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TURING INSTABILITY AND PATTERNS OF
THE FITZHUGH-NAGUMO MODEL IN

SQUARE DOMAIN
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Abstract In this paper, critical conditions of Turing instability for Fitzhugh-
Nagumo (FHN) model with diffusion under Neumann boundary conditions are
derived. Moreover, different from previous works about the FHN model, we
obtain simple bifurcation, double bifurcation, and four-fold bifurcation with
stripe pattern, rectangular pattern, spot pattern, square pattern, and highly
developed square pattern, respectively. Meanwhile, the theoretical results are
applied to two coupled FHN model with diffusion, and the process of the
coupling strengths affecting the stability of the model is presented by numerical
simulations.
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1. Introduction
Pattern dynamics is an important part of nonlinear science. The purpose of the
research is to explore the basic law of pattern formation which coexists among
various systems. Riley-Benard system, reaction-diffusion system, oscillatory sand
table system, and nonlinear optical system in a fluid are the main research objects
of pattern dynamics theory and experiment. Reaction-diffusion models are com-
monly used as mechanisms for pattern formation [16]. Analogous models are used
in modeling neural pattern formation [5]. These depend on lateral inhibition and so-
called Turing instability. The Turing instability can be defined as a mechanism by
which spatially inhomogeneous perturbations of a steady-state grow exponentially,
while constant perturbations decay. Bifurcation theory can be used to prove the
existence of small-amplitude spatial patterns for these systems [6]. Murray [16] com-
mented that in two-dimensional spatial domains, stripes were difficult to obtain for
reaction-diffusion models whereas they arose quite naturally in many neural mod-
els. Ermentrout [4] demonstrated a selection mechanism for ‘stripe’ versus ‘spots’ in
systems of reaction-diffusion and other Turing instability-driven systems. He noted
that in linearized equation e (rcosx+ scosy), where e is the eigenvector, r and s are
arbitrary scalars, if r = 0 and s ̸= 0, a ‘strip’ would occur while if both r ̸= 0 and
s ̸= 0, a ‘spot’ would appear.

Pattern is the result of systematic dynamic bifurcation and some space-time
symmetry breaking. Generally speaking, the static pattern with periodic distri-
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bution in space is caused by Turing instability, while the dynamic pattern with
periodic variation with time is caused by Hopf instability or wave instability. Tur-
ing patterns mainly include hexagons, quadrilaterals and stripes. In the reaction
diffusion system, since the amplitude equation does not exist A −→ −A reverse
symmetry near the critical point and the second-order term of the equation is not
zero, the quadrilateral pattern is relatively unstable and difficult to obtain, which
has become a difficult point in research. Currently, researchers have derived square
and many kinds of super-quadrangle patterns in different experimental systems.
Gal et al. [14] used glass with a poor thermal conductivity as the boundary in the
Rayleigh-Benard convection system to obtain a stable square pattern. Wagner et
al. [31] gained the positive quadrangle pattern in the Faraday experiment by using
the external driving frequency, and observed the transformation from the quadri-
lateral to the hexagonal. Moreover, Li et al. [15] obtained a stable square pattern
formed spontaneously under Turing instability by using the double-layer coupled
Lengyel-Epstein model.

Turing [29] proposed the pattern dynamics in the study of the reaction-diffusion
system in 1952. He used the reaction-diffusion model to explain the patterns dis-
played on the surface of some organisms, such as the production mechanism of
the pattern on the zebra. Turing’s mechanism is a kind of instability caused by
diffusion. In [29], Turing pointed out that in the reaction-diffusion system, un-
der certain conditions, the stable and homogeneous state could be unstable, and
the spatial fixed pattern was generated spontaneously. This process and the re-
sulting pattern were the Turing instability and Turing pattern, the reason for this
phenomenon was the instability caused by the different diffusion rates of the two
reactants [18, 20, 21, 23, 25–27, 30]. Therefore, it is necessary to study the diffusion
dynamics of the Fitzhugh-Nagumo model and the resulting Turing instability.

In 1952, to study the essence of the electrical activity process of the biological
nervous system, Hodgkin and Huxley [11] took squid as the experimental object,
carried out many experiments by using voltage-clamp technique, and obtained a
large number of experimental data about the electrophysiological activity of squid
axons. Based on these data, a Hodgkin-Huxley model which can accurately describe
the electrical activity of the cell membrane was deduced as follows:

cV̇ (t) = −gNamh (V − VNa)− gKn4 (V − VK)

− gL (V − VL) + I,

ṁ (t) =
m∞ (V )−m

τm (V )
,

ḣ (t) =
h∞ (V )− h

τh (V )
,

ṅ (t) =
n∞ (V )− n

τn (V )
,

(H−H)

where V is the membrane voltage, gNa, gK , gL represent the maximum capacitance
of Na+ ion channel, K+ ion channel, Cl+ ion channel, VNa, VK , VL represent the
equilibrium potential of Na+, K+, Cl+ and other leaking ions, h represents the
preparation of sodium ion current, n and m are activation variables, t represents
time.

Since the H-H model is a nonlinear differential equation with four variables,
although some dynamic behaviors of the system can be obtained by numerical sim-
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ulation, it is almost impossible to obtain its analytical solution because of the com-
plexity of the system, so it is hard to study the characteristics and dynamic behavior
of the system more deeply from the mathematical point of view. Therefore, some
researchers hope to use a simple mathematical model to reflect the complex electro-
physiological process of the nervous system. In 1962, Fitzhugh and Nagumo [7, 19]
simplified the H-H model, and obtained the following two-dimensional Fitzhugh-
Nagumo (FHN) model: {

εu̇ = af (u)− v,

v̇ = u− δv,
(FHN)

where ε > 0, δ are small parameters, f (u) = u−u3, and u represents the membrane
potential, v represents the recovery variable, namely, u, v represent the neural
neurons.

FHN model is a simple two-dimensional model, which can not only simulate
the action potential of neuron electrical activity but also the frequency of neuron
discharge. Therefore, it has been studied widely. Many researchers have found
that by selecting appropriate parameter values, the system can appear a variety of
bifurcation, limit cycle, periodic motion and chaos, and other rich dynamic behavior
[1, 3, 9, 10,17,22,24].

In this paper, we add the diffusion to the FHN model and obtain the reaction-
diffusion system as follows:

ε
∂u

∂t
= d1∆u+ af (u)− v,

∂v

∂t
= d2∆v + u− δv,

(1.1)

with Neumann boundary conditions
u (x, y, 0) = u0, v (x, y, 0) = v0, (x, y) ∈ Ω,

∂u

∂n
=

∂v

∂n
= 0, (x, y) ∈ ∂Ω,

where Ω = [0, l]× [0, l], l is a positive bounded constant which gives out the size of
the system in the directions of x and y, n is the outward unit normal vector of the
boundary ∂Ω.

As a matter of fact, many researchers also concentrate on the coupled FHN
model [2, 8, 13, 28, 32]. The interactional neuron model considered by Jalnine [13]
consisted of a pair of coupled FHN systems, with the parameters being periodically
modulated in antiphase, so that the neurons underwent alternate excitation with a
successive transmission of the phase of oscillations from one neuron to another. Song
and Xu [28] investigated the delay-coupled FHN system. They found conditional
stability, absolute stability, and stability switches of the steady state provoked by
the coupling time delay. Moreover, in [32], the authors analyzed the dynamics of
the FHN slow-fast system with diffusion and coupling. In the case of two coupled
FHN reaction-diffusion, the Turing-Hopf-Turing bifurcation occurred, and they also
found the case about the spatial resonance of Turing-Turing bifurcation arising, and
two kinds spatially steady-state solutions are found which are synchronous or anti-
phased. If considering the coupling between the FHN model with the diffusion,
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then we have 

ε
∂u1

∂t
= d1∆u1 + af (u1)− v1 − α (u2 − u1) ,

∂v1
∂t

= d2∆v1 + u1 − δv1 − β (v2 − v1) ,

ε
∂u2

∂t
= d1∆u2 + af (u2)− v2 + α (u2 − u1) ,

∂v2
∂t

= d2∆v2 + u2 − δv2 + β (v2 − v1) .

(1.2)

This model is a neuron-coupled system, and it describes layers that are identical
in their underlying chemical and physical properties, where α and β measure the
coupling strengths, α > 0 and β > 0, which represent the interactions between
neurons.

The purpose of this paper is to analyze the stability of the FHN model with
diffusion term and the coupled FHN model over a square domain and to discuss
the properties of the patterns that they produced. Firstly, in section 2, we give
the conditions for the Turing instability of a single FHN model with diffusion in
Theorem 2.1. At the same time, we investigate the types of state bifurcation when
m and n are in different cases. We obtain spot pattern, square pattern, and highly
developed square pattern when the state bifurcation is simple, double, and four-fold
respectively. Then, we consider the two coupled FHN model with diffusion in sec-
tion 3. We obtain the Theorem 3.1 by analyzing the Turing instability and Turing
bifurcation of the coupled FHN model. In addition, when the coupling strengths
are selected with appropriate values, we can verify the stability of the coupled FHN
model from the patterns produced by simulating. Some numerical simulations sup-
port our theoretical results in sections 2 and 3, respectively.

2. The FHN model on square domain
2.1. Stability analysis of FHN model
In this section, based on the method of [12], we investigate the Turing bifurcation
and Turing instability of the FHN model (1.1) with the diffusion term. Let σ =
d2/d1, the system (1.1) can be rewritten into

∂u

∂t
=

1

ε
d1∆u+

a

ε

(
u− u3

)
− 1

ε
v,

∂v

∂t
= σd1∆v + u− δv.

in Ω = [0, l]× [0, l] . (2.1)

The system (2.1) has a unique constant positive steady-state solution E∗
1 =

(u∗, v∗) under the premise of aδ > 1, where

(u∗, v∗) =
(√

1− 1/aδ,
√
(aδ − 1) /aδ3

)
, (aδ > 1).

In order to simplify the discussion and the numerical calculation, we transform
the homogeneous steady-state solution (u∗, v∗) into (0, 0) by (u, v) = (ũ+ u∗, ṽ + v∗).



Turing instability and patterns. . . 1375

Moreover, we transform square domain Ω = [0, l] × [0, l] to unit domain Ω̃ =
[0, 1]× [0, 1] by transforming x = lx̃ and y = lỹ, then the system (2.1) becomes

∂ũ

∂t
=

1

ε
d1

1

l2
∆u+

(
a

ε
− 3a

ε
u2
∗

)
ũ− 1

ε
ṽ

+

(
a

ε
u∗ −

a

ε
u3
∗ −

1

ε
v∗ −

3a

ε
u2
∗ũ

2 − a

ε
ũ3

)
,

∂ṽ

∂t
= σd1

1

l2
∆v + ũ− δṽ + (u∗ − δv∗) ,

(2.2)

with 
u (x̃, ỹ, 0) = u0, v (x̃, ỹ, 0) = v0, (x̃, ỹ) ∈ Ω̃,

∂ũ

∂n
=

∂ṽ

∂n
= 0, (x̃, ỹ) ∈ ∂Ω̃.

For the sake of simplify and calculation, we express the d1, x̃, ỹ and ũ, ṽ as d,
x, y and u, v.

Recall that µk =
(
m2 + n2

)
π2 with m,n ∈ N0 is the eigenvalue of −∆ in two

dimensional spatial domain Ω̃ = [0, 1] × [0, 1], where N0 is a nonnegative integer
set, then we can analyze the roots of the following series of equations to get the
eigenvalues of the linearized operator.

Mm,n (λ, σ) :=

− d

εl2
(
m2 + n2

)
π2 +

a

ε
− 3a

ε
u2
∗ − λ −1

ε

1 −σ
d

l2
(
m2 + n2

)
π2 − δ − λ

 ,

m, n ∈ N0.

The characteristic equations of Mm,n for some m,n are the following sequence
of quadratic equations:

Λm,n (λ, σ) = detMm,n (λ, σ) := λ2 − trace (m,n)λ+ det (m,n) = 0,m, n ∈ N0,
(2.3)

with

trace (m,n) = −
(
1

ε
+ σ

)
d
(
m2 + n2

)
π2

l2
+

a

ε
− 3au2

∗
ε

− δ,

det (m,n) =
σ

l4ε
d2
(
m2 + n2

)4
π4 +

(
3aσu2

∗ + δ − aσ
) d(m2 + n2

)
π2

l2ε

+

(
3aδu2

∗
ε

+
1

ε
− aδ

ε

)
.

In the following part, we rewrite k2 = m2 + n2 for convenience, where m,n ∈ N0

and k ∈ N0. With the aim to resolve the stabilization problem of system (2.2), sev-
eral hypotheses are presented.

(H0) 0 <
1

3
− 1

3aδ
< u2

∗ <
1

3
− εδ

3a
, a < 0, δ < 0.

Under the hypothesis (H0), when k = 0, all eigenvalues of Λ0 (λ, σ) have neg-
ative real parts, and trace (k) < 0, for k ∈ N0. In the following, we discuss the
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conditions under which Turing instability occurs with k ∈ N, k ̸= 0.

(H1) 0 < σ < σ1, where

σ1
∆
=

aδε
(
1− 3u2

∗
)

a2ε+ 9a2εu4
∗ + 4aδ − 6au2

∗(aε+ 2δ)− 4

+ 2

√
δ2ε (−aδ + 3aδu2

∗ + 1)

(a2ε+ 9a2εu4
∗ + 4aδ − 6au2

∗(aε+ 2δ)− 4) 2
.

(H2) 0 < σ < σ2 (d) , σ2 (d)
∆
=

−l2δ

dπ2 + 3au2
∗l

2 − al2
.

Let k2min be the minimal point of function det (k) on k2 ∈ R+, then

kmin =

√
l2

2d

−δ − 3aσu2
∗ + aσ

σπ2
.

By hypothesis (H1), we can get min
k∈R+

det (k) < 0 and 3aσu2
∗ + δ − aσ < 0.

Moreover, hypothesis (H2) guarantees that the minimal point

kmin >

√
1

2
.

It ought to be seen that σ = σ2 (d) decreases monotonically with respect to d
and intersects with σ = σ1 at the point d = d0. Let σA (d) = min

d>0
{σ1, σ2 (d)}, then

σA (d) =

σ1, 0 < d ≤ d0,

σ2 (d) , d ≥ d0.
(2.4)

To deduce main results, two lemmas are given, which will be used in main results.

Lemma 2.1. Assume that (H0) holds, then hypotheses (H1) and (H2) hold if and
only if 0 < σ < σA (d), d > 0.

Denote
σ∗ (k, d) =

(
aδl2 − 3aδu2

∗l
2 − l2 − δdk2π2

)
l2

dk2π2 (dk2π2 + 3au2
∗l

2 − al2)
, for d > dk, (2.5)

where dk =

(
aδ − 3aδu2

∗ − 1
)
l2

δk2π2
, then det (k) = 0 when σ = σ∗ (k, d).

Let dM (k) be the point at which the monotonicity of the function changes,
that is function σ = σ∗ (k, d) increases monotonically if dk < d < dM (k), and
σ = σ∗ (k, d) decreases monotonically if dM (k) < d < +∞. Therefore, σ = σ∗ (k, d)
can take the maximum value σ1 at dM (k).

Lemma 2.2. Assume that (H0) holds, function σ = σ∗ (k, d) has the following
properties.

(i) As for ki < ki+1, ki ∈ N, i = 1, 2, 3 · · · , there is only one root dk1,k2
∈

(dM (k2) , dM (k1)) meets σ∗ (k1, d) = σ∗ (k2, d) for d > 0. Moreover,

σ∗ (k1, d) > σ∗ (k2, d) > σ∗ (k3, d) > · · · , for d > dki,ki+1
.
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(ii) Denote dk0,k1
= +∞, and

σ∗
∆
= σ∗ (d) = σ∗ (k, d) , d ∈

(
dki,ki+1 , dki−1,ki

)
, ki ∈ N, i = 1, 2, 3 · · · .

Then
σ∗ (d) ≤ σA (d) , 0 < d < +∞.

Furthermore, σ∗ (d) = σA (d) if and only if d = dM (k), k ∈ N.

The relation of σ = σ1, σ = σ2 (d) and σ = σ∗ (k, d) is presented in Fig.1, where
d > 0, k = 5, 10, 13 · · · . Meanwhile, the critical curve of Turing instability is shown
in Fig.2.
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Figure 1. The figure of functions σ = σ1, σ = σ2 (d) and σ = σ∗ (k, d), d > 0, k = 5, 10, 13 · · · , in
(d, σ) plane.
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Figure 2. The Turing bifurcation line T : σ = σ∗ (d), d > 0.

As a consequence, in the light of the above analysis, a theorem is presented in
the following to derive the conditions for Turing bifurcation and Turing instability
of system (1.1).

Theorem 2.1. Assume that (H0) holds.

(1) For any given k1 ∈ N, when σ = σ∗ (k1, d), the system (1.1) occurs k1−mode
Turing bifurcation at (u∗, v∗).
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(2) σ = σ∗ (d), d > 0 is the critical curve of Turing instability.

(i) If σ > σ∗ (d), d > 0, the system (1.1) is asymptotically stable at positive
equilibrium (u∗, v∗).

(ii) If 0 < σ < σ∗ (d), d > 0, Turing instability occurs in the system (1.1) at
positive equilibrium (u∗, v∗).

Proof. When σ = σ∗ (k1, d), we can get det (k1) = 0. The characteristic equation
(2.3) becomes

Λk1
(λ, σ) := λ2 − trace (k1)λ = 0. (2.6)

The Eq.(2.6) has a zero root, and the other root of Λk1
(λ, σ) has negative real part.

That is, the system (1.1) occurs Turing bifurcation at (u∗, v∗) when σ = σ∗ (k1, d).
If σ > σ∗ (d), d > 0, then det(k1) > 0. (H0) guarantees trace (k1) < 0, so all

roots of Λk1 (λ, σ) have negative real parts. On the other hand, if 0 < σ < σ∗ (d),
d > 0, det(k1) < 0, then the system (1.1) is Turing instability.

Remark 2.1. µk = k2π2 is the eigenvalue of −∆, where k is a nonnegative integer
satisfies k2 = m2 + n2,m, n ∈ N0. Then one, two, or more pairs (m,n) may exist
such that the eigenvalues will have single, double or higher multiplicity respectively.
Hence, the state bifurcation will be simple, double, three-fold, four-fold and so on.

2.2. Numerical simulation of the FHN model with diffusion

According to the above analysis, we select the parameters a, δ, ε and l as a =
−2.25, δ = −0.6, ε = 0.1067, l = 2.

We obtain (u∗, v∗) = (0.5092, 0.8486) which satisfies the hypothesis (H0). Through
(H1), (H2), (2.4) and (2.5), we can get σ1 = 0.1067,

σA (d) =


0.1067, 0 < d ≤ 2.0786,

2.4

dπ2 + 1.9993
, d ≥ 2.0786,

and

σ∗ (k1, d) =
−11.2016 + 2.4dk21π

2

dk21π
2 (dk21π

2 + 1.9993)
.

By setting k1 = 10, we obtain d10,13 = 0.0082 and d5,10 = 0.0252. Choose
d = d1 = 0.01 ∈ [d10,13, d5,10], thus σ∗ = σ∗ (10, 0.01) = 0.1066. Therefore,
system (1.1) with d = 0.01 undergoes 10-mode Turing bifurcation near equilib-
rium (0.5092, 0.8486) at σ = 0.1066. We define the patterns in square domain
Ω = [0, 2]× [0, 2]. Since k21 = m2 +n2, k ∈ N, the selection of m and n have several
cases. In the following, we list the corresponding state bifurcation in Table 1.

Through Table 1, the types of bifurcation are divided into three types. As a
result, we give the numerical simulations which are divided into three cases:
Case I Simple bifurcation with ‘stripe’ and ‘rectangular’ patterns are presented in
Figs.3 and 4.
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Table 1. Five types patterns when k2
1 = 100 = m2

i + n2
i , i = 1, 2, 3, 4.

Type of bifurcation k21 = 100 = m2
i + n2

i , i = 1, 2, 3, 4 Pattern
simple m1 = 10, n1 = 0 stripe
simple m3 = 8, n3 = 6 rectangular
double interaction of m1 = 0, n1 = 10 and m2 = 0, n2 = 10 spot
double interaction of m3 = 8, n3 = 6 and m4 = 6, n4 = 8 square

four-fold interaction of m1 = 10, n1 = 0,m2 = 0, n2 = 10, highly
m3 = 8, n3 = 6 and m4 = 6, n4 = 8 developed square
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Figure 3. Stripe patterns when k1 = 10, m1 = 10, n1 = 0. The initial values are u0 =
0.00000002 cos (5πx), v0 = 0.007 cos (5πy).
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Figure 4. Rectangular patterns when k1 = 10, m3 = 8, n3 = 6. The initial values are
u0 = 0.00000002 cos (4πx) cos (3πy), v0 = 0.007 cos (3πx) cos (4πy).
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Case II Double bifurcation with ‘spot’ and ‘square’ patterns are presented in Figs.5
and 6.
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Figure 5. Spot patterns when k1 = 10, m1 = 10, n1 = 0, m2 = 0, n2 = 10 by interacting m1,2,
n1,2 two modes. The initial values are u0 = 0.002 cos (5πx) + 0.003 cos (5πy), v0 = 0.005 cos (5πy) −
0.004 cos (5πx).

Case III Four-fold bifurcation with highly developed square patterns are presented
in Fig.7.

3. The coupled FHN model on square domain
3.1. Dynamic properties of coupled FHN model
In this section, we consider the coupled FHN model. Let σ = d2/d1, and recall
d = d1 for convenience, then the system (1.2) can be rewritten as

∂u1

∂t
=

d

ε
∆u1 +

a

ε
f (u1)−

1

ε
v1 −

α

ε
(u2 − u1) ,

∂v1
∂t

= σd∆v1 + u1 − δv1 − β (v2 − v1) ,

∂u2

∂t
=

d

ε
∆u2 +

a

ε
f (u2)−

1

ε
v2 +

α

ε
(u2 − u1) ,

∂v2
∂t

= σd∆v2 + u2 − δv2 + β (v2 − v1) ,

(3.1)

with
u1 (x, y, 0) = u0, v1 (x, y, 0) = v0, u2 (x, y, 0) = u0, v2 (x, y, 0) = v0, (x, y) ∈ Ω,

∂u1

∂n
=

∂v1
∂n

=
∂u2

∂n
=

∂v2
∂n

= 0, (x, y) ∈ ∂Ω.
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Figure 6. Square patterns when k1 = 10, m3 = 8, n3 = 6, m4 = 6, n4 = 8 by interacting m3,4,
n3,4 two modes. The initial values are u0 = 0.007 cos (4πx) cos (3πy) + 0.005 cos (3πx) cos (4πy), v0 =
0.001 cos (3πx) cos (4πy) − 0.002 cos (4πx) cos (3πy).
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Figure 7. Highly developed square patterns when k1 = 10, m1 = 10, n1 = 0, m2 = 0, n2 = 10,
m3 = 8, n3 = 6, m4 = 6, n4 = 8 by interacting m1,2,3,4, n1,2,3,4 four modes. The initial values
are u0 = 0.007 cos (5πx) + 0.005 cos (5πy) + 0.006 cos (4πx) cos (3πy) + 0.009 cos (3πx) cos (4πy), v0 =
0.007 cos (5πy) − 0.005 cos (5πx) + 0.006 cos (3πx) cos (4πy) − 0.009 cos (4πx) cos (3πy).
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We investigate the stability of the steady state E∗
2 = (u∗, v∗, u∗, v∗), here u∗ =√

1− 1/aδ and v∗ =
√
(aδ − 1) /aδ3. For simplification, we shift the positive equi-

librium to the origin by transformation, and transform the square domain into the
unit domain, then we obtain

∂u1

∂t
=

d

εl2
∆u1 + f1 (u1, v1, u2, v2) ,

∂v1
∂t

= σd∆v1 + g1 (u1, v1, u2, v2) ,

∂u2

∂t
=

d

εl2
∆u2 + f2 (u1, v1, u2, v2) ,

∂v2
∂t

= σd∆v2 + g2 (u1, v1, u2, v2) ,

(3.2)

where
f1 =

(
a

ε
+

α

ε
− 3a

ε
u2
∗

)
u1 −

1

ε
v1 −

α

ε
u2 +

a

ε
u∗ −

a

ε
u3
∗ −

1

ε
v∗ −

3a

ε
u∗u

2
1 −

a

ε
u3
1,

g1 = u1 + (β − δ) v1 − βv2 + u∗ − δv∗,

f2 = −α

ε
u1 +

(
a

ε
+

α

ε
− 3a

ε
u2
∗

)
u2 −

1

ε
v2 −

1

ε
v∗ +

a

ε
u∗ −

a

ε
u3
∗ −

3a

ε
u∗u

2
2 −

a

ε
u3
2,

g2 = −βv1 + u2 + (β − δ) v2 + u∗ − δv∗.

The characteristic equations for E∗
2 are the following sequence of quadratic equa-

tions.

∆(k) (λ) =∣∣∣∣∣∣∣∣∣∣∣∣

a
ε − dk2π2

l2ε + α
ε − λ− 3au2

∗
ε − 1

ε −α
ε 0

1 β − δ − k2π2θd
l2 − λ 0 −β

−α
ε 0 a

ε − dk2π2

l2ε + α
ε − λ− 3au2

∗
ε − 1

ε

0 −β 1 β − δ − k2π2θd
l2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
which can be written as

∆(k) (λ) = Γ1 (k) (λ) Γ2 (k) (λ) = 0, k ∈ N0, (3.3)

where
Γ1 (k) (λ) = λ2 − T1 (k)λ+D1 (k) = 0,

Γ2 (k) (λ) = λ2 − T2 (k)λ+D2 (k) = 0,

and

T1 (k) = −
(
1

ε
+ σ

)
dk2π2

l2
+

a

ε
− 3au2

∗
ε

− δ,

D1 (k) =
σ

ε

d2k4π4

l4
+

(
3aσu2

∗
ε

+
δ

ε
− aσ

ε

)
dk2π2

l2
+

1

ε
+

3aδu2
∗

ε
− aδ

ε
,

T2 (k) = −
(
1

ε
+ σ

)
dk2π2

l2
+

a

ε
− 3au2

∗
ε

− δ + 2
(α
ε
+ β

)
,

D2 (k) =
σ

ε

d2k4π4

l4
+

((
3au2

∗ − 2α− a
) σ
ε
+ (δ − 2β)

1

ε

)
dk2π2

l2
+

1

ε
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+
1

ε

(
3au2

∗ − 2α− a
)
(δ − 2β).

We suppose that

(A0)
a

ε
− 3au2

∗
ε

− δ + 2
(α
ε
+ β

)
< 0.

(A0)
′
3aδu2

∗ − aδ + 1 > 0, 1 +
(
3au2

∗ − 2α− a
)
(δ − 2β) > 0.

By assumption (A0) and (A0)
′
, we have T1 (0) < 0, D1 (0) > 0, T2 (0) < 0 and

D2 (0) > 0. Hence, when k = 0 all eigenvalues of ∆(0) (λ) have negative real parts,
and T1 (k) < T2 (k) < 0, for k ∈ N0.

In this section, we mainly consider the effect of coupling strengths on the stability
of system (3.2). We can obtain T1 (k) < 0, D1 (k) > 0 with (A0), (A0)

′
and

3aσu2
∗ + δ− aσ > 0, then all the roots of Γ1 (k) (λ) have negative real parts for any

given k ∈ N. We will only need to discuss the roots of Γ2 (k) (λ) in the following.
Suppose that

(A1) 0 < σ < σ
′

1, σ
′

1
∆
= p+ 2

√
q, where

p =
ε(2β − δ)

(
a
(
3u2 − 1

)
− 2α

)
4 (α2ε− 4αβ + 2αδ − 1) + a2ε (1− 3u2)2 + 4a (3u2 − 1) (−αε+ 2β − δ)

,

q =
ε(δ − 2β)2

(
4αβ − 2αδ − a

(
3u2 − 1

)
(2β − δ) + 1

)(
4 (α2ε− 4αβ + 2αδ − 1) + a2ε (1− 3u2)2 + 4a (3u2 − 1) (−αε+ 2β − δ)

)2
.

(A2) 0 < σ < σ
′

2 (d) , σ
′

2 (d)
∆
=

−δl2 + 2βl2

π2d+ 3au2
∗l

2 − al2 − 2αl2
.

We can calculate that k2min is the minimum point of the equation D2 (k),

kmin =

√
l2

2d

−δ + 2β − 3aθu2
∗ + 2ασ + aσ

σπ2
, k2 ∈ R+.

Assumption (A1) guarantees min
k∈R+

D2 (k) < 0 and δ−2β+3aσu2
∗−2ασ−aσ < 0.

Moreover, assumption (A2) guarantees the minimum value point kmin >
√

1/2.
It is obviously that σ = σ

′

2 (d) intersects with σ = σ
′

1 at the point d = d
′

0. We
take σ

′

A (d) = min
d>0

{
σ

′

1, σ
′

2 (d)
}

, then

σ
′

A (d) =

σ
′

1, 0 < d ≤ d
′

0,

σ
′

2 (d) , d ≥ d
′

0.

Denote

σ
′

∗ (k, d) =

(
(2β − δ) dk2π2 − l2 −

(
3au2

∗ − 2α− a
)
(δ − 2β) l2

)
l2

dk2π2 (dk2π2 + 3au2
∗l

2 − al2 − 2αl2)
, d > d

′

k, k ∈ N,

where d
′

k =

((
3au2

∗ − 2α− a
)
(δ − 2β) + 1

)
l2

(2β − δ) k2π2
, then D2 (k) = 0 when σ = σ

′

∗ (k, d).

As for ki < ki+1, ki ∈ N, i = 1, 2, 3 · · · , there is only one root d
′

k1,k2
∈(

d
′

M (k2) , d
′

M (k1)
)

meets σ
′

∗ (k1, d) = σ
′

∗ (k2, d) for d > 0. Furthermore,

σ
′

∗ (k1, d) > σ
′

∗ (k2, d) > σ
′

∗ (k3, d) > · · · , d > d
′

ki,ki+1
.
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Let d
′

k0,k1
= dk0,k1

= +∞, and

σ
′

∗ (d) = σ
′

∗ (k, d) , d ∈
(
d

′

ki,ki+1
, d

′

ki−1,ki

)
, ki ∈ N, i = 1, 2, 3, · · · .

Then
σ

′

∗ (d) ≤ σA
′
(d) , 0 < d < +∞.

The relation of the equations σ = σ
′

1, σ = σ
′

2 (d) and σ
′

∗ (k, d) is presented
in Fig.8, where d > 0, k = 5, 10, 13 · · · . Moreover, the critical curve of Turing
instability is presented in Fig.9.
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Figure 8. The figure of functions σ = σ
′
1, σ = σ

′
2 (d) and σ

′
∗ (k, d), d > 0, k = 5, 10, 13 · · · , in (d, σ)

plane.
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Figure 9. The Turing bifurcation line T : σ = σ
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∗ (d), d > 0.

Let σM (d) = max
d>0

{
σ

′

∗ (d) , σ∗ (d)
}

, then we have the following theorem.

Theorem 3.1. Assume that (A0) and (A0)
′

hold.

(1) For any given k1 ∈ N. If 3aσu2
∗ + δ − aσ > 0 hold, the system (1.2) occurs

k1 −mode Turing bifurcation at (u∗, v∗, u∗, v∗) when σ = σ
′

∗ (k1, d).
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(2) σ = σM (d), d > 0 is the critical curve of Turing instability.
(i) When σ > σM (d), d > 0, the system (1.2) is asymptotically stable at

positive equilibrium (u∗, v∗, u∗, v∗).
(ii) When 0 < σ < σM (d), d > 0, Turing instability will happen in the

system (1.2) at positive equilibrium (u∗, v∗, u∗, v∗).

Proof. When σ = σ
′

∗ (k1, d), we obtain D2 (k1) = 0. Therefore, the characteristic
equation (3.3) becomes

∆(k1) (λ) = Γ1 (k1) (λ)
(
λ2 − T2 (k1)λ

)
=

(
λ2 − T1 (k1)λ+D1 (k1)

) (
λ2 − T2 (k1)λ

)
= 0.

By assumption (A0), we can get T2 (k1) < 0. Hence, T1 (k1) < T2 (k1) < 0. In
addition, 3aσu2

∗ + δ − aσ > 0 and (A0)
′

guarantee D1 (k1) > 0, so the roots of
Γ1 (k1) have negative real parts for any k1 ∈ N. That is, ∆(k1) (λ) has a zero root,
and all the other roots of ∆(k1) (λ) have negative real parts.

We have σ > σ∗ (d) and σ > σ
′

∗ (d) when σ > σM (d). Hence, D1 (k1) > 0
and D2 (k1) > 0. Combining with (A0), we obtain that all roots of ∆(k1) (λ) have
negative real parts for any k1 ∈ N. If 0 < σ < σM (d), we have two cases. One is
0 < σ < σ∗ (d) with σ∗ (d) > σ

′

∗ (d), then D1 (k1) < 0. The other is 0 < σ < σ
′

∗ (d)
with σ

′

∗ (d) > σ∗ (d), then D2 (k1) < 0. However, in either case above, ∆(k1) (λ)
has at least one positive root, the system (1.2) is Turing instability.

3.2. Numerical simulation of the FHN model with coupling
Let a = −2.25, δ = −0.6, l = 2, and ε = 0.153, α = 0.18, β = 0.08, so we have
u∗ = 0.5092, v∗ = 0.8486 and σ

′

1 = 0.1528. Furthermore,

σ
′

∗ (k1, d) =
3.04dk21π

2 − 14.2997

dk21π
2 (dk21π

2 + 0.5593)
, k1 ∈ N.

By setting k1 = 10, we obtain d
′

10,13 = 0.0078, d′

5,10 = 0.0243. Choose d = d1 =

0.01 ∈
[
d

′

10,13, d
′

5,10

]
, thus σ

′

∗ (10, 0.01) = 0.1526.
We select σ = 0.14 ∈ (0.1066, 0.1526), then σ > σ∗ (10, 0.01), D1 (k1) > 0,

all the roots of Γ1 (k1) (λ) have negative real parts. Since 0 < σ < σ
′

∗ (10, 0.01),
D2 (k1) < 0, so Γ2 (k1) (λ) has at least one positive root. Therefore, the system
(1.2) is Turing instability at equilibrium E∗

2 when σ = 0.14.
According to the above analysis, if Turing instability occurs in the system (1.2),

then α and β should satisfy the following inequalities:

a

ε
− 3au1∗

2

ε
− δ + 2

(α
ε
+ β

)
< 0,

1

ε
+

1

ε

(
3au1∗

2 − a− 2α
)
(δ − 2β) > 0,

θ

ε

d2k4π4

l4
+

((
3au1∗

2 − 2α− a
) θ
ε
+ (δ − 2β)

1

ε

)
dk2π2

l2

+
1

ε
+

1

ε

(
3au1∗

2 − a− 2α
)
(δ − 2β) < 0.

(3.4)
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Substituting a = −2.25, δ = −0.6, ε = 0.153, l = 2, σ = 0.14, d = 0.01 into
(3.4), we can get (3.5)

13.1578α+ 2β − 2.6883 < 0,

26.3156αβ + 7.8947α− 6.5769β + 4.6079 > 0,

26.3156αβ + 3.3991α− 39.0425β + 1.612 < 0.

(3.5)

We can solve the value range of coupling strengths α and β from inequalities
(3.5), and it is shown in Fig.10.

(α,β)
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line 3

Figure 10. The region of coupling strengths α and β when d = 0.01, σ = 0.14, a = −2.25, δ = −0.6,
ε = 0.153, l = 2.

Remark 3.1. Suppose (A0) and (A0)
′

hold.

(1) Assuming that there is no diffusion term in the system, and we set α = β = 0,
removing the coupling, then the ODE system (1.1) is asymptotically stable at
positive equilibrium (u∗, v∗). When the coupling strengths are α = 0.18 and
β = 0.08, the ODE system (1.2) is also asymptotically stable at equilibrium
(u∗, v∗, u∗, v∗).

(2) Assuming that there exists diffusion term in the system, and α = β = 0,
we can obtain that the PDE system (1.1) is still asymptotically stable at
positive equilibrium (u∗, v∗). However, if the coupling strengths are α = 0.18
and β = 0.08, the PDE system (1.2) begin to appear Turing instability at
equilibrium (u∗, v∗, u∗, v∗).

In the following, we will display that numerical results are consistent with the
theoretical results when σ = 0.14, α = 0.18, β = 0.08, m1 = 10, n1 = 0. The
initial values are u01 = 0.00002 cos (5πx)+0.00032 cos (5πy), v01 = 0.09 cos (5πy)+
0.0004 cos (5πx), u02 = 0.0004 cos (5πx)−0.03 cos (5πy) and v02 = 0.00002 cos (5πy)
+ 0.003 cos (5πx). Fig.11 shows that the stripe patterns produced by u1 (x, y) do
not change with the increase of time (v1 (x, y) is the same). It is verified that when
the coupling strengths are added, all the roots of Γ1 (k1) (λ) = 0 still have negative
real parts and do not change over time. Figs.12 and 13 show that, under the same
initial value with Fig.11, the patterns of u2 (x, y) and v2 (x, y) change from stripe
to spot with the increase of time, which verify that when the coupling strengths are
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added, the roots of Γ2 (k1) (λ) = 0 have at least one positive root. Therefore, the
system (1.2) is Turing instability at equilibrium (u∗, v∗, u∗, v∗).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y

u1 (x,y)

(a) t = 560

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y

u1 (x,y)

(b) t = 2890

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y

u1 (x,y)

(c) t = 3450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y

u1 (x,y)

(d) t = 4500

Figure 11. Stripe patterns produced by u1 (x, y) when m1 = 10, n1 = 0.
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Figure 12. Spot patterns produced by u2 (x, y) when m1 = 10, n1 = 0.
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Figure 13. Spot patterns produced by v2 (x, y) when m1 = 10, n1 = 0.

When σ = 0.14, α = 0.18, β = 0.08, m3 = 8, n3 = 6, by similar approach,
the initial values are u01 = 0.00002 cos (4πx) cos (3πy)+0.00032 cos (3πx) cos (4πy),
v01=0.09 cos (3πx)cos(4πy)+0.0004 cos(4πx)cos(3πy), u02=0.05 cos (4πx)cos(3πy)
+0.008cos(3πx)cos(4πy), and v02=0.00002cos(3πx)cos(4πy)+0.001cos(4πx)cos(3πy).
Fig.14 shows that the rectangular patterns produced by u1 (x, y) do not change with
the increase of time (v1 (x, y) is the same). Figs.15 and 16 show that, under the
same initial value with Fig.14, the patterns of u2 (x, y) and v2 (x, y) change from
rectangular to square with the increase of time.

4. Conclusions
The coupled and uncoupled FHN models with diffusion are important neural net-
work models. The properties of Turing bifurcation and Turing instability of these
models are closely related to diffusion and coupling strengths.
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Figure 14. Rectangular patterns produced by u1 (x, y) when m3 = 8, n3 = 6.
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Figure 15. Square patterns produced by u2 (x, y) when m3 = 8, n3 = 6.
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Figure 16. Square patterns produced by v2 (x, y) when m3 = 8, n3 = 6.

Firstly, the conditions for Turing bifurcation and Turing instability of the FHN
model are given in Theorem 2.1. The eigenvalues of −∆ can be single, double, or
higher multiplicity respectively. Hence, the state bifurcation will be single, double,
three-fold, four-fold, and so on. Patterns are given which correspond to the mul-
tiplicity of state bifurcation in numerical simulations: (1) stripe and rectangular
patterns correspond to simple bifurcation; (2) spot and square patterns correspond
to double bifurcation; (3) highly developed square pattern correspond to four-fold
bifurcation. Then, according to Theorem 3.1, by selecting appropriate values of
coupling strengths α and β, Turing instability occurs in the coupled FHN model.
Theoretical analysis shows that under the hypothesis of Theorem 3.1, the coupling
strengths affect the stability of the system (1.2) only when there exits diffusion.
Furthermore, numerical simulations present that the patterns of the coupled FHN
model change from the stripe (rectangular) to spot (square) with the increase of
time.
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