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DYNAMICS OF A GENERALIZED
LORENZ-LIKE CHAOS DYNAMICAL

SYSTEMS∗

Fuchen Zhang1,2,†, Ping Zhou3, Jin Qin4, Chunlai Mu5

and Fei Xu6

Abstract In this work, a new seven-parameter Lorenz-like chaotic system
is presented and discussed by combining nonlinear dynamical systems theory
with computer simulation. The existence of the ultimate bound set and global
exponential attractive set of this chaotic system is proved by using Lyapunov’s
direct method. A family of analytic mathematical expression of the ultimate
bound sets and global exponential attractive sets involving two parameters
are obtained, respectively. Meanwhile, the volumes of the ultimate bound set
and global exponential attractive set are obtained, respectively. Numerical
simulations are conducted which validates the correctness of the proposed
theoretical analysis.
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1. Introduction
In recent years, chaos theory and chaotic dynamical systems have garnered much
attention from many disciplines [9,10,15,20,23,33] since the famous Lorenz chaotic
system in 1963 [9]. Then, some other new chaotic systems have been discovered
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and widely studied, such as, Rossler system [27], hyperchaos Lorenz system [33],
Chua system [20], Shimizu-Morioka system [10], Chen system [2], Lu system [15],
Rabinovich system [1,7,26,35,39], Glukhovsky-Dolzhansky system [11] and Lorenz-
Stenflo system [28]. In particular, chaotic dynamical systems have been paid more
attention due to its potential applications in biological systems [36], secure com-
munication [22], chemical reactions, electrical engineering, chaotic circuits and so
on [3–8,16–19,21,24,29–31,34,36–38,40–42,47].

Boundedness is an important aspect in the study of chaotic dynamical sys-
tems [12, 13] which can be applied to analyze the Lyapunov dimension of chaotic
attractors [14], chaos control and chaos synchronization [17]. The bounds of the
famous Lorenz system was firstly studied by Leonov et al. in [12, 13] due to the
important scientific and engineering research value of Lorenz system. Inspired by
Leonov’ thought, Liao et al. have proposed the concept of the global exponential
attractive set of chaotic systems and have studied the global exponential attractive
sets of the Lorenz system [17]. But Liao et al. have not proved that the Chen
system and the Lu system also have the global exponential attractive set due to the
complex algebraic structure of the Chen system and the Lu system [17]. Recently,
Zhang et al. give new results on ultimate bound on the trajectories of the Lorenz
system which contain the existing (Liao and his collaborators) results as special
cases [49]. It is mentioned in the articles [25, 46] that how to get the bounds of
the Chen system and the Lu system is an important yet nontrivial open problem.
Recently, Zhang and his collaborators have made major progress in studying the
bounds of the Chen system and the Lu system [43–45,48].

In this paper, a new Lorenz-like chaotic system is presented via theoretical
analysis and numerical simulations. The main contributions of this paper as follows.
Firstly, a family of the ultimate bound sets and globally exponential attractive sets
involving two parameters for the new Lorenz-like chaotic system have been obtained
via Lyapunov’s direct method, respectively. Secondly, the rate of the trajectories
going from the exterior of the attractive set to the interior of the attractive set
is also obtained. Finally, numerical simulations are conducted which validates the
correctness of the proposed theoretical analysis.

The organization of this paper is as follows. The new seven-parameter Lorenz-
like chaotic system is presented in Section 2. The boundedness of the generalized
Lorenz-like chaotic system is given in Section 3. Global attractivity of the general-
ized Lorenz-like chaotic system has been investigated in Section 4. Section 5 draws
conclusion and the expectation for the future work.

2. System model
The generalized Lorenz-like system is the seven-parameter family of differential
equations given by: 

dx

dt
= hy − ax− dyz,

dy

dt
= cx− ky − exz,

dz

dt
= xy − bz,

(2.1)

where x, y and z are real variables; a, b, k are positive real parameters and c, d, e, h
are real parameters of system (2.1). Information about the chaotic attractors by
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calculating Lyapunov exponents and Lyapunov dimension can be referred to [5, 8,
32]. The local finite-time Lyapunov exponents of the dynamical system (2.1) are
calculated numerically for a = 10, b = 8

3 , c = 30, d = 0.01, e = 1, k = 1, h = 10 with
the initial state (x0, y0, z0) = (0.5, 2, 0.3) and time interval [0, 10000] . In this paper,
all the simulations are carried out by using the fourth-order Runge-Kutta method
with h = 0.001. When a = 10, b = 8

3 , c = 30, d = 0.01, e = 1, k = 1, h = 10, the
local finite-time Lyapunov exponents of system (2.1) are λLE1

= 3.0834, λLE2
=

6.8186, λLE3
= −23.5686. The Lyapunov dimension of system (2.1) is DL = 2.063.

When a = 10, b = 8
3 , c = 30, d = 0.01, e = 1, k = 1, h = 10, chaotic attractors of

system (2.1) are shown in figures 1-4.
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Figure 1. Chaotic attractor for a = 10, b =
8
3 , c = 30, d = 0.01, e = 1, k = 1, h = 10 in the
xOyz space.
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Figure 2. Chaotic attractor of system (2.1) in
the xOy plane.

-20 -15 -10 -5 0 5 10 15 20

x

0

10

20

30

40

50

60

z

Figure 3. Chaotic attractor of system (2.1) in
the xOz plane.
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Figure 4. Chaotic attractor of system (2.1) in
the yOz plane.

In the following part, we will discuss the ultimate boundedness and global at-
tractivity of system (2.1) via Lyapunov’s direct method.
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3. Boundedness
In this section, we will discuss the boundedness of the generalized Lorenz-like system
(2.1). The boundedness of system (2.1) is described by Theorem 3.1.

Theorem 3.1. For any λ > 0, τ > 0 satisfying the condition of λd+ τe > 0, such
that

Ωλ,τ =

{
(x, y, z)

∣∣λx2 + τy2 + (λd+ τe)

(
z − λh+ τc

λd+ τe

)2

≤ R2
λ,τ

}
, (3.1)

is the ultimate bound set of system (2.1), where

R2
λ,τ =



b2(λh+ τc)
2

4k (b− k) (λd+ τe)
, a ≥ k, b ≥ 2k,

b2(λh+ τc)
2

4a (b− a) (λd+ τe)
, k ≥ a, b ≥ 2a,

(λh+ τc)
2

λd+ τe
, b < 2k, b < 2a.

Proof. Define the Lyapunov-like function

Vλ,τ (X) = Vλ,τ (x, y, z) = λx2 + τy2 + (λd+ τe)

(
z − λh+ τc

λd+ τe

)2

, (3.2)

where λ > 0, τ > 0 satisfying the condition of λd+ τe > 0.
Then, the derivative of Vλ,τ (X) is

dVλ,τ (X)

dt

∣∣∣∣
(2.1)

=2λx
dx

dt
+ 2τy

dy

dt
+ 2 (λd+ τe)

(
z − λh+ τc

λd+ τe

)
dz

dt

=2λx (hy−ax−dyz)+2τy (cx−ky−exz)+2 (λd+τe)

(
z − λh+ τc

λd+ τe

)
(xy − bz)

=− 2aλx2 − 2kτy2 − 2b (λd+ τe) z2 + 2b (λh+ τc) z.

We can get the conclusion that the surface Γ0 defined by

Γ0 =

 (x, y, z)| aλx2

b(λh+τc)2

4(λd+τe)

+
kτy2

b(λh+τc)2

4(λd+τe)

+
b (λd+ τe)

[
z − λh+τc

2(λd+τe)

]2
b(λh+τc)2

4(λd+τe)

= 1

 (3.3)

is an ellipsoid for ∀λ > 0, τ > 0, λd+ τe > 0. Outside Γ0,
dVλ,τ (X)

dt < 0, while inside
Γ0,

dVλ,τ (X)
dt > 0. Thus, the ultimate boundedness for system (2.1) can only be

reached on Γ0. Since the Vλ,τ (X) is a continuous function and Γ0 is a bounded closed
set, then the continuous function (3.2) can reach its maximum value max

X∈Γ0

Vλ,τ (X) =

R2
λ,τ on the bounded closed set Γ0 (3.3).

{
X|Vλ,τ (X) ≤ max

X∈Γ0

Vλ,τ (X) = R2
λ,τ

}
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contains the solutions of the system (2.1). In order to work out max
X∈Γ0

Vλ,τ (X) =

R2
λ,τ , we can construct the following optimization problem:

max Vλ,τ (X) = max

{
λx2 + τy2 + (λd+ τe)

(
z − λh+ τc

λd+ τe

)2
}
,

s.t.
aλx2

b(λh+τc)2

4(λd+τe)

+
kτy2

b(λh+τc)2

4(λd+τe)

+
b (λd+ τe)

[
z − λh+τc

2(λd+τe)

]2
b(λh+τc)2

4(λd+τe)

= 1.

(3.4)

The above optimization problem (3.4) is equivalent to
max Vλ,τ (X) = max

{
λx2 + τy2 + (λd+ τe)

(
z − λh+ τc

λd+ τe

)2
}
,

s.t.
λx2

b(λh+τc)2

4a(λd+τe)

+
τy2

b(λh+τc)2

4k(λd+τe)

+

[
z
√
λd+ τe− λh+τc

2
√
λd+τe

]2
(λh+τc)2

4(λd+τe)

= 1.

(3.5)

In order to solve the above optimization problem (3.5), let us denote
√
λx = x1,

√
τy = y1,

√
λd+ τez = z1.

Then problem (3.5) becomes
max Vλ,τ (X) = max

{
x2
1 + y21 +

(
z1 −

λh+ τc√
λd+ τe

)2
}
,

s.t.
x2
1

b(λh+τc)2

4a(λd+τe)

+
y21

b(λh+τc)2

4k(λd+τe)

+

(
z1 − λh+τc

2
√
λd+τe

)2

(λh+τc)2

4(λd+τe)

= 1.

(3.6)

According to optimization method, we can get the optimal solution of (3.6) as
follows

max
X∈Γ0

Vλ,τ (X) = R2
λ,τ =



b2(λh+ τc)
2

4k (b− k) (λd+ τe)
, a ≥ k, b ≥ 2k,

b2(λh+ τc)
2

4a (b− a) (λd+ τe)
, k ≥ a, b ≥ 2a,

(λh+ τc)
2

λd+ τe
, b < 2k, b < 2a.

Finally, we can easily show that (3.1) is the ultimate bound and positively invariant
set of system (2.1). This completes the proof.

Remark 3.1. We can get a series of ultimate bound sets and positively invariant
sets for the generalized Lorenz-like system (2.1) by Theorem 3.1.
i)Let us take λ = 1 in Theorem 3.1, then we can get

Ω1,τ =

{
(x, y, z)|x2 + τy2 + (d+ τe)

(
z − h+ τc

d+ τe

)2

≤ l2,∀τ > 0

}
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is the ultimate bound set of system (2.1), where

l2 =



b2(h+ τc)
2

4k (b− k) (d+ τe)
, a ≥ k, b ≥ 2k,

b2(h+ τc)
2

4a (b− a) (d+ τe)
, k ≥ a, b ≥ 2a,

(h+ τc)
2

d+ τe
, b < 2k, b < 2a.

ii) Let us take τ = 1 in Theorem 3.1, then we can get

Ωλ,1 =

{
(x, y, z)|λx2 + y2 + (λd+ e)

(
z − λh+ c

λd+ e

)2

≤ r2,∀λ > 0

}

is the ultimate bound set of system (2.1), where

r2 =



b2(λh+ c)
2

4k (b− k) (λd+ e)
, a ≥ k, b ≥ 2k,

b2(λh+ c)
2

4a (b− a) (λd+ e)
, k ≥ a, b ≥ 2a,

(λh+ c)
2

λd+ e
, b < 2k, b < 2a.

iii) Let us take λ = 1, τ = 1 in Theorem 3.1, then we can get

Ω1,1 =

{
(x, y, z)|x2 + y2 + (d+ e)

(
z − h+ c

d+ e

)2

≤ L2

}

is the ultimate bound set of system (2.1), where

L2 =



b2(h+ c)
2

4k (b− k) (d+ e)
, a ≥ k, b ≥ 2k,

b2(h+ c)
2

4a (b− a) (d+ e)
, k ≥ a, b ≥ 2a,

(h+ c)
2

d+ e
, b < 2k, b < 2a.

When a = 10, b = 8
3 , c = 30, d = 0.01, e = 1, k = 1, h = 10, then we have the

conclusions that

Ω1,1 =
{
(x, y, z)|x2 + y2 + 1.01(z − 39.60)

2 ≤ 41.112
}

is the ultimate bound set of system (2.1). In Fig.5, we show the bounds estimation
for chaotic attractor of system (2.1) in xOyz space by Ω1,1.
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Figure 5. Bounds estimation for chaotic attractor of system (2.1) in xOyz space by Ω1,1.

iv) The volume of the ultimate bound set Ωλ,τ in Theorem 3.1 is V (Ωλ,τ ) =
πR3

λ,τ√
λτ(λd+τe)

.

4. Global attractivity with exponential rate
For the rate estimation of the trajectories of system (2.1), we have the following
conclusion. In the following section, we will investigate global attractivity of system
(2.1) with exponential rate. We have the following Theorem 4.1.

Theorem 4.1. Suppose that ∀λ > 0, τ > 0 satisfying the condition of λd+ τe > 0,
and let

X (t) = (x (t) , y (t) , z (t)) , L2
λ,τ =

b(λh+ τc)
2

θ (λd+ τe)
, θ = min (a, b, k) > 0.

Then we have the following exponential inequality[
Vλ,τ (X (t))− L2

λ,τ

]
≤

[
Vλ,τ (X (t0))− L2

λ,τ

]
e−θ(t−t0) (4.1)

and

Ψλ,τ =
{
X|Vλ,τ (X) ≤ L2

λ,τ

}
(4.2)

is the global exponential attractive set of system (2.1), i.e., lim
t→+∞

Vλ,τ (X (t))≤L2
λ,τ .

Proof. Define the Lyapunov-like function

Vλ,τ (X) = Vλ,τ (x, y, z) = λx2 + τy2 + (λd+ τe)

(
z − λh+ τc

λd+ τe

)2

,

where λ > 0, τ > 0 satisfying the condition of λd+ τe > 0.
Then, the derivative of Vλ,τ (X) is

dVλ,τ (X)

dt

∣∣∣∣
(2.1)

= 2λx
dx

dt
+ 2τy

dy

dt
+ 2 (λd+ τe)

(
z − λh+ τc

λd+ τe

)
dz

dt
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= 2λx (hy − ax− dyz) + 2τy (cx− ky − exz)

+ 2 (λd+ τe)

(
z − λh+ τc

λd+ τe

)
(xy − bz)

= −2aλx2 − 2kτy2 − 2b (λd+ τe) z2 + 2b (λh+ τc) z

≤ −aλx2 − kτy2 − b (λd+ τe) z2 + 2b (λh+ τc) z

= −aλx2 − kτy2 − b (λd+ τe)

(
z − λh+ τc

λd+ τe

)2

+ b
(λh+ τc)

2

λd+ τe

≤ −θVλ,τ (X) + b
(λh+ τc)

2

λd+ τe

= −θ
[
Vλ,τ (X)− L2

λ,τ

]
.

Thus, we have[
Vλ,τ (X (t))− L2

λ,τ

]
≤

[
Vλ,τ (X (t0))− L2

λ,τ

]
e−θ(t−t0).

So,
lim

t→+∞
Vλ,τ (X (t)) ≤ L2

λ,τ .

Hence Ψλ,τ =
{
X|Vλ,τ (X) ≤ L2

λ,τ

}
is the global exponential attractive set of

system (2.1). This completes the proof.

Remark 4.1. The volume of the global exponential attractive set Ψλ,τ in Theorem
4.1 is V (Ψλ,τ ) =

πL3
λ,τ√

λτ(λd+τe)
.

5. Conclusions
By means of chaos dynamical systems theory, Lyapunov stability theory and in-
equality technique, a new Lorenz-like chaotic system is presented and discussed.
The ultimate boundedness and global exponential attractivity of this chaotic sys-
tem are obtained via Lyapunov’s direct method, which is a challenging work but an
important work in chaos dynamical systems. The bifurcation phenomenon, chaos
control and synchronization will be considered in the future.
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