (0, yR], if S(Y ) < 0, then τ
q < Y .

Proof. We associate the location of yT and yR with the number τ
q , provided that

S(T ) is well defined.

(i) Assume τ
q ≤ yT . Then either yT̄ < τ

q ≤ yT or τ
q ≤ yT̄ < yT holds. From

Lemma 3.6 and Lemma 3.2, it follows that I(yT̄ ) < τ
q ≤ yT or < I(yT̄ ) ≤

yT̄ < yT , respectively, which implies S(yT ) < 0 and leads to a contradiction;
(ii) Since Y ∈ (0, yR], y(x, Y ) is increasing with x, and hence Ȳ > Y . To the

contrary if τ
q ≥ Y , then either τ

q ≥ Ȳ or Y ≤ τ
q < Ȳ holds. It follows from

Lemma 3.6 that I(Ȳ ) ≥ Ȳ > Y or I(Ȳ ) > τ
q > Y , respectively, which implies

that S(Y ) > 0 and this leads to a contradiction to S(Y ) < 0.

Lemma 3.8. Suppose that S(T ) is well defined. The following statements hold
true.

(i) if S(yT ) > 0, then S(yR) > 0;
(ii) if ∆1(yR) < 0 and ∆2(Y ) ≤ 0 with Y ∈ [yR, yT ], then S(yT ) > 0 implies

S(Y ) > 0 for any Y ∈ (0, yT ].
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Proof. Since S(T ) is well defined, S(Y ) is well defined for Y ∈ (0, yT ].

(i) From Lemma 3.2, it follows that yT̄ − yR̄ < yT − yR. Then we have

S(yT )−S(yR) = I(yT̄ )−yT −
(
I(yR̄)−yR

)
= (1−q)(yT̄ −yR̄)−(yT −yR) < 0.

Hence, S(yT ) > 0 implies S(yR) > 0.
(ii) Since ∆1(yR) < 0 and ∆2(Y ) ≤ 0 for yR ≤ Y ≤ yT , by Lemma 3.5, the

function S is concave on [yR, yT ]. From (i) and Lemma 2.8, S(yT ) > 0 implies
S(Y ) > 0 for any Y ∈ [yR, yT ].

Furthermore, by Lemma 3.7, S(yT ) > 0 implies τ
q > yT > yR. If Y ∈ (0, YR),

then Y < τ
q . From the item (ii) of Lemma 3.7 ,we have S(Y ) > 0 for any Y ∈

(0, YR).
Therefore, S(yT ) > 0 implies S(Y ) > 0 for any Y ∈ (0, yT ] under the condition

(ii).

Remark 3.3. The condition S(Y ) > 0 for any Y ∈ (0, yT ] implies that there is no
order-1 periodic solution initiating below T .

Lemma 3.9. If there exists a small number ϵ∗ such that S(ϵ∗) be well defined, then
we have limϵ→0 S(ϵ) = 0 for τ = 0, and limϵ→0 S(ϵ) = τ for τ > 0. If S(τ) is well
defined, then S(τ) > 0.

Proof. It follows from Lemma 2.2 that S(ϵ) is well defined when ϵ is a number
small enough with 0 < ϵ < ϵ∗. From the definition of the successor function
S(ϵ) = PN (ϵ)− ϵ = I(P (ϵ))− ϵ, the former two statements hold true.

We just need to verify that S(τ) > 0 when S(τ) is well defined. Provided
that S(τ) ≤ 0, we have PN (τ) = (1 − q)P (τ) + τ ≤ τ , and hence P (τ) ≤ 0. A
contradiction comes up. Thus S(τ) > 0 holds true when S(τ) is well defined.

3.2. Existence of positive order-1 periodic solution
The existence of an order-1 periodic solution has a lot to do with whether the
trajectory O+(T ) hits the impulsive line M , so we consider the existence of periodic
solutions under two cases that S(T ) is well defined and S(T ) is not well defined.

3.2.1. S(T ) is well defined

In this subsection, we assume that S(T ) is well defined and the assumptions (A1)–
(A3) hold. From Lemma 3.1, it follows that S(Y ) is well defined for any Y ∈ N .
In the following, we will not list the case that S(T ) = 0, which admits an order-1
periodic solution initiating from T , so does for S(R) = 0.

Theorem 3.1. Suppose that τ
q ≥ yT . Then there exists a positive order-1 periodic

solution. Specifically, we have the following statements.

(i) If S(yT ) > 0, then there exists an order-1 periodic solution locating in the sub-
parallel domain, which initiates above T . Furthermore, the order-1 periodic
solution is unique provided that ∆1(yR) < 0 and ∆2(Y ) ≤ 0 for any Y ∈
[yR, yT ];

(ii) If S(yT ) < 0, then the periodic solution is initiating from the point between R
and T , which locates in a parallel domain.
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Proof. When τ
q ≥ yT , we consider two cases that S(yT ) > 0 and S(yT ) < 0.

(i) Obviously, S(yT ) > 0 implies T+ > T ,and hence π(T+) < π(T ) = T . Thus
PN (T+) < PN (T ) = T+, that is S(yT+) < 0. Since S(yT )·S(yT+) < 0 holds in
the sub-parallel domain composed of N,M,O+(T ), O+(T+), following Lemma
2.6, there is an order-1 periodic solution initiating above T . Further, provided
that ∆1(yR) < 0 and ∆2(Y ) ≤ 0 hold for Y ∈ [yR, yT ], it follows from Lemma
3.8 that S(Y ) > 0 for Y ∈ (0, yT ], and hence there exists no order-1 periodic
solution initiating below T . Moreover, S(Y ) is decreasing when Y > yT in
view of Lemma 3.3. Thus, there is a unique order-1 periodic solution when
S(yT ) > 0.

(ii) If S(yT ) < 0, on account of Lemma 3.7, we have S(yR) > 0 because of
τ
q ≥ yT > yR. Henceforth, we have S(yT ) · S(yR) < 0. Based on Lemma 2.5,
there exists an order-1 periodic solution in the parallel domain composed of
N,M,O+(T ) and O+(R).

Theorem 3.2. Suppose yR < τ
q < yT . Then there is an order-1 periodic solution

initiating from the point between R and T .

Proof. We claim that S(yT ) < 0 and S(yR) > 0. Otherwise, provided that
S(yT ) > 0, then τ

q > yT in view of Lemma 3.7, which leads to a contradiction, and
hence S(yT ) < 0 holds true. Similarly, we have S(yR) > 0. Consequently, there
is an order-1 periodic solution initiating between R and T , which is in the parallel
domain composed of N,M,O+(T ) and O+(R).

Denote Qτ = (h, τ) and Q′
τ = (h, τ

q ).

Theorem 3.3. Suppose 0 < τ
q ≤ yR. Then there exists a positive order-1 periodic

solution initiating below T . Specifically,

(i) If S(yR) > 0, then the periodic solution initiates between R and T ;
(ii) If S(yR) < 0, then the order-1 periodic solution initiates between Q′

τ and
R. In addition, if ∆1(yR) < 0 and ∆2(Y ) ≤ 0 for Y ∈ [yR, yT ], then there
may exist another order-1 periodic solution initiating between R and T . If
∆1(τ) > 0 and ∆2(Y ) ≥ 0 for Y ∈ [τ, τ

q ], there may exist another order-1
periodic solution initiating between Qτ and Q′

τ

Proof. Since τ
q ≤ yR, then τ

q < yT , which means S(yT ) < 0 owing to Lemma 3.7.
At the same time, y(x, τ

q ) is increasing in x on account of τ
q ≤ yR, which means

S( τq ) > 0.

(i) If S(yR) > 0, there exists an order-1 periodic solution initiating from the point
between R and T because of S(yT ) · S(yR) < 0;

(ii) If S(yR) < 0, then there is an order-1 periodic solution locating between Q′
τ

and R because of S(yR) ·S( τq ) < 0. In addition, if ∆1(yR) < 0 and ∆2(Y ) ≤ 0

for Y ∈ [yR, yT ], then it follows from Lemma 3.5 that S(Y ) is concave on the
interval (yR, yT ). While S(yR) < 0 and S(yT ) < 0 hold true, and hence by
Lemma 2.8, there may exist a zero point on the interval (yR, yT ) for function
S, which corresponds to an order-1 periodic solution.



The periodic solutions for an impulsive . . . 1363

Similarly, if ∆1(τ) > 0 and ∆2(Y ) ≥ 0 for Y ∈ [τ, τ
q ], then S(Y ) is convex on the

interval (τ, τ
q ). Since S(τ) > 0 and S( τq ) > 0 both hold, there may exist a zero

point in (τ, τ
q ), and hence an order-1 periodic solution initiating between Qτ and

Q′
τ .

Particularly, when τ = 0, we have S(yT ) < 0, and limε→0 F (ε) = 0 is always
satisfied. If q = 0, then S(Y ) > 0 holds for Y ∈ (0, yR). Therefore, we have the
following corollaries.

Corollary 3.1. Suppose τ = 0. If S(yR) > 0, then there exists an order-1 periodic
solution initiating from the point between R and T . If S(yR) < 0, then there exists
a limit circle, i.e a semi-trivial periodic solution. Moreover, if S(yR) < 0, and
∆1(yR) < 0 and ∆2(Y ) ≤ 0 for Y ∈ [yR, yT ], then there may exist another order-1
periodic solution initiating between R and T .

Corollary 3.2. Suppose q = 0. If S(yT ) > 0, then there exists an order-1 periodic
solution initiating above T . If S(yT ) < 0, then there exists an order-1 periodic
solution initiating between R and T .

3.2.2. S(T ) is not well defined

In this subsection, we consider the case that S(T ) is not well defined. As E2(x
∗, y∗)

is asymptotically stable, any trajectory initiating from N will hit M if h < x∗. If
S(T ) is not well defined, then h > x∗.

Suppose that O−(W ) intersects with N at least two points. We denote

W− = max{Wk|O+(Wk) ∩M = W,Wk < T}

and W− = min{Wk|O+(Wk) ∩M = W,Wk > T}. Obviously, π(W−) = W−, and
yW− > yT and yW− < yT .

If I(W ) = W+ > W−, then the domain, composed of segments W−W+, WW+,
and the trajectories W−W and W+W+, is a semi-ring one. The location of such
points is illustrated in Fig.6.

MN

W

+
W

-

W

-

W

+
W

T

Figure 6. The illustration for the location of W,W+,W−, and W+ when O−(W ) intersects with N at
least two points.

Based on Lemma 2.7, we have the following theorems. We will not list the cases
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that I(yW ) = yW− and I(yW ) = yW− because one can take granted that the order-1
periodic solutions exist.

Theorem 3.4. Suppose τ > yW− . Then there is a periodic solution initiating above
W−, which is locating in the semi-ring domain composed of the segments W−W+,
WW+, and the trajectories W−W and W+W+.

Proof. It follows from τ > yW− that PN (ϵ) > yW− for any ϵ ∈ (0, yW−), which
means PN (W−W+) ⊂ W−W+. From Lemma 2.7, there is a periodic solution in
the semi-ring domain.

Theorem 3.5. Suppose yW− < τ < yW− . If I(yW ) < yW− , then there is no
order-1 periodic solution in Ω.

Proof. Since yW− < τ , then PN (ϵ) > yW− for any ϵ ∈ (0, yW−). It follows
from I(yW ) < yW− that PN (ϵ) < yW− . Furthermore, W is a tangent point and
h < x∗ < h. All the trajectories initiating from W−W

− will not hit M any longer.
According to Lemma 2.7, there is no periodic solution locating in the semi-ring
domain or in Ω.

Remark 3.4. The fact that there is no impulsive periodic solution implies the
system is out of impulsive control after finite-time stimulation or suppression.

Theorem 3.6. Suppose 0 < τ ≤ yW− and I(yW ) < yW− . Then there is at least
one positive order-1 periodic solution initiating between Qτ and W−. Specifically,
if yR ≥ yW− , then the periodic solution initiates between Q′

τ and W−; if yR < yW− ,
then the periodic solution initiates between R and W− or between Q′

τ and W−.

Proof. If 0 < τ < yW− , then S(τ) is well defined. It follows from Lemma 3.9 that
S(τ) > 0. The condition I(yW ) < yW− implies S(yW−) < 0, and hence there exists
an order-1 periodic solution initiating between Qτ and W−.

More specifically, we consider the location of order-1 periodic solution in the
following two cases: Case 1: yR > yW− ; Case 2: yR < yW− .

In the Case 1, S(yR) is not well defined. Since yW− < yR and S(yW−) < 0 hold,
by Lemma 3.7, we have τ

q < yW− < yR. Henceforth, P ( τq ) > τ
q holds. Following

Lemma 3.6, we have S( τq ) > 0. Consequently, S(yW−) · S( τq ) < 0 holds, and there
exists an order-1 periodic solution initiating between Q′

τ and W−.
In the Case 2, S(yR) is well defined. If yR < τ

q , then S(yR) > 0, and hence
there is an order-1 periodic solution initiating between R and W− . If yR > τ

q , then
S( τq ) > 0, which means that there is an order-1 periodic solution initiating between
Q′

τ and W−.

Theorem 3.7. Suppose 0 < τ ≤ yW− and I(yW ) > yW− . Then there maybe exist
a positive order-1 periodic solution initiating between Qτ and W−, provided that
∆1(τ) > 0 and ∆2(Y ) ≥ 0 for Y ∈ [τ, yW− ].

Proof. I(yW ) > yW− gives S(yW−) > 0. Henceforth S(τ) > 0 and S(yW−) > 0
both hold. Based on Lemma 3.4, we have ∆1(Y ) > 0 for Y ∈ [τ, yW− ]. Since
∆1(τ) > 0 and ∆2(Y ) ≥ 0 for Y ∈ [τ, yW− ], according to the second part of Lemma
3.5, S is concave downward on interval [τ, yW− ]. From Lemma 2.8, there may exist
a zero point in (τ, yW−), which is corresponding to an order-1 periodic solution.

Particulary, if τ = 0, then it is impossible to have a semi-ring type periodic
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solution because of yW < yT < yW− . We just state the existence of periodic
solution or limit circle for the case τ = 0 and q = 0.

Corollary 3.3. Assume that τ = 0. We have the following statements.

(i) If yR > yW− and I(yW ) < yW− , then there is a limit circle or a semi-trivial
periodic solution;

(ii) If yR < yW− ,and I(yW ) < yW− and S(yR) > 0, then there exists a periodic
solution initiating between R and W− ;

(iii) If yR < yW− , and I(yW ) < yW− and S(R) < 0, then there is a semi-trivial
periodic solution. In addition, there may exist an order-1 periodic solution
initiating between W− and R, provided that ∆1(yR) < 0 and ∆2(Y ) ≤ 0 for
Y ∈ [yR, yW− ].

Corollary 3.4. Assume that q = 0. We have:

(i) if τ > yW− , then there is a periodic solution locating in the semi-ring do-
main composed of the segments W−W+ and WW+ along with the trajectories
W−W and W+W+;

(ii) if yR < yW− and yW + τ < yW− , then there is an order-1 periodic solution
initiating between R and W−;

(iii) if yR > yW− and 0 < τ < yW− , there maybe exist a positive order-1 periodic
solution initiating between Qτ and W−, provided that ∆1(τ) > 0 and ∆2(Y ) ≥
0 for Y ∈ [τ, yW− ].

Remark 3.5. Suppose that O−(W ) ∩N = ∅. Then impulsive impact just has the
effect on the trajectories initiating from the shadowed domain in Figure 7(a), which
will be out of the impulsive control. Suppose that O−(W ) intersects with N at a
unique point W− (see Figure 7(b)). Then the system will be out of the impulsive
control for τ > yW− , and the results are the same as the Theorem 3.6 and Theorem
3.7 for 0 < τ < yW− .

0
E

2
E

W

h h

T

.

y

x

(a) O−(W ) ∩ N = ∅

0
E

2
E

x

y

W

h h

T

.

-
W

(b) O−(W ) ∩ N = W−(unique)

Figure 7. Two possible cases of that the trajectory O−(W ) intersects with N .
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3.3. Stability of the order-1 periodic solutions

Now, we will consider the stability of the order-1 periodic solution for system (1.2)
based on the Analogue of Poincaré Criterion.

Lemma 3.10 (Analogue of Poincaré Criterion, [2, 6, 10]). The ω-periodic solution
x = ξ(t), y = η(t) of system

dx

dt
= P (x, y),

dy

dt
= Q(x, y), if ϕ(x, y) ̸= 0,

∆x = I1(x, y), ∆y = I2(x, y), if ϕ(x, y) = 0,
(3.5)

is orbitally asymptotically stable, where P,Q are continuous differentiable functions
and ϕ is a sufficiently smooth function with ∇ϕ ̸= 0, if the Floquet multiplier µ
satisfies | µ |< 1, where

µ =

n∏
j=1

κj exp
{∫ ω

0

[∂P (
ξ(t), η(t)

)
∂x

+
∂Q

(
ξ(t), η(t)

)
∂y

]
dt
}

(3.6)

with

κj =

(
∂I2
∂y

∂ϕ
∂x − ∂I2

∂x
∂ϕ
∂y + ∂ϕ

∂x

)
P+ +

(
∂I1
∂x

∂ϕ
∂y − ∂I1

∂y
∂ϕ
∂x + ∂ϕ

∂y

)
Q+

∂ϕ
∂xP + ∂ϕ

∂yQ
(3.7)

and P,Q, ∂I1
∂x , ∂I1

∂y ,
∂I2
∂x , ∂I2

∂y ,
∂ϕ
∂x ,

∂ϕ
∂y are calculated at the point

(
ξ(τj), η(τj)

)
,P+ =

P
(
ξ(τ+j ), η(τ+j )

)
, Q+ = Q

(
ξ(τ+j ), η(τ+j )

)
, and τj is the time of the jth jump.

Theorem 3.8. Let
(
X(t), Y (t)) be the order-1 periodic solution of system (1.2)

with period ω. If

|µ| = (1− q)Y (ω)

(1− q)Y (ω) + τ
· exp

{∫ ω

0

Y [Gy −
Fy

F
G]

∣∣
(X(t),Y (t))

dt
}
< 1, (3.8)

then
(
X(t), Y (t)

)
is orbitally asymptotically stable.

Proof. Suppose (X,Y ) intersects the sections M and N respectively at points(
h, Y (ω)

)
and

(
h, Y (ω+)

)
, where Y (ω+) = (1− q)Y (ω) + τ .

We rewrite the system (1.2) as the form of (3.5). Then we have

P (x, y) = xF (x, y), Q(x, y) = yG(x, y),

I1(x, y) = −px, I2(x, y) = −qy + τ, ϕ(x, y) = x− h

and
∂P

∂x
= F (x, y) + xFx,

∂Q

∂y
= G(x, y) + yGy,

∂I1
∂x

= −p,
∂I2
∂y

= −q,

∂ϕ

∂x
= 1,

∂I1
∂y

=
∂I2
∂x

=
∂ϕ

∂y
= 0.

It follows that

κ1 =

(
∂I2
∂y

∂ϕ
∂x − ∂I2

∂x
∂ϕ
∂y + ∂ϕ

∂x

)
P+ +

(
∂I1
∂x

∂ϕ
∂y − ∂I1

∂y
∂ϕ
∂x + ∂ϕ

∂v

)
Q+

∂ϕ
∂xP + ∂ϕ

∂yQ

=
(1− q)P+

P
.

(3.9)
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Moreover, ∫ ω

0

∂P (X,Y )

∂X
dt =

∫ ω

0

[F (X,Y ) +XFx(X,Y )]dt

=

∫ h

h

1

X
dX +

∫ ω

0

XFx(X,Y )dt

= ln
h

h
+

∫ ω

0

XFx(X,Y )dt

(3.10)

and ∫ ω

0

∂Q(X,Y )

∂Y
dt =

∫ ω

0

(
G(X,Y ) + Y Gy

)
dt

=

∫ Y (ω)

Y (ω+)

1

Y
dY +

∫ ω

0

Y Gy(X,Y )dt

= ln
Y (ω)

Y (ω+)
+

∫ ω

0

Y Gy(X,Y )dt.

(3.11)

Further, the last items of (3.10) becomes

∫ ω

0

XFx(X,Y )dt =

∫ ω

0

X[Fx(X,Y ) + Fy(X,Y ) dYdX ]

XF (X,Y )
Ẋ(t)dt

−
∫ ω

0

Fy(X,Y )

F (X,Y )
Ẏ (t)dt

=

∫ h

h

dF (X,Y (X))

F (X,Y (X))
−
∫ ω

0

Fy(X,Y )

F (X,Y )
Y G(X,Y )dt

= ln
F (h, Y (ω))

F (h, Y (ω+)
−

∫ ω

0

Fy(X,Y )

F (X,Y )
Y G(X,Y )dt.

(3.12)

Hence, it follows from (3.10), (3.11) and (3.12) that

exp
{∫ ω

0

[∂P (
X,Y

)
∂X

+
∂Q

(
X,Y

)
∂Y

]
dt
}

= exp
{
ln

h

h
+ ln

F (h, Y (ω))

F (h, Y (ω+)
+ ln

Y (ω)

Y (ω+)

+

∫ ω

0

Y Gy(X,Y )dt−
∫ ω

0

Fy(X,Y )

F (X,Y )
Y G(X,Y )dt

}
=

h

h
· F (h, Y (ω))

F (h, Y (ω+)
· Y (ω)

Y (ω+)

× exp
{∫ ω

0

Y [Gy(X,Y )− Fy(X,Y )

F (X,Y )
G(X,Y )]dt

}
.

(3.13)

Therefore, according to (3.6)–(3.7), (3.8)–(3.9) and (3.13), we have

|µ| = (1− q)Y (ω)

(1− q)Y (ω) + τ
· exp

{∫ ω

0

Y [Gy −
Fy

F
G]

∣∣
(X(t),Y (t))

dt
}
< 1,

which implies the order-1 periodic solution (X(t), Y (t)) is orbitally asymptotically
stable.
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Theorem 3.9. If ∆1(Y (ω+)) < 0 and F (X(t), Y (t)) > 0 for t ∈ [0, ω], then the
order-1 periodic solution

(
X(t), Y (t)

)
is orbitally asymptotically stable.

Proof. Since

∆1(Y (ω+)) =
∣∣∣ F G

Fy Gy

∣∣∣
(X(t),Y (t))

,

∆1(Y (ω+)) < 0 and F > 0 imply [Gy − GFy

F ](X,Y ) < 0. From (3.8), it follows that
|µ| < 1.

In view of the fact that F > 0, Gy < 0 and G < 0, Fy < 0 in Ω1, we have the
following corollary.

Corollary 3.5. If h < x∗ and the order-1 periodic solution locates in Ω1, then it
must be orbitally asymptotically stable.

4. Conclusion and discussion
The dynamic property of a state-dependent impulsive system is rich and it depends
on the impulsive strategy, the initial values and the intrinsic dynamics of the system
without impulse. For the purpose of biologic control, it is quite challenging to inves-
tigate a general model subject to not only positive impulsive effect but also negative
one, which exhibits in a Kolmogorov predator-prey model with non-selective har-
vesting along with delivery. Such an impulsive strategy enhanced the complexity
of the analysis.

In this paper, we focused on theoretical analysis on the existence and location of
order-1 periodic solutions of the system as well as their stability. To deal with the
discontinuity of the Poincaré map and the successor function, we introduced three
types of Bendixson domain and established new existence results theoretically. We
revealed that the Intermediate Value Theorem may be not applicable when the
domain is semi-ring, because the Poincaré map may be not well defined and hence
the property of continuity does not hold (see Remark 2.1).

From technique point of view, to locate the order-1 periodic solution, we com-
bined the geometrical phase analysis with the method of successor function or
Bendixson Domain Theory. We derived two discriminates ∆1 and ∆2 to define
the concavity or convexity and the monotonicity of the Poincaré map PN and the
successor function S. With the help of the definitions of three characteristic points
T,R and W and the ratio of τ/q, we obtained the detailed existing locations along
with the conditions, respectively in the case that S(T ) is well defined and the case
that S(T ) is not well defined, which involves the particular subcases that τ = 0
and/or q = 0. Furthermore, we incorporated the Floquet multiplier µ with ∆1

when the stability of order-1 periodic solution is investigated.
From biological control point of view, we were aiming at the protect of the

predator in a relatively larger scale . We summarize our main results in brief as
follows:

We can take a large enough delivery τ such that S(yT ) > 0 (when S(T ) is well
defined), or I(yW ) > yW− (when S(T ) is not well defined) to ensure an order-1
periodic solution initiating above T or W−, which locates in a sub-parallel domain
or a semi-ring domain, respectively. However, it may not be economic.



The periodic solutions for an impulsive . . . 1369

In fact, since the harvesting is non-selective, we need to select the delivery τ
responsing to the harvesting q.

If q is small enough such that (1− q)yR̄ ≥ yR (or W− < (1− q)yW < W−), then
there is an order-1 periodic solution initiating between R and T ( or the impulsive
control will be invalid).

If q is large enough such that (1 − q)yR̄ < yR or (1 − q)yW < yW− , we have to
take a deliver to protect the predator against extinction. Given a small delivery
τ , the predator will be retrieved because of S(ε) → τ > 0. With good luck, if the
initial densities of the predator and the prey are high enough to locate in Ω1, the
balance is possible to be kept without delivery.

The conditions ∆1(Y ) < 0 and ∆2(Y ) ≤ 0 are sufficient for P ′′
N (Y ) < 0, since

P ′′
N (Y ) is expressed by an integral as (3.2). So does for P ′

N (Y ) < 1. That is, it is
possible for P ′′

N (Y ) < 0 even if ∆1(Y ) < 0 and ∆2(Y ) ≤ 0 does not hold.
Finally, the strategy of impulsive control depends on the trajectories structure

and the purpose of control. For example, if O−(W ) ∩N = ∅, the impulsive control
will only be valid for the initial values illustrated in Figure 8(a) and the harvesting
can not be sustainable. However, an intrinsic balance can be kept. If O−(W )
intersects N at a unique point, then we need adjust τ relatively small so that the
harvesting is sustainable, and choose τ relatively large so that the intrinsic balance
can be realized. Similarly, in equation (3.8), provided exp(∗) = 1. If τ = 0, then
µ = 1, which means the periodic solution may be unstable. If τ > 0, then µ < 1,
which means the periodic solution is orbitally asymptotically stable. Henceforth,
the delivery τ can stabilize the order-1 periodic solution.

Acknowledgements. The authors would like to thank the reviewers for their valu-
able comments on the paper.
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