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Abstract Based on the abstract theory of random attractors of non-autonomous
non-compact dynamical systems, we investigate existence and the upper semi-
continuity of random attractors for the non-autonomous stochastic plate equa-
tions with multiplicative noise defined on the entire space R". We extend and
improve the results of [42] not only from the additive white noise to the multi-
plicative white noise, but also from the time-independent of forcing term g(z)

to the time-dependent forcing term g(z,t).
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1. Introduction

We consider the following non-autonomous stochastic plate equations with multi-
plicative noise:

d
Uy + g + APuy + A%u+ Mu+ f(z,u) :g(x,t)Jreuod—z:, reR" t>71, (1.1)

and the initial value conditions are raised as follows:
w(z,7) =up(z), w(x,7)=ui(x), z€R", (1.2)

where 7 € R, a, X and e are positive constants, g € L? (R, L*(R™)), and w is a
two-sided real-valued Wiener process on a probability space. The problem (1.1) is
understood in the sense of Stratonovich integration.

The study of plate equations have been paid extensive attention to by some of the
researches due to their importance in both the physical and engineering areas such as
vibration and elasticity theory of solid mechanics; besides, the long-time dynamics

of solutions associated with this problem has also located to an important position
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and become more and more outstanding in the field of the infinite-dimensional
dynamical systems .

As we know, attractor is a proper concept describing the long-time dynamics
of the dynamical systems, and there are many classical literatures and monographs
not only for the deterministic but also for the stochastic dynamical systems over
the last two decades years, see for instance([1, 2, 6-12, 14-19, 22, 23, 26, 27, 30—
32, 36, 41]) and references therein. In order to scrutinize the asymptotic behavior of
solution for the stochastic partial differential equations driven by noise, H. Crauel
& F. Flandoi([11, 12]), F. Flandoi & B. Schmalfuss([15]) and B. Schmalfuss([27]) et
al. introduced a concept of pullback attractors respectively, and established some
abstract results proving existence of such attractors([1, 12, 15, 22]). However, the
compactness of pullback absorbing set was necessary for obtaining the existence of
random attractors if we exploit above mentioned methods, so it could not be used
to deal with the stochastic PDEs on unbounded domains. In order to implement
such defects, P. W. Bates, H. Lisei & K. Lu presented the concept of asymptotic
compactness, and applied this technique into the lattic dynamical systems([5]) and
the reaction-diffusion equations on unbounded domain([4]), respectively. B. Wang
in [32] further developed the concept of asymptotic compactness, and obtained ex-
istence of a unique pullback attractor for the stochastic reaction-diffusion equations
with additive noise on R™. As far as the corresponding other works on stochastic
PDEs, we refer to ([13, 14, 30, 33-38, 41]) and references therein.

Ounly for our problem (1.1)—(1.2), under the deterministic case (i.e., ¢ = 0),
existence of global attractors has been studied by several authors, see for instance
[3, 19-21, 39, 40, 43] and reference therein. As far as the stochastic case driven by
additive noise, when the forcing term g is independent of time, that is, g(x, t) =
g(x), existence of random pullback attractors on bounded domain was obtained in
[24, 28, 29]. Recently, X. Yao, Q. Ma & T. Liu investigated existence and upper
semi-continuity of random attractors for stochastic plate equations with rotational
inertia and Kelvin-Voigt dissipative term on an unbounded domain(see [42] for
details). To the best of our knowledge, it is not yet considered by any predecessors
for the stochastic plate equations with multiplicative noise, so we focus on this
problem on unbounded domain in the present paper. It is well known that the
multiplicative noise makes the problem more complex and interesting even to the
environment of bounded domain. Motivated by the theory and applications of B.
Wang in [32, 36, 38], and also based on the works of the stochastic plate equations
with rotational inertia and Kelvin-Voight dissipative term on unbounded domains
by Yao, Ma & Liu, we are concerned with the existence and upper semi-continuity
of random attractors for problem (1.1)—(1.2).

Notice that (1.1) is a non-autonomous stochastic differential equation with the
time-dependent external forcing term g, like in [32], we need to introduce two para-
metric spaces so that describe its dynamics: one is responsible for the deterministic
non-autonomous perturbations, and another for the stochastic perturbations. On
the other hand, since Sobolev embeddings are not compact on unbounded domain,
we can not get the desired asymptotic compactness directly via the regularity of
solutions. In order to move these obstacles, we take advantage of the uniform
estimates on the tails of solutions outside a bounded ball in R™ and along with
the splitting technique([33]), as well as the compactness methods(that is so called
“C-Condition” or “flattening Condition”) introduced in [17, 18].

The remainder of this paper is as follows. In the next Section, we recall a suffi-
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cient and necessary conditions proving existence of random attractors for cocycle or
non-autonomous random dynamical systems. In Section 3, we define a continuous
cocycle for (1.1) in H?(R™) x L?(R"™) under the condition that insure the well-
posedness of solutions. Then we derive all uniform estimates of solutions in Section
4, and prove the existence of random attractors in Sections 5, Finally, we further
show the upper semi-continuity of random attractors in the last Section.

Throughout the paper, we use || - || and (-, -) to denote the norm and the inner
product of L?(R"), respectively. The norms of LP(R") and a Banach space X are
generally written as || - ||, and || - || x. The letters ¢ and ¢; (i = 1,2,...) are generic
positive constants which may change their values from line to line or even in the
same line and do not depend on .

2. Preliminaries

In this section, we recall some definitions and known results regarding pullback
attractors of non-autonomous random dynamical systems from ([1, 10, 11, 32])
which they are useful to our problem.

In the sequel, we use (2, F,P) and (X,d) to denote a probability space and a
complete separable metric space, respectively. If A and B are two nonempty subsets
of X, then we use d(A, B) to denote their Hausdorff semi-distance.

Definition 2.1. Let 6 : R x Q@ — Q be a (B(R) x F,F)-measurable mapping.
We say (Q, F,P,0) is a parametric dynamical system if 6(0, ) is the identity on
Q, (s+t,-)=0(t,-)o0(s,-) for all t,s € R, and PO(t,-) = P for all t € R.

Definition 2.2. Let K : Rx{) — 2% be a set-valued mapping with closed nonempty
images. We say K is measurable with respect to F in € if the mapping w € Q —
d(z, K(1,w)) is (F, B(R))-measurable for every fixed x € X and 7 € R.

Definition 2.3. A mapping ® : Rt x R x @ x X — X is called a continuous
cocycle on X over R and (Q, F,P,{0;}1er) if for all 7 € R, w € Q and ¢,s € RT,
the following conditions (1)—(4) are satisfied:

(1) @(,7 ) :RTxQx X = X is (BR') x F x B(X), B(X))-measurable;

(2) ®(7,7,w,-) is the identity on X;

(3) ®(t+s,7,w,-) =D(t, 7+ 5,05w,-) 0 D(s, T, w,);

(4) ®(t,7,w,-): X = X is continuous.

Hereafter, we assume @ is a continuous cocycle on X over R and (2, F, P, {0; }+er),
and D is the collection of some families of nonempty bounded subsets of X param-
eterized by 7 € R and w €

D={D={D(r,w) C X :D(r,w) # 0,7 € R,w € Q}}.

Definition 2.4. (i) A mapping ¥ : R x R x  — X is called a complete orbit
(solution) of @ if for every t € RT,s,7 € R and w € ,

D(t, 7+ s,05w,¥(s,7,w)) =V(t + s, T,w).
If, in addition, there exists D = {D(1,w) : 7 € R,w € 2} € D such that ¥(¢,7,w)

belongs to D(7 + t,0,w) for every t € RT,7 € R and w € Q, then ¥ is called a
D-complete orbit (solution) of .
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(ii) A mapping £ : R x @ — X is called a complete quasi-solution of ® if for
every t e RT, 7 € R and w € 0,

(b(t, T, W, S(Ta W)) = 5(7- +t, etW).

If, in addition, there exists D = {D(7,w) : 7 € R,w € Q} € D such that £(7,w)
belongs to D(7,w) for every 7 € R and w € , then ¢ is called a D-complete
quasi-solution of ®.

Definition 2.5. A collection D of some families of nonempty subsets of X is said
to be inclusion-closed if for each D = {D(r,w) : 7 € R,w € Q} € D, the family

{B(r,w) : B(7,w) is a nonempty subset of D(1,w), V7 € R, Vw € Q}

also belongs to D.

Definition 2.6. Let B = {B(7,w) : 7 € R,w € Q} be a family of nonempty subsets
of X. For every 7 € R,w € €, let

B, 7w = Jot7—t,0_w B(r—t,0_w)).

r>0t>r

Then the family {Q(B,7,w) : 7 € R,w € Q} is called the Q-limit set of B and is
denoted by Q(B).

Definition 2.7. Let D be a collection of some families of nonempty bounded sub-
sets of X and K = {K(r,w) : 7 € R,w € Q} € D. Then K is called a D-pullback
absorbing set for @ if for all 7 € R and w €  and for every B € D, there exists
T =T(B,7,w) > 0 such that

O(t,7—t,0_w,B(r —t,0_w)) C K(r,w) forallt>T.

If, in addition, K (7,w) is closed in X and is measurable in w with respect to F,
then K is called a closed measurable D-pullback absorbing set for ®.

Definition 2.8. Let D be a collection of some families of nonempty bounded sub-
sets of X. Then ® is said to be D-pullback asymptotically compact in X if for all
7 € R and w € 2, the sequence

{®(tn, T — tn, 0+, w,Tn) oo, has a convergent subsequence in X

whenever t, — oo, and z,, € B(T — tp,0_, w) with {B(7,w) : 7 € R,w € Q} € D.

Definition 2.9. Let D be a collection of some families of nonempty bounded sub-
sets of X and A = {A(1,w) : 7 € R,w € Q} € D. Then A is called a D-pullback
attractor for @ if the following conditions (1)-(3) are fulfilled: that is, for all ¢t € RT,
Te€Rand w € Q,

(1) A(T,w) is compact in X and is measurable in w with respect to F.

(2) A is invariant, that is,

q)(ta T, W, A(T’ w)) = A(T + t7 0,500)
(3) For every B={B(r,w): 7€ R,we N} €D,

lim d(®(t, 7 —t,0_4w, B(T — t,0_4w)), A(T,w)) = 0.

t—o0
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Proposition 2.1. Let D be an inclusion-closed collection of some families of nonem-
pty bounded subsets of X, and & be a continuous cocycle on X over R and
(Q,F, P,{0:}tcr). If ® is D-pullback asymptotically compact in X and ® has a
closed measurable D-pullback absorbing set K in D, then ® has a unique D-pullback
attractor A in D which is given by, for each 7 € R and w € €,

A1, w) =Q(K, T,w) UQBTw
BeD
={¥(0,7,w) : ¥ is a D-complete solution of ® under Definition 2.4(i)}

={¢(1,w) : £ is a D-complete quasi-solution of ® under Definition 2.4(ii)}.

3. Cocycles associated with stochastic plate equa-
tion

In this section, we outline some basic settings about (1.1)—(1.2) and show that it
generates a continuous cocycle in H = H(R") = H*(R") x L?(R").
We define a new norm || - || by

1

¥ Nl = (lvl* + (6% + A = da)[ull* + (1 — 8)|| Aul|*)=, (3.1)

for Y = (u,v)" € H, where T stands for the transposition.
Let z = u; + du, where 0 is a small positive constant whose value will be deter-
mined later. Substituting u; = z — du into (1.1) we find

CC%L +ou =z, (3.2)
%Jr(a §)z+ A2+ (0% + A —da)u+(1—86)A%u+ f(z,u) =g(x,t)+eu o ((%}’ (3.3)

with the initial value conditions
u(z, ) = ug(z), z(x, ) = 2zo(x), (3.4)

where zo(z) = ul( )—|—5uo( ), x € R™.

Let F(z,u) = [, f(x,s)ds for z € R" and u € R. The function f € C*(R" x
R, R) will be assumed to satisfy the following conditions:

(F1) |f(2,u0)] < erlu] + é1(a),

(F2) f(z,u)u— coF(x,u) > ¢a(x),

(F3) Fla,u) > cshul ™! — ga(a),

(F4) |fu(z,w)| < calul"™" + da(2),
where ¢;, ©+ = 1, 2, 3, 4, are positive constants, 1 < v < n+4( ) ¢1 €
L?(R™), ¢y € L*(R"),¢p3 € L'(R™) and ¢4 € H?(R™). Note that (F ) d (F2)
imply

Fa,u) < ef[uf? + [u] ™! + ¢ + 62). (3.5)

We also need the following condition on g like in [32]: there exists a positive constant
o such that

0
| ey 4 rolPds < oo, W € B, (3.6)

— 00
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where v is a given number by (F1), which implies that

. 0 st 0s 2
lim e +2%%g(s + 7,2)|*dxds = 0, V 7 € R, (3.7)
—oo J|z|>k

k—o0

where | - | denotes the absolute value of real number in R. Since v > 1, by (3.6) it
is easy to see that for every 7 € R,

0
/ €375 lg(s + 7, )| ds < 00, ¥ 7 € R. (3.8)
—0o0

For our purpose, let (Q, F,P) be the standard probability space, where Q =
{w € C(R,R) : w(0) = 0}, F is the Borel o-algebra induced by the compact open

topology of 2, and P is the Wiener measure on (2, F). There is a classical group
{0:}1er acting on (Q, F,P) which is defined by

Ow(-) =w(-+1t) —w(t), forallwe, teR.

Then (Q, F, P, {0:}1er) is a parametric dynamical system.

Now we convert the problem (3.2)—(3.4) into a deterministic system with a
random parameter. To this end, we consider the Ornstein-Uhlenbeck equation
dy(0w) + ey(brw)dt = dw(t), and Ornstein-Uhlenbeck process

0
y(w) = —5/ e“Tw(r)dr. (3.9)
From [1, 14, 22], it is known that the random variable |y(w)| is tempered, and there
is a @-invariant set Q C Q of full P measure such that y(6,w) is continuous in ¢ for
every w € €.

Let v(t, 7,w) = 2(t, 7, w) — ey(Orw)u(t, 7,w), we obtain the equivalent system of
(3.2)-(3.4),

du

T + 0u — v = ey(Orw)u, (3.10)
i%} + (= 8)v + A% + (62 + X — da)u + (1 — §)A%u + ey(O,w) A%u + f(z,u)
=g(z,t) — ey(biw)v — e(ey(Ow) — 20)y(brw)u,
(3.11)
with the initial value conditions
u(z, 7, 7) = up(x), v(x, 7, 7) = vo(x), (3.12)

where vo(z) = zo(z) — ey(Orw)up(z), © € R™.

In line with the standard discussion like in [29, 32, 42], we show that the dy-
namics of solutions for (1.1)—(1.2) is the same as that of cocycle ® associated with
(3.10)—(3.12) in H, so from now on, we will only consider the dynamics of solutions
for (3.10)~(3.12) for w € Q and write € as € for brevity.

The well-posedness of (3.10)—(3.12) in H?(R") x L?(R") can be established by
standard methods as in [5, 20, 25, 29, 36], more precisely, if (F1)—(F4) are fulfilled,
then we obtain the following Lemma.
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Lemma 3.1. Put o(t+s,7,0_sw,00) = (u(t+s,7,0_sw,ug), v(t+s,7,0_sw,v0)) ",
where po = (ug,vo) ", and let (F1)~(F4) hold. Then for every w € Q, 7 € R and
o € H(R™), problem (3.10)~(3.12) has a unique (F, B(H?*(R™)) x B(L?(R")))-
measurable solution o(-, T,w, ) € C([1,00), H(R™)) with o(T,T,w, vo) = ¥o,

p(t, T,w, ) € H(R™) being continuous in pg with respect to the usual norm of
H(R™) for each t > 7. Moreover, for every (t,7,w, (ug,v0)) € RT X R x Q x H(R"),
the mapping

O(t, 7, w, (ug,v9)) = (u(t + 7, 7,0 _rw,up),v(t + 7, 7,0 _rw,vp)) (3.13)

generates a continuous cocycle for (3.2)—(3.4) from RT x R x Q x H(R"™) to H(R")
over R and (Q, F,P,{0;}ier), where v is defined by

vt + 7, 7,0_rw, 20) = 2(t+ 7, T,0_rw,v0) — ey(Qrw)u(t + 7,7, 0_rw,up)  (3.14)
with vo = 2o — ey(w)ug. By (3.13)~(3.14), for each t € RT, 7 € R,w € Q, we have

O(t, 7 —t,0_w, (ug,vo)) = (u(r,7 — t,0_;w,up),v(7, 7 — t,0_rw,vp))

3.15
=(u(r,7 —t,0_;w,ug), z(1,7 — t,0_,w, 20) — ey(w)u(r, 7 — t,0_rw, up)). (3.15)
Let § be small enough such that
+A—6a>0, 1-0>0,
and define o appearing in (3.6) by
a—90 & c0
= min{ ——, -, — 3.16
o =minf 2%, 5,20, (3.16)

where ¢y is the positive constant in (F2).
Given a bounded nonempty subset B of H, we write |B|| = sup ||@]|n. Let
$EB

D ={D(r,w) : 7 € R,w € 2} be a family of bounded nonempty subsets of H such
that for every 7 € R,w € Q,

lim e 7%||D(1 — 5,0_.w)|" ™ = 0. (3.17)

S§—00

Let D be the collection of all such families, that is,
D={D={D(r,w): 7 € Ryw € N} : D satisfies (3.17)}. (3.18)

By (3.18), we see D is inclusion-closed.

4. Uniform estimates of solutions

In this subsection, we derive uniform estimates on the solutions of problem (3.10)—
(3.12) defined on R™ when ¢t — oco. These estimates are necessary for proving the
existence of bounded absorbing sets and the asymptotic compactness of the random
dynamical system associated with the equations. In particular, we will show that
the tails of the solutions for large space variables are uniformly small when time is
sufficiently large. We first obtain the estimates in .
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Lemma 4.1. Assume that (F1)-(F4) and (3.6) hold. Let 7 € Riw € Q, and
D ={D(r,w): 7 € R,w € Q} € D. Then there exists T = T(7,w, D) > 0 such that
for all t > T, the solution (u,v)T of problem (3.10)—(3.12) satisfies

(T, 7 —t,0_rw, tpo)“%—t(R")

T *(20—ec—ec _Lw)|?)dr
+/ ef'r (2 ly(6r—rw)|")d ||90(T7T7t79—7w7§00)“%{(R”)d5
- (4.1)
N / el (o—ee—eely(Or—r))r|| Ay(s, 7 — £,0_,w, vp)||%ds
T—1

<R(T,w),

where po = (ug,v0)' € D(1T —t,0_4w) and R(,w) is given by

0
Rirw) = M M [ eliteomeeseeb0odin(dy o(s 7.+ ely(0ue) ),
—o0

(4.2)
where M and ¢ are positive constants depending on A\, o, and §, but independent
of T,w,D and €. In addition, the random variable R has the property:

: ——1-ot _ _
tli)réloe H17'R(T —t,0_4w) = 0.

Proof. Taking the inner product of (3.11) with v in L?(R™), we find that

%%H’UHQ + (a = 8)(v,v) + (A + 6% — da)(u,v) + (1 — ) (A%u,v)
+ (A%0,v) + ey(Orw)(A2u, v) + (f(x,u),v) (4.3)
=(9(z,1),v) — ey(Orw) (v, v) — e(ey(Brw) — 20)y(01w) (u, v).
By (3.10), we have
v du + du — ey(Orw)u. (4.4)

Tt
Then substituting the above v into the third, fourth and last terms on the left-hand
side of (4.3), there holds

d
(1) = (0, T+ 6 — ey(Buo)u) = 3 S ull? + 5]l — cy(Buo)lul?, (4.5)
(8%, 0) = (8%, B4 ey (Bop) = 5 |l +5] Al —ey(60) | Aul?, (46)
(2 0),0) = (F(avu), 5 -+ 6u — (@)
= & [ e+ 56,0 - 2y(0) (0.0 @)
t Jun

It follows from (4.3)—(4.7) that

d
Zr (Il + (0% + A = da) [[u® + (1 = §) | Al + 2/ F(x, u)dr)
R

+ 2(ac — 0)||v]|2+25(82+ X — ) ||ul|?4+26(1—08) | Auw|>+28(f (z,u), u)+2| Av]|?
=2(g,v) — 2ey(fsw)|[v]|* — 2e(ey(Bpw) — 26)y(Bpw) (u, v) — 2ey(fsw) (A%u, v)
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+26(6% + X = da)y(Orw) [[ul® + 26 (1 = 8)y(Ouw) | Aul|? + 2ey(0:w) (f (2, ), U() :
4.8

For the last term on the right-hand side of (4.8), by (F1) and (F3), we have
25y(9tW)(f(I, ’U,)7 U)

< 2601|y(9tw)|/ [ul" da + ely (G161 + ely(Brw)][|u]*
R’VL

< 2ec1c5” [y(Ow)] Rn(F(‘T’ u) + ¢3(2))dz + ely(Ow)l| 1| + €|y (B} |||

< ecly(bw)| | Fa,u)d + ecly(0uw)| + ely(Brw)|[[ull*, (4.9)
Rn

where ¢ depends on ¢, ¢3', |¢s]lr1gn) and [¢1]|r2gn). In line with Young’s
inequality, we find

2(g,v) — 2ey(0:w)||v]|* — 2e(ey(Brw) — 28)y(Osw) (u, v) — 2ey(Oiw)(A?u, v)
+26(6% 4+ X — da)y(0,w)||ul|? + 2e(1 — 8)y(Aw) || Aul|?

<(a = d)llvll* + cllgll® + ecly @) (1 + y @) DIl + [[o]]* + | Aul?) + IA(v||2-)
4.10

Then by (F2), (4.8)-(4.10) we get

d
S (Il + (0% + A = da)[[u® + (1 — &) || Aul|* + 2/ F(x,u)dr)

R™

+(a—é)||v||2+26(52+>\—5a)||u\|2+25(1—6)\|Au||2+2502/ F(z,u)dz+]|Av|?
Rﬂ,
SC+C||Q||2+€C|y(9tW)|/]R F(a, u)dz-+ec(L+[y(0uw)|*) (Lt [|ull* + o]+ ]| Aul[?).
(4.11)
According to (F3) we know F(x,u) + ¢3(x) > 0 for all x € R™ and u € R. This

along with (3.16) implies

e /R(F(x,u) + ¢3(x))dx > 40/ (F(z,u) + ¢3(x))dz,

n

that is,
(502/ F(z,u)dx > 40/ F(z,u)dz 4+ (4o — dcg) ¢3(x)dx. (4.12)
n n Rn
Thus, combining with (4.11) and (4.12), it leads to

d
G+ 6% 4 A= ga)ful® + (1= 8)|Aul +2 [ Fla,u)do)
RTL

+Ao(Joll* + (0% + A = o) [Jull* + (1 — §)[| Aul* + 2/ F(x,u)dz) + || Av|?

R

<+ clglP + ccly(ow)] [ Flau)do
R
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+ec(L+ [y(Ow) )1+ [lull® + [[o]* + [ Aul®) + (dez — do) [ p3()da
RTL

<ec(1+ [y(uw) P)(0ll* + (0% + A = ) [|ull* + (1 = §)[| Au* + 2/ F(z,u)dz)

Rn™

+e(L+ llgll* +ely(Ou) ). (4.13)
Recalling the norm || - ||3 in (3.1), we obtain from (4.13) that

d

G0l +2 [ Plou)dn) + do(llin +2 [ Flauda) + | Auf?

<ec(1+ [y(0w) ") (Il ell3ymn) + 2/Rn F(z,u)dz) + c(1+ [lg]* + ely(Gw)[?). (4.14)

Multiplying (4.14) by elo Qo —ce—ecly(0,)1))dr anq then integrating over (r —t,7)
with ¢ > 0, we get

lo(r, T —t, w, 900)”’2}-[(]11{") + Q/RH F(z,u(r,7 — t,w,ug))dz
bag [ eliomeee 0P (s, 7 — by, )
T—t
+ 2/ F(z,u(s, 7 — t,w, pg))dx)ds
+ /T efrs(Q"*sC*EC‘y(erw)‘Q)dr||AU(8,T —t,w,vp)||%ds
T—t
<el7 T G meemeclyBr)Pir (| o012, +2/]Rn Pz, uo)dz)
b [ el O (L (s, )+ ey P)s. (415)
T—t

Replacing w by #_,w in the above inequality we claim that for every t € RT, 7 ¢
R, and w € Q,

lo(r, 7 = 07w, 00) |3 (@n) + 2 /R F(z,u(t,7 —t,0_rw, up))dz
+20 [t el Gosemecly(@r—rr (s, 7 — 1,0 1w, 00) |3 am)
+2 A F(z,u(s, 7 —t,0_,w,po))dx)ds
+ /T eff(20—50—5C|y(9"**‘“)‘Q)drHAU(S, T —t,0_rw,v)|*ds
T—t
<el7 ! o—eemecly(Orr ) (o012 z/Rn F(x,u)dz)
+e / el @reemey(0r P (1 1 g(s, )| + ely(B—rw) 2)ds
T—t

Sefo—t(go—sc—ec\y(erw)\2)dr(||<p0H?_t(w) +2/ F(z,up)dx)
Rn

0
N / eli Qa—cemedy@ )P (1 4 |lg(s + 7, )% + ely(Baw)[P)ds.  (4.16)
—t
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Since |y(6w)| is stationary and ergodic, we get from (3.9) and the ergodic theorem
(see [14] for details) that

o1 0 ) ) 1
lim [ [y(6w)Pdr = E(y@)) = 5 (4.17)

t—oo t J_, 2a

By (4.17), there exists T7(w) > 0 such that for all ¢t > T} (w),

0
1
ly(0,w)|dr < —t. (4.18)
—t (0%
Let

ao (2y+ 1o ao
(ta) oi+7) 2e(l+7)

e < min{1,

1, (4.19)

where c¢ is the positive number in (4.16). By virtue of (4.18)—(4.19), we have
elo (20—cc—ecly(6-w)[*)dr < €%, for all s < —T;. (4.20)

ly(O:w)]| is tempered, so integer with (3.7) and (4.20) we conclude that the following
integral

0
Ri(r,w) = c / els o—ee—ecly@r)r (| 4 |lg(s 4 7, )| + ely(Buw)P)ds (4.21)

—00

is convergent. Due to D € D, and (ug,vp)' € D(7 — t,0_4w), we infer from (3.5),
(4.20) and (4.21) that, for all t > T7,

—t ee W) I12)dr
eJo "(2o—cc—ecly(0,w)|*)d (||<Po||3r¢(w)+2/ F(z,up)dx)
]R'n.

_ +1
<ce™ " (1 + loll3ymmy + lluollZrz + lluoll7=")

<ce 1+ | D(T = t,0_w)||? + |D(T — t,0_,w)|"T) = 0, ast—oo. (4.22)

Therefore, it follows from (4.16), (4.21) and (4.22) that there exists T2 =T»(r,w, D) >
Ty such that for all ¢t > T,

(e, = 10—, o) ey + 2 [ Flu(r,7 = 1,00, 0))d
+ 20_/ eff(2075075C|y(97v7Tu.i)|2)dr(H(p(s7 T—t, gi‘rwv 900)”3-[(]1{")
T—t

+2 F(x,u(s, 7 —t,0_,w,pp))dz)ds
R"L

+ / effs(%_gc_gclywr"“)‘2)dr|\Av(s, T —t,0_rw,v)|*ds
T—1
Sl + Rl (T7 LU), (423)
which along with (F3) implies that

lo(r, 7 = £, 0, 60) |4y
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r
+ / ej.,f'(207€C*EC|?/(9r—q—w)\2)drH(p(s’ r— t, 9_7-0.7, @0)"3—[(Rn)ds
T—1

+ / " efCremedu0or )P Ag(s, 7 — 1,00, v0) |2
r—t
<c(1+ Ri(1,w)). (4.24)
Next, we prove Ry (7,w) has the following property: for every 7 € R, w € Q,
Jlim e T R (T — t,0_w) = 0. (4.25)

Collecting all (4.18)—(4.21) we get, for every t > T7, 7 € R and w € Q,

R1 (T — t7 Q,tW)

~/ | elitaomeeed O UL st 7 — b, + ely(Ba )P

- / el Bomeemee 0D (L i g s + 7)1 + ely(Bw) ) ds

<o [ darmeat s LW s 4 )+ ely(8) s

<o [ e (1 o ) ely(8) s

<c/ eI =T (1 4 |lg(s + 7, )12 + ely(Bw)[?)ds
.

</ eI I (1 4 |lg(s + 7, )1 + ely(Bow)?)ds

—t
g7/ e 7 (1+ |lg(s + 7, )| + ely(Buw)[*)ds, (4.26)
which along with (3.6) implies (4.25). O

The following estimates are used to prove pullback asymptotic compactness of
solutions.

Lemma 4.2. Assume that (F1)-(F4) and (3.6) hold. Let 7 € R, w € Q, and
D ={D(r,w): 7 € R,w e Q} € D. Then there exists T =T(7,w,D) > 0 such that
for allt > T and s € [—t,0], the solution (u,v) of problem (3.10)—(3.12) satisfies

||<p(7', T —t, 0_-,—(«0, 300)”3-{(]1{") <M + efso(20’—56—60\74(&:,;))‘Q)drfb(7_7 w)7

where po = (ug,vo) " € D(T —t,0_4w), M and ¢ are positive constants independent
of T,w,D and e, and Ro(T,w) is given by (4.29).

Proof. Multiplying (4.14) by elo (2o—ee—ecly(,w)1*)dr anq then integrating over (17—
t, 7+ s) with t > 0 and s € [—t, 0], we deduce

||§0(7— + S, T — t7 9_7—0.), QPO)H’QHOR”) + 2/ F(.’I}, U(T + §,T — t7 9—7"*}’ UO))dx
Rn

<elTid @o—ce—ecly(b—rw)?) (||<POHH rr) + 2 F(z,up)dx)

Rn
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T+s
+ C/ efir&(2afscfec|y(0,.77w)\2)dr(1 + ||g(€7 )H2 + |y(9577w)|2)d§

—t

el @omcemecly @) (o024 / F(x,up)dz)

RTI,
o | elfErmeeme0mNi (1 g(e 47|+ @) (427)
—t

On one hand, for all t > T, s € [—t,0], we have the following estimates for the last
term on the right-hand side of (4.27):

° £ g —E&C—EC w 2 T
/ el Crmceecu@ (L 4 |lg(¢ + 7. )| + ly(Bew) [2)dg

—t

-7
N g—EC—EC w 2 T
—c [ effoee s @D (1 g(6 47| 4 Jy(6ew) )
—t

—|—C/ ef§5(20—50—sc|y(l9rw)|2)dr(1 _|_ ||g(£+7-a)H2 _|_ |y(95W)|2)d£
T

-T
Sceff@afscfec\y(erw)‘2)dr/ 1 efOE(nggcfecly(Orw”?)dr(l + ||g(£ + 7, )||2)d§

—t

7T1
+ gel 020 —co—cely(8,w)|?)dr / el (2o —eemeely(@))dr |y (9. 2dg

—t

0
+ cefso(2afscfac|y(9,.w)|2)dr/ efoﬁ(20750750\1/(0,,.0.1)\Q)dr(l + Hg(é‘ + T, )||2)d£
-7

0
+ Cefso(20—5c—sc|y(0rw)|2)dr / efo{(20—60—66\9(9rw)\Q)dr|y(9£w)|2d£
_Tl
0 2 —T
Scell ComzemeelylOre) Py / 7L+ g€ + 7,12 + y(Bew) [2)de

—t

0
+ Cefso(20750750|y(9,.w)|2)dr/ efoé(20’760756‘3!(0,.0.7)‘2)d’l’(1 + ||g(£ + 7, )||2)d§
-7

0
+ cel? @o—ec—ecly(0,w)[*)dr / efog(20—sc—ec\y(9rw)\z)dr|y<9€w)|2d£
_Tl

<el?@o—cemcely@)P)ir g () (4.28)

where Ry (7,w) is given by

0
Ro(ryw) ¢ / 3761 4 lg(€ + 7 2 + [y(Oew) ?)de

— 00

0
+C/ erE(2U_EC_EC|y(0Tw)‘2)dr(l + ||g(€_~_7_7.)||2 + |y(95w)|2)d§
-Ty
(4.29)

On the other hand, there exists Ty = To(7,w, D) > T} such for all ¢t > Ty

—t —ec—ec w)[?)dr
els (2o —cc—ecly(0:w)|*)d (||900||%(Rn)+2/ F(x,uo)dx)

R™

Sce[j(za—ec—sqywrw)|2)dr€f0*f(2a—sc—ec\y(&w)\Q)dr||D(T —1,0_w) Hv+1
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Seff(%*EC*ECly(@rw)|2)dT32(7-7w)_ (4.30)

It follows from (4.28)-(4.30) that, for all t > Ty, s € [—t,0]

”()O(T + S, T — tv 0—7’“7 @0)”3—[(]1&") + 2/ F(l‘, U(T + $, T — ta 0_7-0.), UO))dx
Rn

SQ(;/ISO(2075c75c\y(&,«w)|2)cl7“]%2(7_7w)7 (431)

which along with (F3) complete the proof. O

Next, we establish uniform smallness of solutions for large space and time vari-
ables. These estimates are important for proving asymptotic compactness of solu-
tions on the unbounded domain R™. For simplicity, we denote Qr = {x € R" :
|z] < k} and R™ \ Q the complement of @y in the sequel.

Lemma 4.3. Assume that (F1)-(F4) and (3.6) hold. Let anyn > 0,7 € R,w €
and D = {D(1,w) : 7 € R,w € Q} € D. Then there exists T = T(1,w,D,n) >0
and K = K(1,w,n) > 1 such that for all t > T, k > K, the solution (u,v) of
problem (3.10)-(3.12) satisfies

(T, 7 =, 0w, 00) I3, mm\01) < 7 (4.32)
where po = (ug,vo)| € D(T —t,0_4w).

Proof. Choose a smooth function p, such that 0 < p <1 for any s € R, and

0, if 0<s| <1,
p(s) = (4.33)
1, if |s|>2,

and there exist positive constants p1, po, ps, pa such that |p'(s)] < p1, [p”(s)] <
2, [ (s)] < ps, |p™(s)] < pa for any s € R.
‘2

Taking the inner product of (3.11) with p( Iiz v in L2(R™), we obtain

1d R [\ o
531 [ U elde + (@ =) [ (i

]Rn
|z [

p(%)uvdz +(1-9) /Rn oS A udx

+(>\+52—6a)/ o

n
j/? |22 J/?

+ / p(ﬁ)vszdx + ey(Orw) /Rn p(ﬁ)vAQde +/ p(%)f(a;,u)vdm

— [ o sguts—ey(ou) [ o oPas—e(eu0w)-25)0(0) [ o5 v
(4.34)

Substituting v = 4% + Su — ey(f;(w)u into the third, fourth and seventh terms on
the left-hand side of (4.34), using Young inequality and the Sobolev interpolation
inequality

Vo]l < <lloll + Csl|Avll, V<> 0, (4.35)

we conclude that

2
x
/ o( |k—|2 Juvdz
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|x|2

=/ —)ul— + ou — ey(frw)u)dx

_ |9C| 1 d o2 B

—/ 2dt + 6u? — ey(O;w)u?)da
1d 2 2 o2

“2dt Jy (|k‘2 )u |2d$+5/ p(|k‘2 )|ul*dz — y(8, w)/ (|k|2 )ul2dz, (4.36)

- RJM” (%)(Em_sy(atw) )i

lzf* d

:/Rn(Au)A( (20 4 bu— ey(Buoyu))da
| |? 422 |z)?

= [ G () + e oG + u= a0

2| , Jaf?\ du 22, du
+2 (T W(dt”u cy(Ou0)u) + p( g )AL + bu — ey(0w)u))de

2u dpox 4u x
2o [ e >|<Au>v|dxf/ L) () (Vo) lda
k<z<V2k k<z<V2k

1d [ jaf? ) af?
331 [ aaPde 4 [ o o) A — o vow) [ ol A

- <%)\< wilde— [ 22 @ a5 5% [ o s

|$| |=[? 2
+94 ) Au2dr — ey(Oiw) p( 12 )| Aul*dx
R‘IL

iz +4,u 4\[u 1d T
> — SN P 4 o) = S a0l + 5 [ o A
+94 \Au|2dx ey(Orw) (@NA 1%d
W Rnp 12 ul“dx

u1+4uz 4f V2
> ——=—([|Au|?

2
X
lol2) = 22 Al +-Co Aol ——/ 0y Aupan

+5/ A7) Aupaa - ey(ﬂtw)/ p(%)mumx
R7Z

M1+4M2 2\[M1
> B e o)) — 22 A 4 202 + 202 A
s ) Audr s / p<—>|Au|2dx—ey<etw> / () A
2di 2 PR PR ’
(4.37)
and
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:/Rn P(%)f(ﬂﬁ )(%t + 6u — ey(Ow)u)dz

AP o2 2
~ i PG Pawdats [ T e wude—ey(0) | o) pewpude
(4.38)

Exploiting (4.34) and (4.36)-(4.38) we get

il (B 02+ (62 + A= 80) uf? + (1= 8)|Auf? + 2F ()

+/n (‘k|2 )(2(a—08)|v]*+28(8% + X —ba) [u* +26(1—6) | Au|* +26 f (2, u)u) )dx

Q/Rn P (|k|2)9“d$ — 2(ey(Ow) — 20)y(Ouw) / P(|k|22)wdx

n

—25y(9tw)/ (l i )|v\2dx+25(1—5)y(9tw)/ (| 2f* )| Aul?dx
|z

+2¢(6% + X — da)y(yw) / (%)|u| dx + 2ey(6, w)/ p(%)f(z,u)udx

R'Vl
2
—2€y(9tw)/ p(%)vA2udx—2/ (| il YwA2vdx

w14 Q\fm

k2

+2(1-9) (1 Aul*+[lv]*)+2(1-6) (1Au]?+26%[[o]|*+2C2[| Av]|?).

(4.39)
We now estimate the nonlinear terms of (4.39). First,using (F2) we have

j/? j? |

/n P(ﬁ)f(m,u)udm >y /Rn P(F)F(x,u)dx—f—/ p(F

Rn

Yoo(x)dx.  (4.40)

According to (F1) and (F3), it follows that

T 2
22y(00s) | o0 par wpuda

|z

<eey0) | () Pl + ccy(0) [ o) lufde

/?

+eay0w) | o) Ionf? + foul)da. (441)

For the seventh and eighth terms on the right-hand side of (4.39), using Young
inequality and (4.35) we conclude that

jz?

vA2udz

~2ey(0) [ o)

jz/?

= — 2ey(fw) /n (Au)A(p(ﬁ)v)dx

2, |x? 422, |z

—— 2y(6w) | (Qu)(o () + e (e
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el , ol o
+2- 200 () Vo pl ) Av)da
2u dpo?
<2lelly (01 / 4 22 Auyolda
k<z<V2k

+/k<z<fk 4M1x|(Au)(Vv)|dx+/ (| af® )| Al Ao|dz)
4V2
k

[(Aw)(Vv)|dz

<Aellyow)] [ (LD Buelde +2Aell0)] [

+ 2)eJy( Htw|/ ‘“””' )| Aul|Av|da

Sw\guy(eﬁwnﬂmuuuan?) BV e 1y 6 | A V]
S s SISy L ST

BB ) (8l + 012) + 22 ey o) Aul el + C A
+lle? [ oA [ p<%>mv|2dx

IS ) (8l + 012) + 22 ey Bl (Al + 262 o

>~ L2
2 A 2 2 @ A 2 @ A 2
+ 20| Av]7) + [elly(6rw)] A (7)1 Aul de + A p(Gz)|Avf de,  (442)

and

2\ 42® , |2 2IxI/I%I

= / o
= [ @G ED + 3 Bl ve 2y w0 o svya

2 4 2 4
< / (2 4 22T N)olda + / M| o) (Vo) lda
k<x<\fk k k k<z<fk

. || 2
( 5 )|Av[“dx
<[ 7L<M>\<AU>UW+ I L T L ST

k2

RTL
Skt Ap 4\fu |z[?
< (A0 + o) + == AVl = [ p(55) | Avfde

Rn

Nl + 4po 4\/>/J1 |x|2
< (A + loll?) + |8vll(slvll + Cellavl) = | ()l Avde
1+4M2 2\f,u1

(1av]* + [lv]?) + (1Aav]* + 26 [[v]|* + 2C2|| Av]?)

k?
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|z[? 2
- L. o( 12 )| Av|“dz. (4.43)

Controlling other terms of (4.39) by Young’s inequality, and together with (4.39)—
(4.43) we claim

2
% (|z|2 )([o> + (6% + X = da)[u* + (1 — 8)|Aul® + 2F (z,u))dz

—|—/ p(%)((a—d)|v|2—|—25(62+/\—6a)\u|2+25(1—5)\Au|2+2562F(x,u))da:

<clllo0)| [ o) Fe e+ dell@e)] [ o210 + losha
C | ‘ T+ C w | | u2 U2 v
+ /Rn< (ol +1912) e+ clel (1+ y(610)| )/ () (uf? + A2 + o2
(211 + 8pz)

s ((1—6+|a|y(etwn)||Au||2+(2—6+|a||y<etw>|>||v||2+|Av2)
+ 74\/,3“1 ((1 — 8+ |elly(Bsw)]) [ Aul® + 262 (2 = 6 + [elly(w)]) [0
© (2022~ 5+ [elly(B)]) + 1) ||Av||2),

which along with (4.12) implies

d
@ (|]x€\2 )(|v|2+(52+>\f§a)|u|2+(175)|Au|2+2F(w,u))dm+(2070\5\

_C'E”y(at“)'2>/ () (o4 (%A =00) uf? +(1-)| A +2 ()
Sc/Rnp(liL)(¢2|+|¢3|+|g|2)d:c+c|a|(1+y(9tw)2)/ P(%)(\%\Q—i-\gbgbdx

RTL
201 +8u
+ I 1l AP+ (2= 5+l ) ol +1801?

+ 4“,3’“ ((1 =0+ [elly(@) ) 1 Au]* +26% (2 = 8 + ey (Breo) ) o]
+ (2C2(2 = 6 + |el[y(Bew)]) + 1)||Av||2>. (4.44)

Since ¢; € L2(R™) and ¢o, ¢3 € LY(R™), given i > 0, there exists K1 = K;(n) > 1
such that for all £ > K7,

|z

P( )(|¢1\2+\¢2|+|¢3D

n

‘C/,|>k (‘I' (9a]? + |d2] + ) da

_—

<c [ (0P +loal +lsDds <o (1.49
x| >k
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By (4.44) and (4.45), there exists Ko = K3(n) > K; such that for all k > K,
d |z 2 2 2 2
pr p( 12 Y(Jv|* + (0% + X = da)|u|* + (1 — 0)|Aul|* + 2F (x,u))dx
RTL

T 2
+(2aac5cy(9tw)2)/wp(|k|2)(|v|2+(52+A5a)|u|2+(15)|Au|2+2F(x,u)>dx

Ssn(1+|y(9tw)l2)+6/ll lg(¢, 2)[*dz +n (1 + [|Aul® + [|Av[* + [|v]|).  (4.46)
x|>k

Let
X(t) = v + (6% + X = da)|ul* + (1 — 5)|Aul?.

We obtain from (4.46) that

d J2*

. o( 2 WX () + 2F (z,u))dx

e 2 |[*
+ (20 —ce—zely(0w)®) | p() (X0 + 2P (w u))dr

<677(1+|y(9tw)|2)+6/| klg(t,x)lzdfﬂr??(1+IIAu|\2+HAvH2+HUII2)~ (4.47)
ol>

Integrating (4.47) over (1 —t,7) for t € RT and 7 € R, we obtain for all k£ > Ko,

2
T
/Rn p(lk—L)(X(T, T —t,w, Xo) + 2F(x,u(r, T — t,w,ug)))dz

_t 2
<el” t(2o_gc_ecly(ew)‘2)dr/R P(%)(Xo + 2F(x,up(x)))dx

+ 677/ eff(2075c750|y(97,w)|2)dr(1 + |y(03w)|2)ds
T—t
+ C/T eff(2a—ac—ec|y(9rw)\2)dr/ |g(s, x)‘deds
T—t |z| >k

+1 / el reemeedu@ D (1 4 || Au(s, 7 — t,w,uo)
T—t
+ |Av(s, 7 — t,w,v0)||? + |Jv(s, T — t,w,v0)||*)ds. (4.48)

Replacing w by 0_,w in (4.48) we deduce, for every t e RT, 7 €e R,w € Q and k >
K27

2
x
/ p(lk—L)(X(T, T—t,0_rw, Xo) + 2F (z,u(r, 7 — t,0_,w,up)))dz

<el? (2"_“_“"”(9“*“)‘2)“/ P(%)(Xo+2F($7UO(£E)))dx

_’_577/ eff(QU—Ec—sc\y(G,,.,.rw)|2)dr(1 + |y(9577w)|2)ds
T—t

+c/ effs(Za_sc_gcly(gr‘Tw)‘2)dr/ |g(s, ) dxds
T—t |z|>k

+ n/ eff(2cffscfec|y(9,.77w)‘2)dr(1 + ||Au(s, T —t0_,w, UO)”Q
T—1
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+ |Av(s, T — t,9_7w,vo)||2 + |lv(s, T —t, H_Tw,v0)||2)ds

. 5
Scefo (20 —ec—ec|y(0,rw)| MT(”Q"OH%(R"\Q,C) + ||u0||§{2 + HUOH';I-zl)

0
+ 577/ efos(2o—ec—ac|y(9rw)|2)dr(l + |y(95w)\2)ds
—t
0 2
n C/ efds(Zo—sc—ec\y(QTw)\ Ydr / |g(s + 7, $)|2d1‘d8
—t |x| >k
o
+ n/ ef(f (2afscfec\y(0,~w)|2)drd3
—t

by [ el ammemean O A, 7~ 6o, )
T—1

+ [[Av(s, T —t,0_rw,v0)||* + |[v(s, T —t,0_rw,vo)||)ds. (4.49)

Taking advantage of (4.20), for (ug,vo)" € D(1 —t,0_,w), we have

lim sup celo
t—o00

207507€c|y(0rw)|2)d7‘( 'Y+1)

leollyamqu) + luollze + lluoll

<limsup ce” (1 + ||D(T — t,0_,w)||" ")

t—o0

<0

)

which shows that there exists a positive T3 = T5(7,w, D, n) such that for all ¢ > T3,
~t(20—ecc—cc W 2)dr
celo " Gomeemeey Gl (|lgg |3, g gy + lluollFre + lluoll 5T < 7. (4.50)
For the third term on the right-hand side of (4.49), by (4.20) we get

0
/ efos(2a'fscfsc\y(49rw)|2)dr / |g(s 4T, ZZ?)|2d£CdS

|z >k

=T
:/ ?”%*“MW”W“/ lg(s + 7, 2)|*dads
- x>k

— 00

0
+/ efo'g(Qo—ac—sc|y(9rw)\z)dr/ |g(s+7,x)|2dacds
- |z|>k

T
-1 0
< / e’ / lg(s + 7, 2)*dxds + e / e’® / lg(s + 7, 2)|*dxds,
—o0 o] >k -7 o] >k
(4.51)

where c5 = (0 +ec+ec max  y?(0,w))Ty. Using (4.51) we get
T, <r<0

0
/ efos(20—5c—sc|y(6rw)|2)dr / |g(8 + 7, l‘)|2d$d8
- |k

oo
0 1
Sec5/ 61"5/ lg(s + 7, x)|*dzds,
—00 |z| >k

which along with (3.8) implies that there exists K3 = Ks(7,1) > K2 such for all
k> K3

0 g
c/ efg(%facfgcly(erw)‘z’)dr/ lg(s + 7, ) Pdads < . (4.52)
|z >k

— 00
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On the other hand, due to (4.20), we find the following integral is convergent:

0
Ra(7,w) = / i (Go—cemecly(@))dr (1 4 |y 0)[2)ds. (4.53)
Collecting all (4.49)-(4.50), (4.52)-(4.53) and Lemma 4.1, we achieve, for all ¢ >
T5,k > K,

2
/ P(%)(X(T, T —t,0_rw, Xo) + 2F (2, u(r, 7 — t,0_rw,u)))dzx
R'n,

<3n(1+ R(r,w) + R3(7,w)), (4.54)

where R(7,w) and Rs(7,w) are given by (4.2) and (4.53), respectively. It follows
from (F3) and (4.54) that there exists K4y = K4(7,m) > K3 such that for all £ >
Kyt > Ts,

”30(7—7 T—1,0_;w, 500)||’2H(R"\Qk) < 477(1 + R(Tv w) + R3(7—7 w))

Then we complete the proof. O

We now derive uniform estimates of solutions in bounded domains. These es-

timates will be used to establish pullback asymptotic compactness. Let p =1 —p
with p given by (4.33). Fix k > 1, and set

~ =\ ‘ZlZ

u(t, 7,w,ug) = pl 7z )ult, 7,w, ug),

(b7 5) = Ut ) W)

~ ~ |z

i)\(tv T, W, UO) = p(?)v(t’ T, W, UO)'

By (3.10)—(3.12) we find that @ and v satisfy the following system in Qo = {x €
R™ : |z| < 2k}:
du . ~
pm +0u — v = ey(brw)u, (4.56)
% + (= 8)0+ A0+ (0% + A — da)u + (1 — §) AU + ey(fyw) A% + pf (z,u)
=pg—ey(0:w)0—e(cy(0w) —20)y(Arw)U+4AV IV +6APAV+AVIAVY+vA
+4(1 — §)AVHVu + 6(1 — §) ApAu + 4(1 — §)VPAVu + (1 — §)uA®p
+ 4ey(0:w) AV PV u + bey(0:w) ApAu + dey(0:w) VAV U + ey (Orw)uA?p,
(4.57)

with boundary conditions
u=0v=0 for |z|=2k. (4.58)

Let {e,}5%,; be an orthonormal basis of L?(Qs) such that AZe, = \,e, with
boundary condition (4.58) in Q. Given n, let X,, = span{ey,---,e,} and P, :
L?(Qa1) — X, be the projection operator.

Lemma 4.4. Assume that (F1)-(F4) and (3.6) hold. Let anyn > 0,7 € R,w € 2
and D = {D(1,w) : 7 € R,w € Q} € D. Then there exists T = T(t,w,D,n) > 0,
K = K(1,w,n) > 1 and N = N(1,w,n) > 1 such that for allt > T, k > K and
n > N, the solution (u,v) of problem (4.56)—(4.58) satisfies

(T = P)@(r, 7 = t,0r0, 30) sy < 7
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where @(1,7 — t,0_,w,00) = (u(r,7 — t,0_,w,up),0(T,7 — t,0_,w,0)), Po =
P(‘ = )0, Po = (U07'UO)T € D(t —t,0_w).

Proof. Let U, 1 = Pu, Uno = (I—P,)u, Uy1 = PV, Up2= (I—PF,)v. Applying
I — P, to (4.56), we obtain

Un2 = dt) + 6”7172 - Ey(etw)a’n,Q' (459)
Then applying I — P, to (4.57) and taking the inner product of the resulting
equation with 9,  in L?(Q2x), we have

1d A —~ ~
5 g 10n2ll” + (= ) [0 2* + |48 [|* + (6% + A = ) (i 2, Pn.2)

+ (1= 0)(A%Up,2,Un,2) + ey (0:0) (A% 2, Un 2) + (B (2, 1), Tp )

=(pg + 4AVHVv + 6ApAv + AVPAVY + vA%p 4 4(1 — §)AVpVu

+6(1 — 0)ApAu + 4(1 — §)VPAVu + (1 — §)uA?p + 4ey(0,w) AVHVu

+ 6ey(0yw) ApAu + 4ey(0,0) VPAV U + ey (0iw)ul?p, By, 2)

— ey (0:)|[Bn 2> — £(ey(010) — 20)y(0,0) (@n,2, Br.2). (4.60)
Using (4.59) we get from (4.59)—(4.60) that

d I ~
2 l> + (82 4+ X = 60) [n 1> + (1 = 8)]| ATn2]?)

+2( = 8)|[Tn,2]|* + 26(8% + A = 6a)|[n,2]* + 20(1 — ) || Ay, 2|
=2(4AVpVv + 6ApAv 4+ AVPAVY + vA%p + 4(1 — §)AVHVu

+6(1 — 0)ApAu + 4(1 — §)VpAVuU + (1 — §)uA?p + dey(0;w) AVHVu

+ 65y (0;w) ApAu + dey(0;w) VDAV Y + ey (0,w)uA?p, Ty, 2)

+2(0g, Un 2) — 26y(0:w) (AU, 2, T, 2) — 2ey(0:0) [T 22

— 2e(ey(Orw) — 20)y(0,w) (Un,2, Un.2) + 26(8° + X — da)y(0;w)||tn,

+2e(1 = 8)y(0uw) | AT 2|12 = 2(| AT 2|* = 2(5f (2, 1), Tn 2).- (4.61)

Now we estimate each term one by one for the right-hand side of (4.61).

|z ~

)V+6A(||)A+4V(

(AVA(T t ) ave+oa?5(20) 5,.0)
—(avo- (25 2 S5 ) 4o (2D
LGSR O SR L SR L
3 0 ) 5,0
OO )y o 5,00+ 2D g,
& BV A 6T, + (3“2+2if3+16”4)|\v||-
18(48415 + 64713)? 192,11 9

24 2IAG |2
—)‘n-‘rl( (a_(s)k(s )HA H ||AU7172|| + (04—5)
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(12015 + 9613 + 64414)? (1201 + 48p12)? (a—0), -
o] + [Av]|?) + [, 2|

X kS kA 12
(4.62)
and
3 |z[? |z[? |z[? o |2]?
(1-0)(AVA( ) - Vu+6Ap (k2 ) AutaAVH(S ) - AVu+ud’p (l€2 ), 0n.2)
12)z] ., [z 8P, |z 2 _, |o?
=(1-96)(4Vu- (?P H(ﬁ) T P m(ﬁ)) + 6Au - (pﬂ /(TT)
42 __, |z)? 8|z| | |? 12, |x|? 482% __,, |z|?
+Fﬂ (S5 2 ) + 12 —5AVu-p (75 2 )+U(FP ”(ﬁ)"’ 76 Pm(ﬁ)
16z% x
+ E ////(|k‘2 )) UnZ)
16f1 8) (3o +4pu 12(1—08) (1 +4p N
IOVt 4s) \ o - o+ 2D
8v2(1—-8)u 1—6)(3ug+24pu3+164 N
T R B e Y
18(48u2 + 64pu3)? 192#1 2 N 9(1—9)?
<(1—6)2\,2 + | Au fIIAv : NP
( +1( ( _5) )| || (Oé—(;)
(1242 + 96113 + 64414)? 2 (12M1+48M2) (@=08), - |2
( 18 [[ull” + i | Au]?) + 5 onzl
(4.63)
and
2 2 2 2
ey(0uw) (AAVD ('“”' )-Vu+6A (‘”E| )- Au+4Vp (‘”“"' )-AVu-tu AQA(‘?2 ), Tn.2)
22|, |2 8Ix\3A || 2 _, |z?
=ey(w)(4Vu - ( 7 P”(ﬁ)*‘ 6 PW(?)H'GAU'(EP/(F)
422, |z|? 8|a:| ||? 12_,, |=*, 4822 _,, |z|?
+ Ja P ”(ﬁ)) —5 AVu-p (=5 2 )—&—u(ﬁp N(ﬁ) 6 P W(ﬁ)
162* x)?
Nl 5 ////(‘k|2 )) Ty, 2)
16v/2|ey(0sw) | (3uz+4p -1 N 12|ey(Osw)| (1 +41 ~
IOVEVODIC ) )T ) o o)+ HLON )y
8v/2|ey (0;w) | 4ley(0,w)|(Bpa+24us+16u N
W A TN I L ,14 20 - 5o
~1 18(48u2 + 64p13)° 192#1 2 Liag e 9I(ey(fuw))?
<(cy(6,w))%A Aul® + = || AT, AN AUt
<(ey(Bew))" A, 21 ( TR )[Aul]” + H Unpll” + )
129 + 963 + 644 1247 + 48u a—90), .
(U2t ¥ OO0 + O o MIIA 1B+ =D, .
k k4 1
(4.64)

By Young’s inequality again, we have
— 2ey(0;w) (AT, 2, U 2) — 26y (0:w) [T 2]|* — 2e(ey(Brw) — 26)y(0:w) (Un 2, Vn.2)
+2¢(6% + X = da)y(bw) @ (1= 8)y(0:w)[| ATy o

1. .
)+ 514721
(4.65)

<ec(1+|y(0uw) ) ([n 2| + (82 + A= 500) [ 2|* + (1)
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PN o 1 - N
2(09,0n.2) = 2((I = Pa)pg, On2) < 5 (e = 8)[[On.2ll* + coll(L — Pa)(Bg)|*. (4.66)

[\)

It follows from (3.16) and (4.61)—(4.66) that

30l + (5% 4 X = 50) [T 2l + (1~ )| AT )
02l + (5 + A~ 0T + (1~ 8)| AT o)
+olnal? + o (1 = 8)[ATnal? +0(5% + A~ 0) .ol
<ce(1+ y(0) ) (I I + (6% + A — o) ol + (1 — 6) | A )
18(48y13 + 64y13)* 192ﬂ1

ok (R I Av]? + (1 - )2 Au]?

18 12p9 + 96413 + 64/14)?
+<ay<etw>>2nAun2>+m<<1—6>2+<sy<9w>>2><‘ R
(1241 + 4812)? 18 (12p9 4 96p3 + 64p4)* 5 1

g LRl p ey 4 28 . ol — 2145, o]
12447 + 48 —~ ~ ~
b IS N u2) (- PRI — 28 ) 2). (46)

Next we estimate the nonlinear terms in (4.67). Let § = ”(7_1)) thanks to 1 <~ <

n44 " we find that 0 < 6 < 1. Then by (F1) and interpolation inequalities, we get

n—4?

j/?

|72( ( k2 )f(.'ﬂ,u),i)\mgﬂ
- SO N J _|x? 5l
<cr | Pl fonalde + | p(55)é1(2)][0n,2]dz
Ro R\)

sCsnuw 11,
+ A2l
chxnilnun AT 2] +Ani1u¢1||umn,2||
<A;i||mn 2||(09/\2+1||UHH2 + [l

*IIAvn 1 . 2 Mot (eodd lullys + llon)?. (4.68)

Combining with (4.67)—(4.68), we obtain

d, - . .
21 (IPnall + (6% + A = 8a) [ o||* + (1 = 8) | Atin 2]*)

+T0([[On2])* + (6% + A = 6a)[[Gn2l* + (1 = 0) | Al o)
<ec(1+ y(0w)*) (1Tn 2]l + (6% + X = 6a) [tn2]|* + (1 = 6)[| Alip,2|*)
18(48us + 64p3)*  192u2

2 Av|? + (1 = 6)?||Aul?
o (el S (a0l + (1 - 8l
18 1240 +9613+64114)?
(002 [ul?) o (1-0)+ (ey(0)?) (L2 OO o
1241 + 484 18 (12p9 + 963 + 64414)>
b L I8 2y 1S (20 900 4 Ol
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1241 + 48u o
20 880y o)l (1) ) 2+ 53 s eon ol )

k4
5) and A, — oo. Therefore, given n > 0, there exist

Note that 1 <y < %(n >
Ni(n) > 1 and K7 = K1(n) > 1 such for all n > Ny and k > K,
d ~ 2 2 = 2 ” 2
2 2™ + (07 + A = da)l[in 2| + (1 = 8)[| Atn2]I%)
+ (70 — e — ecly(0uw) ) ([On2]|* + (82 + A = 60) [T 2[* + (1 = 6)[| Al 2]|%)
<1+ [[ull o gny) + csll (T = Po)(P9)]1*. (4.69)
Recalling the norm || - |3 in (3.1), from (4.69) we conclude that
d —~ 2 2 -~ 2
dt(”sﬁn 2[|34(Qar)) + (To — e — ecly(0:w) ) ([Pn.2 13 (Qar))
(4.70)

<L+ [[ull 32 @) + esll (I = Pa)(P9) 1%

Integrating (4.70) over (7 —t,7) with ¢ > 0, we get for all n > Ny and k > K,

||§5n 2(,7_ T — t w Q/O\n 2 0)||’2H(Q2k)

<cypels(Tomeeecly(@rw) )dr\|<5n,2,o||${(sz)

+ n/ eff(hrfscfedy(erw)\Q)dr(l + ||U(S, T — t, w, UO)H?Q(R"))dS
T—t

beg [ e Tomeme IR (1 P ) s) P
T—1

Replacing w by 6_,w in the above inequality we obtain, for every t € RT, 7 ¢

R, and w € O, n > Ny and k > K1,
12 (7,7 = £,0_70, Bn.2.0) 1 34(0ar)

T—t
ScloefT (To—ec—ec|y(6,—

r
+ ,,7/ eff(7afecfac|y(9r,7.w)|2)drd5
T—t

+ 77/ efj(7a—sc—6c|y(9“7w)|2)d7,”u(s’ T—1t,0_rw, UO)HHz(Rn)d
T—t

+c6/ el (Tr=eemeclyOr—c))n|(T — P,)(7g)(s)|2ds
T—t

<C10€f“ (To—ec—ec|y (6, W)‘ drH@n,Q,OH%{(Q%)

0
+ 77/ efos(70—sc—ec|y(0rw)|2)drd8
—t

0
+ 77/ efos(7a—sc—sc|y(6‘rw)|2)drHu(s +7,7

—t

— t,G_Tw,uo)HZE(Rn)ds

s 2 ~
+eg [ eloTomsemedu@ R (1 — P,)(pg) (s + 7)||ds. (4.71)

—t
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We estimate each term on the right-hand side of (4.71). For the first term, there
exists Th = T1(7,w, D,n) > 0 such that for all ¢ > T,

cwefo—t(7afscfsc\y((9rw)|2)dr |Bn.2.0 ||’2H(Q2k) <. (4.72)

For the second term on the right-hand side of (4.71), by Lemma 4.2 we have

ds

0
n / elo (Tor=eemecly@r )|y (s 4 7.7 — £,0_rw,u0) | Fa gy
—t

0
<nen efns(7”*€C*€C|y(ﬂrw)|2)drd8
—t

0
T+ R (r,w) | els (T=2Mot(=Dect(y=Decly(,0)*)dr g
—t

0
STICM/ efosUU?EC?ECIy(erw)F)deS +ne R (1,w), (4.73)
—t

where R(7,w) is given by Lemma 4.2.
For the last term of (4.71). Exploiting (3.6) and (4.20), we can easily get the
following integral is convergent,

0
/ el T =eeeclv® || (pg) (s + 7, )| Pds < oo,
—oo
and hence by the Lebesgue dominated convergence theorem, we obtain

0
lim [ el (Tomecemecly@)Ddr| (1 — p)(pg) (s + 7)||%ds = 0.

n—oo [_

This shows that there exists No = Na(7,w,n) > Ny such for all n > N,

0
s 2 ~
/ efo (To—eemecly@)Ddr|| (1 — P,)(5g) (s + 7)|[2ds < n. (4.74)

—0o0

It follows from (4.71)—(4.74) that, for every 7 € Ryw € Q,t > T1,n > Ny and
k> K,
B2 (T, T = £, 0700, B.2.0) 13400y < M€13(1 + Ra(7,w)),

where R4(7,w) is a positive constant depending only on 7 and w. O

5. Random attractors

In this section, we shall prove the existence of a D-pullback attractor for the random
system (3.10)—(3.12) by using Proposition 2.1. First we apply the lemmas shown in
Section 4 to prove pullback asymptotic compactness of solutions of (3.10)—(3.12) in
H?(R") x L*(R").

Lemma 5.1. Assume that (F1)-(F4) and (3.6) hold. Then for all T € R and
w € Q, the solution sequence of (3.10)—(3.12), {(u(r, 7 — tm,0—rw, uo.m), v(T, 7 —
tmy 07w, V0.m) }55_y, has a convergent subsequence in H?(R™) x L*(R™) whenever
tr, — 00 and (Uo,m, Vo,m) € D(T — tim, 0y, w) with D € D.
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Proof. According to Lemma 4.1 and the assumption t,, — oo, we see that, for
every 7 € R and w € §, there exists m; = mq(7,w, D) > 0 such for all m > m,,

”90(7—7 T —tm, 07w, <»OOJTL)||’2;'-L(]R") <R (7—7 w)' (5‘1)

In line with Lemma 4.3 , we find that for every n > 0, there exist kg = ko(7,w,n) > 1
and mg = ma(7,w, D,n) > m; and such that for all m > ma,

||<p(7', T —tm, 07w, (PO,m)H’QH(]R”\QkO) <. (5‘2)

Let w and v be the functions defined by (4.55). Then by Lemma 4.4, there are
k1 = ki(1,w,n) > ko, ms = ms(7,w,D,n) > my and ny = ny(7,w,n) > 1 such for
all m > mg,

”(I - Pnl)@(’]—? T —tm, Q,TUJ, @0,771)”’2}-[((;)%1) < 1. (53)
On the other hand, due to (5.1) we obtain for all m > ms,
1G(T, T = tins 07w, 00.m) I3 ny < c1aR1 (T, W),

which along with (5.3) implies the precompactness of {(a(7,7 — ty,0_rw),v(1, 7 —

tm,0_rw)} in H?(Qax,) X L?(Qax, ) based on the abstract result introduced in [34].

Therefore, the sequence {(u(7, T — tym, 0_rw, Uo,m), V(T, T — tm, 0_rw,vo.m)} is pre-
2

compact in H?(Q,) x L*(Q,) due to (4.55) and the fact that ﬁ(li—lz) =1 for

|z] < 1. So together with (5.2) we get the precompactness of the sequence in

H%(R") x L2(R"). O

Theorem 5.1. Assume that (F1)-(F4) and (3.6) hold. Then the cocycle ® gener-
ated by the stochastic plate equation problem (3.10)—(3.12) has a unique D-pullback
attractor A € D in H*(R™) x L?(R™) whose structure is characterized by Proposition
2.1.

Proof. Note that ® is D-pullback asymptotically compact in H%(R™) x L?*(R"™)
by Lemma 5.1 , and has a closed measurable D-pullback absorbing set by Lemma
4.1 . Therefore, the existence and uniqueness of D-pullback attractor of & follows
from Proposition 2.1 immediately. O

6. Upper semicontinuity of pullback attractors

In this section, we will consider the upper semicontinuity of pullback attractors
for the stochastic plate equation (3.10)—(3.12) on R™. As the critical exponent of
flx,u) is Z—fj, we can’t derive the upper semicontinuity of pullback attractors, so
we must supplement the following additional condition (this condition has nothing

to do with the proof of pullback attractors):
|fi(z,u)] <1, VzeR" uweR, (6.1)

where the constant | > 0. First, we present a criteria concerning the upper semi-
continuity of non-autonomous random attractors with respect to a parameter in
[38].
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Theorem 6.1. Let (X,| - ||x) be a separable Banach space, ®. be a continuous
cocycle on X over R and (0, F,P,{0:}ter). Suppose that

(i) ®. has a closed measurable random absorbing set K. = {K.(t,w) : 7 € R,w € 2}
in D(X) and a unique random attractor A, = {A:(1,w) : 7 € R,w € Q} in D(X).

(i) There exists a map ¢ : R — R such that for each 7 € R,w € Q, Ko(7) = {u €
X |lu|lx <<(7)} and

limsup || K. (7,w)||x = limsup limsup |z||x < <(7). (6.2)
e—0 E— ajEKa(T,w)

(#i) There exists €9 > 0, such that for every T € R and w € Q,

U A (T,w) is precompact in X.

le|<eo

(iv) Fort > 0,7 € R,w € Q,e, — 0 when n — 00, and Tp,x9 € X with x, — x¢
when n — oo, it holds

lim &, (¢, 7,w)x, = Po(t, T)xo. (6.3)
n—oo
Then for 7 € Ryw € Q,
dy(Ac(T,w), Ao(T)) =  sup inf |lu—v||—=0, ase—0. (6.4)
u€A, (T,w) vEAo(T)

Next, we will use Theorem 6.1 to prove the upper semicontinuity of random
attractors A (7,w) when ¢ — 0. To indicate the dependence of solutions on ¢,
we will write the solutions of problem (3.10)-(3.12) as (u(®), v()), that is, ¢° =
(u(®), vENT satisfies

(e)
dZt +0u® — 0l = ey (G)ul®,
v 2 2 2
T (a = 6)v'® + A% 4+ (62 + X = da)u'® + (1 — §) A%
+ Ey(etw)AQU(E) + f(=, U(E)) =9 5y(9tw)v(a) — e(ey(w) — 25)9(9tw)u(8)7
u®(z,7,7) = uég)(ac), v (z,7,7) = v((f) (x).

(6.5)

When € = 0, the random dynamical system (6.5) reduces to a deterministic dynam-
ical system:

du(©

+ 0u® — 2 =0,

dv(©®
1c)lt (o= 8)v D+ A% 4 (62 + X — 6a)u P +(1-8) A% + f (2, uD) =g,
WO, =uf’@),  vOn) = v (@) = u” (@) + ouy (2).

(6.6)
Accordingly, by virtue of the above similar discussion step by step and together
with Lemma 5.1, the deterministic non-autonomous system &, generated by (6.6)
is readily verified to admit a unique Do (H (R™))-pullback attractor Ag(7) if g(z, ) €
L? (R,L?(R™)), and a, X are positive constants.

loc
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Theorem 6.2. Assume that (F1)-(F4) and (3.6) hold. Then the cocycle ®. gen-
erated by (3.10)—(3.12) has a unique D-pullback attractor {A.(T,w)}weq in H(R™).
Moreover, the family of random attractors {A:}eso is upper semicontinuous.

Proof. (i) From Lemma 4.1 and Theorem 5.1, we know that ®. has a closed
measurable random absorbing set E. = {E.(T,w) : T € R,w € Q} € D(H(R")),
where E.(1,w) = {¢©) € H(R") : Hcp(E)HiL(R") < R(e,7,w)}, and a unique random
attractor A, = {A(1,w) : 7 € Riw € Q} € D(H(R")), for each 7 € R,w € Q,
A (T,w) C E.(1,w).

(ii) Given € < 1, by (4.2), we have

R(é:’ T’ w) S R(]"T’ w) < OO?

and
limsup R(e, 7,w) < R(1, T,w).

e—0

So, for every 7 € R,w € Q,

limsup [ E.(7,w)|| = limsup sup [|z][y@n) < R (1,7,w). (6.7)
e—0 e—0 QTGEE(T,OJ)

Let By (7,w) = {¢®) € H(R") : ||g0(5)||§_£(R,,L < R(1,7,w)}, then

U Ac(rw) € | E<(r,w) € Ei(r,w). (6.8)

e<1 e<1

(iii) Given € < 1. Let us prove the precompactness of |J A.(7,w) for every
e<1

7 € R,w € Q. For one thing, by (6.8), Lemma 4.3 and the invariance of A.(7,w),

for every n > 0,e > 0,7 € R,w € Q, there exist T = T(7,w, E1,e,n) > 0, K =

K(7,w,e,m) > 1, such that for all t > T, k > K, the solution (%) of (6.5) satisfies

sup ||<p(5 (7' T—1,0_rw, goo

e | Ac(rw)
e<1

HH(R"\Qk) T

For another thing, by (6.8)we find that the set |J A.(7,w) is precompact in H(Qx)
e<1
and hence |J A.(7,w) is precompact in H(R").
e<1
(iv) Let @ = (u© v©®) be a solution of (6.6) with initial data go(()o) =

(uéo), U((] ), and U = u(®) — () V =) — ) Tt follows from (6.5) and (6.6) that

dU
’ + 06U =V = ey(0,0)U + ey(Opw)u'®,
CZ—V—F(Q HVAALV +(82 4\ — 6)U+(1-0) AU + f(z,u'®) — fla,u®)

= — ey(Bw) AU — ey(Bw) A%u(® — ey(8,w)V — ey (Biw)v®
— e(ey(fw) — 20)y(0iw)U — e(ey(biw) — 26)y(0tw)u(0).

(6.9)
Taking the inner product of the second equation of (6.9) with V in L?(R"), and
then using the first equation of (6.9) to simplify the resulting equality, we obtain

1d

S (VI + (62 4+ A = ) [U]]2 + (1 = 8) | AU |?)
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+ (= 8)|[V|? +8(8% + X = da)||U||? + 6(1 — 8)|AU||> + A%V
=(f(z,u) = f(z,u), V) + (67 + X — da)y(w) |U||?
+ (62 + XA = 00)y(0,w) (U, uD) + (1 — 8)y(0w) || AU ||?
+e(1 = O)y(f:w) (AT, Au(o)) — (Ey(ﬁtw)AQU + ay(etw)AQU(O), V)
— ey(0w) |V ||* = ey (0:w) (V, v 0) — e(ey(Buw) — 20)y(Opw) (V, ul?)
—e(ey(Orw) — 20)y(Osw)(V, U). (6.10)
Due to (6.1), it leads to
|(f(2,u@) = f2,u@), V)| < YUV < e(|[V]?+ (6% + X = 8a)[|U][?).  (6.11)

Thanks to Young’s inequality, we find the remaining terms on the right hand side of
(6.10) are controlled by ec(1+ |y(9tw)|2)(||UH?{2(Rn) + |V |12+ [|u'® ||§{2(Rn) +[|v©@2)
for all e < 1, which along with (6.10)—(6.11) implies

d
Z(IVIP + (8% + 2 = da)[UI* + (1 = ) AT?)
<c(IVI* + (0% + A = da) [U|* + (1 = §) | AU?)
+ec(L+ ly(0w) ) IU 12 gy + VI + 11 2 oy + 0] (6.12)

Applying Lemma 4.1 , there exists a constant ¢g = ¢o(7,w, R,T) > 0 such that for
allt > T,

w372 gy + [0 < co. (6.13)
Together with (6.12) and (6.13) we get
d
%(Wll2 + (82 + A=) |U|* + (1 - )| AU|?)
<c([VIP + (82 + A = 3a) [U|* + (1 = )| AU|?) + e + [y(0uw)*).  (6.14)
Therefore, applying the Gronwall inequality to (6.14) over (7,t), we have

0 0
1 (¢, 7w, u)) =@ (t 7, 4l 2o oy + 10 (87, w0, 0670) =0 O (8, 7, 053

c(t—r1 0 0
<ee D (Jluf — ul” | 2a gy + 1057 — 057 122 gy

¢

+ec / e (1 + |y(B,w)|?)ds, (6.15)
which along with (i),(ii), (iii) and Theorem 6.1 complete the proof. O
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