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1. Introduction
Nowadays nonlocal integrable equations and the dynamics of them have gained
the attention of the scholars [1, 2, 18, 19]. The first nonlocal model in integrable
system was the celebrated PT-symmetric nonlinear Schrödinger (NLS) equation,
which was introduced by Ablowitz and Musslimani [3]. Afterwards, a variety of
nonlocal integrable equations with reverse space and/or time coupling have been
established [4, 7, 8, 17,20,21].

As an integrable generalization of the NLS equation, Fokas and Lenells proposed
[6, 9]

iut − νutx + γuxx + σ|u|2(u+ iνux) = 0, (1.1)
where ν, γ are real parameters and σ = ±1. This local equation is also called Fokas-
Lenells (FL) equation, which is related to NLS equation from the perspective of
bi-Hamiltonian. In the case of ν = 0, FL equation may be reduced to the regular
NLS equation and σγ = ±1 determines whether the above equation is focused or
defocused. It is important that the FL equation models nonlinear pulse propagation
in monochrome optical fibers when certain higher-order nonlinear effects are taken
into account [10].

Very recently, one of the authors has presented the following the reverse-space-
time nonlocal nonlinear equation [22]:

qxt + q − 2iq(x, t)q(−x,−t)qx = 0, (1.2)
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here q is a complex-valued function of x and t. It is noted that Eq.(1.2) has been
changed from its original version Eq.(1.1) by a gauge transformation for conve-
nience [10]. Compared with the local nonlinear FL equation, the nonlinear term
q(x, t)q∗(x, t)qx(x, t) of the Eq.(1.1) is replaced by q(x, t)q(−x,−t)qx(x, t), which re-
flects the space-time reverse nonlocal coupling between q(x, t) and q(−x,−t). And
it can be derived from a special reduction of the negative flow for the KN-hierarchy
which means this new equation is also integrable. Furthermore, we have derived
the Lax pair and obtained different kinds of exact solutions including bright/dark
solitons, kink solutions, periodic solutions and mixed type solutions by using the
Darboux transformation.

In [11], we considered the dynamical behavior and bifurcations to the local FL
equation (1.1), and made a complete work to the exact travelling wave system. To
the best of our knowledge, the dynamical behavior of travelling wave solutions for
newly integrable nonlocal FL equation above was not studied before.

In our present work, the nonlocal FL equation is investigated to obtain the exact
travelling wave solutions and their bifurcations depending on the parameter group
of system. Now we are interested in analyzing the travelling wave solution with the
form

q(x, t) = ϕ(x− ct)ei(kx−Ωt+θ(x−ct)) = ϕ(ξ)ei(kx−Ωt+θ(ξ)), (1.3)
where ξ = x− ct and k,Ω, c are real parameters.

It follows from (1.3) that

q(x, t)q(−x,−t) = ϕ(ξ)ϕ(−ξ)ei(θ(ξ)+θ(−ξ)). (1.4)

If ϕ(ξ) = ϕ(−ξ) and θ(−ξ) = −θ(ξ), then q(x, t)q(−x,−t) = ϕ2(ξ). In this case, the
exact travelling wave solutions for the nonlocal equation is consistent with the local
equation.

Substituting (1.3) into Eq.(1.2) and separating the real part and imaginary part,
we have

−cϕξξ + ϕ[kΩ+ (Ω + kc)θξ + cθ2ξ ] + ϕ+ 2ϕ3(k + θξ) = 0,

cϕθξξ + 2cϕξθξ + (Ω + kc)ϕξ + 2ϕ2ϕξ = 0.
(1.5)

Multiply the second of these equations by ϕ and integrate the resulting equation,
one find

2cϕ2θξ + (Ω + kc)ϕ2 + ϕ4 − g = 0, (1.6)
where g is an integral constant. Solving for θξ, we have

θξ =
g − (Ω + kc)ϕ2 − ϕ4

2cϕ2
. (1.7)

Substituting (1.7) into the first equation of system (1.5), we obtain

4c2ϕ3ϕξξ = g2 + ϕ4(a0 + 2a1ϕ
2 − 3ϕ4), (1.8)

where a0 = 2g + 4c(kΩ+ 1)− (Ω + ck)2, a1 = 2(ck − Ω).
Eq. (1.8) is equivalent to the following planar dynamical system

dϕ

dξ
= y,

dy

dξ
=
g2 + ϕ4(a0 + 2a1ϕ

2 − 3ϕ4)

4c2ϕ3
, (1.9)
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with the first integral

H(ϕ, y) =
1

2
y2 +

g2 − a0ϕ
4 − a1ϕ

6 + ϕ8

8c2ϕ2
= h, (1.10)

where h is the energy constant.
When we obtain an exact solution ϕ(ξ) of system (1.9), it follows from (1.7) that

θ(ξ) =

∫ ξ

0

(g − (Ω + kc)ϕ2(ξ)− ϕ4)dξ

2cϕ2

= −
(
ck +Ω

2c

)
ξ − 1

2c

[∫ ξ

0

ϕ2(ξ)dξ − g

∫ ξ

0

dξ

ϕ2(ξ)

]
.

(1.11)

By using the formula (1.3), it follows an exact travelling wave solution of Eq.(1.2).
When we take g = 0, system (1.8) becomes

dϕ

dξ
= y,

dy

dξ
=

ϕ

4c2
(−3ϕ4 + 2a1ϕ

2 + a0), (1.12)

which is a polynomial system and the first integral is as follows,

H0(ϕ, y) =
1

2
y2 +

1

8c2
(ϕ6 − a1ϕ

4 − a0ϕ
2) = h. (1.13)

When g ̸= 0, system (1.8) is a singular travelling wave system of the first class
as named in [12–16] having the singular straight line ϕ = 0. It is interesting that
there exist periodic peakons and pseudo-peakons which have smooth wave profiles,
because in a neighborhood of the singular straight line ϕ = 0, there exist two “time
scale” of wave variables, such that cusp wave profiles appear.

We consider the case g = 0 in this paper. It is necessary to find all possible
exact solutions for system (1.12). In the following, we use the method of dynamical
systems to investigate the dynamics of solutions of system (1.12) and to give the
parametric representations of travelling wave solutions of equation (1.2) with the
form (1.3) in the two-parameter plane (a0, a1), where we assume that the parameter
c is fixed and c > 0.

The main result of this paper can be formulated in the following.

Theorem 1.1. Considering the exact solutions of Eq.(1.2) with the form (1.3), we
have system (1.9) and formula (1.11). For the integral constant g = 0, in system
(1.9), Eq.(1.2) has 12 different exact explicit travelling wave solutions with the form
(1.3), where ϕ(ξ) and θ(ξ) are given by (3.4a), (3.4b)–(3.15a), (3.15b), respectively.

The rest of this paper is organized as follows. In section 2, we investigate the
bifurcations of phase portraits of system (1.12). In section 3, we discuss the exis-
tence of the exact travelling wave solutions and give all possible exact parametric
representations for these solutions of ϕ(ξ) and θ(ξ) under different parameter con-
ditions.

2. Bifurcations of phase portraits of system (1.12)
Defining f0(ϕ) = ϕ(a0+2a1ϕ

2−3ϕ4). If ϕj is a zero point of f0(ϕ), that is f0(ϕj) = 0,
then Ej(ϕj , 0) is an equilibrium point of system (1.12).
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Obviously,

f0(ϕ) = ϕ(−3ϕ4 + 2a1ϕ
2 + a0) ≡ ϕ(−3ψ2 + 2a1ψ + a0),

f ′0(ϕ) = −15ϕ4 + 6a1ϕ
2 + a0,

where ψ = ϕ2. Under the conditions of ∆ = a21 + 3a0 > 0 and a1 > 0, a0 < 0, the
function f0(ϕ) has two positive real roots ϕ1,2 =

√
1
3 (a1 ∓

√
∆). When ∆ > 0 and

a0 > 0, the function f0(ϕ) has only one positive real root ϕ2. Thus, system (1.12)
has at most two equilibrium points E1(ϕ1, 0) and E2(ϕ2, 0) in the positive ϕ−axis.

Let M(ϕj , 0) be the coefficient matrix of the linearized system of (1.12) at an
equilibrium point (ϕj , 0) and J(ϕj , 0) = detM(ϕj , 0). We have

J(0, 0) = detM(0, 0) = − a0
4c2

, J(ϕ1,2, 0) = detM(ϕ1,2, 0) = − 1

4c2
f ′0(ϕ1,2).

By the theory of planar dynamical systems, we know that for a planar integrable
system, if J < 0, the equilibrium point is a saddle point; if J > 0, the equilibrium
point is a center point or a node point; if J = 0 and the Poincaré index of the
equilibrium point is 0, then the equilibrium point is a cusp.

Let h0 = H0(0, 0) = 0,

h1=H0(ϕ1, 0)=
(−a21+a1

√
∆−6a0)ϕ

2
1

72c2
, h2=H0(ϕ2, 0)=− (a21+a1

√
∆+6a0)ϕ

2
2

72c2
.

It is easy to show that when a0 < 0, a1 = 2
√
−a0, we have h1 = (−a0)

3
2

54c2 and h2 = 0.
We see from the above discussion that for a fixed c > 0, in the (a0, a1)−parameter

plan, there exist the bifurcation curves: a0 = 0, L1 : a1 = 2
√
−a0 and L2 : a1 =√

−3a0, which partition the (a0, a1)−parameter plan into four regions (I) − (IV )
(see Fig.1 (a)). By qualitative analysis, we have seven phase portraits of system
(1.12) under different parameter conditions which is shown in Fig.1 (b)–(h).

3. Some exact travelling wave solutions of equation
(1.2)

It follows from (1.13) that

y2 = 2h+
1

4c2
(−ϕ6 + a1ϕ

4 + a0ϕ
2). (3.1)

Hence, taking the initial condition ϕ(0) = ϕ0, by using the first equation of (1.12),
we have

ξ

c
=

∫ ϕ

ϕ0

2dϕ√
8c2h+ a0ϕ2 + a1ϕ4 − ϕ6

=

∫ ψ

ψ0

dψ√
ψ[8c2h+ a0ψ + a1ψ2 − ψ3]

≡
∫ ψ

ψ0

dψ√
G(ψ)

,

(3.2)

where ψ = ϕ2. In addition, letting g = 0, we can get the following solution from
(1.11),

θ(ξ) =

∫ ξ

0

(−(Ω + kc)ϕ2 − ϕ4)dξ

2cϕ2
= −

(
ck +Ω

2c

)
ξ − 1

2c

[∫ ξ

0

ϕ2(ξ)dξ

]
. (3.3)
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Figure 1. Bifurcations of phase portraits of system (1.12). (a) Bifurcation set of parameter group
(a0, a1). (b) (a0, a1) ∈ (I). (c) a0 = 0, a1 > 0. (d) (a0, a1) ∈ (II). (e) (a0, a1) ∈ (L1). (f) (a0, a1) ∈
(III). (g) (a0, a1) ∈ (L2). (h) (a0, a1) ∈ (IV ).

Obviously, when we have the exact solution of ϕ(ξ) and θ(ξ), by using (1.3), we can
obtain an exact travelling wave solution of Eq.(1.2).

3.1. The case a0 > 0, i.e., (a0, a1) ∈ (I) (see Fig.1 (b))

(i) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (h2, 0),
there exist two families of periodic solutions of system (1.12). Now, the polynomial
G(ψ) = (ψa − ψ)(ψ − ψb)ψ(ψ − ψd) where ψa > ψb > 0, ψd < 0.

From (3.2), we can obtain the following parametric representations of the two
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families of periodic solutions of equation (1.12):

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
ψb

1− α2
1sn2(2Ω1ξ, k)

) 1
2

, (3.4a)

where α2
1 = ψa−ψb

ψa
, k2 = (ψa−ψb)(−ψd)

ψa(ψb−ψd)
,Ω1 =

√
ψa(ψb−ψd)

4c .

According to the formulas (3.3) and (3.4a), it is easy to get that

θ(ξ) = −
(
ck +Ω

2c

)
ξ − ψb

2c

∫ ξ

0

dξ

1− α2
1sn2(Ω1ξ, k)

= −
(
ck +Ω

2c

)
ξ − ψb

2cΩ1
Π(arcsin(sn(Ω1ξ), α

2
1, k).

(3.4b)

(ii) Corresponding to the level curves defined by H0(ϕ, y) = 0, there exist two
homoclinic orbits of system (1.10). Now, the polynomial G(ψ) = ψ2(a0 + a1ψ −
ψ2) = ψ2(ψM −ψ)(ψ−ψm), where ψM = 1

2 (a1+
√
∆2) > ψ2, ψm = 1

2 (a1−
√
∆2) <

0,∆2 = a21 + 4a0.
By (3.2), we can obtain the following parametric representations of the homo-

clinic orbits,

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
2a0√

∆2 cosh(ω0ξ) + a1

) 1
2

, (3.5a)

where ω0 =
√
a0
c .

It follows from (3.3) and (3.5a) that

θ(ξ) = −
(
ck +Ω

2c

)
ξ − a0

c

∫ ξ

0

dξ√
∆2 cosh(ω0ξ) + a1

= −
(
ck +Ω

2c

)
ξ −

√
a0

cω0
arctan

√√
∆2 − a1√
∆2 + a1

tanh

(
1

2
ω0ξ

) .

(3.5b)

(iii) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (0,∞),
there exists a family of periodic orbits enclosing three equilibrium points of system
(1.12). For a fixed h ∈ (0,∞), the polynomial G(ψ) = (ψa − ψ)ψ[(ψ − b1)

2 + a21].
Hence, from (3.2), we can get the parametric representations of the family of

periodic solutions of equation (1.12) as follows:

ϕ(ξ) = ±
√
ψ(ξ) = ±

√
ψaB1

A1 −B1

(
1 + α2

1 + α2cn(Ω2ξ, k)
− 1

) 1
2

, (3.6a)

where A2
1 = (ψa − b1)

2 + a21, B
2
1 = b21 + a21, Ω2 =

√
A1B1

c , k2 =
ψ2

a−(A1−B1)
2

4A1B1
, α2 =

A1−B1

A1+B1
,K(k) is the complete elliptic integral of the first kind, sn(u, k), cn(u, k),

dn(u, k) are the Jacobian elliptic functions (see [5]).
From (3.3) and (3.6a), it is easy to get that

θ(ξ) =−
(
ck +Ω

2c
+

ψaB1

2c(A1 −B1

)
ξ − ψaB1(1 + α2)

2c(A1 −B1)

∫ ξ

0

dξ

1 + α2cn(Ω2ξ, k)
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=−
(
ck +Ω

2c
+

ψaB1

2c(A1 −B1

)
ξ − ψaB1(1 + α2)

2cΩ2(A1 −B1)

×
[

1

1− α2
2

Π

(
arccos(cn(Ω2ξ, k),

α2
2

α2
2 − 1

, k)

)
− α2f1

]
, (3.6b)

where f1 =
√

1−α2
2

k2+(1−k2)α2
2
arctan

(√
k2+(1−k2)α2

2

1−α2
2

sn(Ω2ξ,k)
dn(Ω2ξ,k)

)
,Π(·, α, k) is the elliptic

integral of the third kind (see [5]).

3.2. The case a1 > 0, a0 = 0 (see Fig.1 (c))
These refer to the case that the origin is a non-hyperbolic saddle point.

(i) Corresponding to the level curves defined by H0(ϕ, y) = 0, there exist two
homoclinic orbits of system (1.12) with G(ψ) = ψ3(a1 − ψ). Therefore, (3.2) gives
rise to the following parametric representations of the two homoclinic orbits:

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
a1

1 +
a21
4c2 ξ

2

) 1
2

. (3.7a)

Under the condition of a1 > 0, it follows from (3.3) and (3.7a) that

θ(ξ) = −
(
ck +Ω

2c

)
ξ − a1

2c

∫ ξ

0

dξ

1 +
a21
4c2 ξ

2

= −
(
ck +Ω

2c

)
ξ − arctan

(a1
2c
ξ
)
.

(3.7b)

(ii) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (h2, 0),
there exist two families of periodic orbits of equation (1.12). The parametric rep-
resentation of the periodic wave solutions are the same as (3.4a).

(iii) For h ∈ (0,∞), corresponding to the level curves defined by H0(ϕ, y) = h,
there exist a family of periodic orbits of system (1.12). The parametric representa-
tion of the periodic wave solutions are the same as (3.6a).

3.3. The case 2
√
−a0 < a1 < ∞, a0 < 0, h2 < 0 < h1 , i.e., (a0, a1) ∈

(II) (see Fig.1 (d))
(i) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (h2, 0),
there exist two families of periodic orbits of equation (1.12),which enclose the equi-
librium points (±ϕ2, 0), respectively. Therefore, these periodic wave solutions have
the same parametric representations as (3.4a).

(ii) Corresponding to the level curves defined by H0(ϕ, y) = 0, there exist two
periodic orbits of equation (1.12), which enclose the equilibrium points (±ϕ2, 0),
respectively. Now the polynomial G(ξ) = ψ2(a0 + a1ψ − ψ2). The parametric
representations of the periodic orbits are given by

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
2|a0|

a1 −
√
a21 + 4a0 sin(ω1ξ)

) 1
2

, (3.8a)

where ω1 =

√
|a0|
c .
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It follows from (3.3) and (3.8a) that

θ(ξ) = −
(
ck +Ω

2c

)
ξ − |a0|

c

∫ ξ

0

dξ

a1 −
√
a21 + 4a0 sin(ω1ξ)

= −
(
ck +Ω

2c

)
ξ −

√
|a0|
cω1

arctan

(
a1 tan(

1
2ω1ξ)−

√
a21 + 4a0

2
√
|a0|

)
.

(3.8b)

(iii) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (0, h1),
there exist three families of periodic orbits of equation (1.12), which enclose the
equilibrium points (±ϕ2, 0) and (0, 0), respectively.

For the first case, two families of periodic orbits enclose the equilibrium points
(±ϕ2, 0), here, the polynomial G(ψ) = (ψa − ψ)(ψ − ψb)(ψ − ψc)ψ. Hence, from
(3.2), we can obtain the parametric representations of these periodic orbits are as
follows:

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
ψc +

ψb − ψc
1− α2

3sn2(Ω3ξ, k)

) 1
2

, (3.9a)

where α2
3 = ψa−ψb

ψa−ψc
,Ω3 =

√
(ψa−ψc)ψb

2c , k2 = (ψa−ψb)ψc

(ψa−ψc)ψb
.

According to equations (3.3) and (3.9a), we can get that

θ(ξ) = −
(
ck +Ω

2c
+
ψc
2c

)
ξ − ψb − ψc

2c

∫ ξ

0

dξ

1− α2
3sn2(Ω3ξ, k)

= −
(
ck +Ω

2c
+
ψc
2c

)
ξ − ψb − ψc

2cΩ3
Π(arcsin(sn(Ω3ξ, k), α

2
3, k).

(3.9b)

The other case, the family of periodic orbits enclose the equilibrium points (0, 0),
now, the polynomial G(ψ) = (ψa − ψ)(ψb − ψ)(ψc − ψ)ψ. Thus, the parametric
representation of the periodic orbits can be given by:

ϕ(ξ) =
√
ψ(ξ) =

(
ψb −

ψb − ψc
1− α2

4sn2(Ω3ξ, k)

) 1
2

, (3.10a)

where α2
4 = ψc

ψb
,Ω3 =

√
(ψa−ψc)ψb

2c , k2 = (ψa−ψb)ψc

(ψa−ψc)ψb
.

By the formulas (3.3) and (3.10a), we have

θ(ξ) = −
(
ck +Ω

2c
+
ψb
2c

)
ξ +

ψb − ψc
2c

∫ ξ

0

dξ

1− α2
4sn2(Ω3ξ, k)

= −
(
ck +Ω

2c
+
ψb
2c

)
ξ +

ψb − ψc
2cΩ3

Π(arcsin(sn(Ω3ξ, k), α
2
4, k).

(3.10b)

(iv) Corresponding to the level curves defined by H0(ϕ, y) = h1, there exist
two homoclinic orbits which enclose the centers (±ϕ2, 0) and a heteroclinic loop
which enclose the center (0, 0). For the two homoclinic orbits, the polynomial
G(ψ) = (ψM − ψ)(ψ − ψ1)

2ψ. Therefore, we can obtain the following parametric
representations of the two corresponding solitary wave solutions,

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
ψ1 +

2(ψM − ψ1)ψ1

ψM cosh(ω2ξ)− (ψM − 2ψ1)

) 1
2

, (3.11a)
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where ω2 =

√
(ψM−ψ1)ψ1

c .
By using (3.3) and (3.11a), we can see that

θ(ξ) = −
(
ck +Ω

2c
+
ψ1

2c

)
ξ − (ψM − ψ1)ψ1

c

∫ ξ

0

dξ

ψM cosh(ω2ξ)− (ψM − 2ψ1)

= −
(
ck +Ω

2c
+
ψ1

2c

)
ξ − arctan

(√
ψM − ψ1

ψ1
tanh

(
1

2
ω2ξ

))
.

(3.11b)
For the upper heteroclinic orbits, it follows from (1.13) that

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
ψ1−

2ψ1(ψM − ψ1)

ψM cosh(ω2ξ)+(ψM−2ψ1)

) 1
2

,

for ξ ∈ (0,∞), (−∞, 0),

(3.12a)

respectively.
From (3.12a) and (3.3), we have

θ(ξ) = −
(
ck +Ω

2c
+
ψ1

2c

)
ξ +

(ψM − ψ1)ψ1

c

∫ ξ

0

dξ

ψM cosh(ω2ξ) + (ψM − 2ψ1)

= −
(
ck +Ω

2c
+
ψ1

2c

)
ξ + arctan

(√
ψ1

ψM − ψ1
tanh

(
1

2
ω2ξ

))
.

(3.12b)
(v) When h ∈ (h1,∞), corresponding to the level curves defined by H0(ϕ, y) = h,

there exists a global family of periodic orbits of equation (1.12). We can get that
the parametric representation of the periodic orbits are the same as (3.6a).

3.4. The case a1 = 2
√
−a0, a0 < 0, h2 = 0 < h1 = (−a0)

3
2

54c2
i.e.,

(a0, a1) ∈ (L1) (see Fig.1 (e))
In this case, we have that ψ1 = 1

3

√
−a0, ψ2 =

√
−a0.

(i) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (0, h1),
there exist three families of periodic orbits of equation (1.12), which enclose the
equilibrium points (±ϕ2, 0) and (0, 0), respectively. The periodic wave solutions of
the system possess the same parametric representations as (3.9a) and (3.10a).

(ii) Corresponding to the level curves defined by H0(ϕ, y) = h2, there exist
two homoclinic orbits which enclose the centers (±ϕ2, 0) and a heteroclinic loop
which enclose the center (0, 0). Now, the polynomial G(ψ) =

(
4
3

√
|a0| − ψ

)
(ψ −

1
3

√
|a0|)2ψ. Therefore, for the two homoclinic orbits, we can obtain the following

solitary wave solutions,

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
1

3

√
|a0|+

√
|a0|

2 cosh(ω20ξ)− 1

) 1
2

, (3.13a)

where ω20 = |a0|
3c .
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It follows from (3.13a) and (3.3) that

θ(ξ) = −

(
ck +Ω

2c
+

√
|a0|
6c

)
ξ −

√
|a0|
2c

∫ ξ

0

dξ

2 cosh(ω20ξ)− 1

= −

(
ck +Ω

2c
+

√
|a0|
6c

)
ξ −

√
3

|a0|
arctan

(√
3 tanh

(
1

2
ω20ξ

))
.

(3.13b)

For the upper heteroclinic orbits, we can obtain

ϕ(ξ) = ±
√
ψ(ξ) = ±

(
1

3

√
|a0| −

√
|a0|

2 cosh(ω20ξ) + 1

) 1
2

, for ξ ∈ (0,∞) or (−∞, 0),

(3.14a)
respectively.

It follows from (3.12a) and (3.1) that

θ(ξ) = −

(
ck +Ω

2c
+

√
|a0|
6c

)
ξ +

√
|a0|
4c

∫ ξ

0

dξ

2 cosh(ω20ξ)− 1

= −

(
ck +Ω

2c
+

√
|a0|
6c

)
ξ +

√
3

|a0|
arctan

(
1√
3
tanh

(
1

2
ω20ξ

))
.

(3.14b)

(iii) Corresponding to the level curves defined by H0(ϕ, y) = h, where h ∈
(h1,∞), there exists a global family of periodic orbits of equation (1.12). The system
has a series of periodic wave solutions which has the same parametric representation
as (3.4a).

3.5. The case 2
√

|a0| > a1 >
√

3|a0|, a0 < 0, i.e., (a0, a1) ∈ (III), 0 <
h2 < h1 (see Fig.1 (f))

(i) Corresponding to the level curves defined byH0(ϕ, y) = h where h ∈ (0, h2], there
exists a family of periodic orbits of equation (1.12), which enclose the origin (0, 0).
The system has a series of periodic wave solutions which has the same parametric
representation as (3.6a).

(ii) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (h2, h1),
there exist three families of periodic orbits of equation (1.12), which enclose the
equilibrium points (±ϕ2, 0) and (0, 0), respectively. The parametric representations
of the periodic wave solutions are the same as (3.9a) and (3.10a).

(iii) Corresponding to the level curves defined by H0(ϕ, y) = h1, there exist two
homoclinic orbits which enclose the centers (±ϕ2, 0) and a heteroclinic loop which
encloses the center (0, 0). The parametric representations of the wave solutions are
the same as (3.11a) and (3.12a).

(iv) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈
(h1,∞), there exists a global family of periodic orbits of equation (1.12), The system
has a series of periodic wave solutions which has the same parametric representation
as (3.6a).
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3.6. The case a1 =
√
−3a0, a0 < 0 , i.e., (a0, a1) ∈ (L2) (see Fig.1

(g))

Note that, we have h1 = h2 =
√
3|a0|

3
2

72c2 , ψ1 = ψ2 =

√
3|a0|
3 in this case.

(i) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈ (0, h1),
there exists a family of periodic orbits of equation (1.12), which enclose the origin
(0, 0) as a center. The corresponding periodic wave solution has the same parametric
representation as (3.6a).

(ii) Corresponding to the level curves defined by H0(ϕ, y) = h1, there exists a

heteroclinic loop, which enclose the center (0, 0). Now, G(ψ) =
(√

3|a0|
3 − ψ

)3

ψ.
The upper heteroclinic orbit corresponds a kink solution which has the following
parametric representation

ϕ(ξ) = ±
√
ψ(ξ) = ±

(√
3|a0|
3

−
√
3|a0|

3 + |a0|
4c2 ξ

2

) 1
2

, for ξ ∈ (0,∞) or (−∞, 0) (3.15a)

respectively.
It follows from (3.13a) and (3.1) that

θ(ξ) = −

(
ck +Ω

2c
+

√
3|a0|
6c

)
ξ +

√
3|a0|
4c

∫ ξ

0

dξ

3 + |a0|
4c2 ξ

2

= −

(
ck +Ω

2c
+

√
3|a0|
6c

)
ξ + 6c arctan

(√
|a0|√
3c

ξ

)
.

(3.15b)

(iii) Corresponding to the level curves defined by H0(ϕ, y) = h where h ∈
(h1,∞), there exists a global family of periodic orbits of equation (1.12). These
corresponding periodic wave solutions has the same parametric representations as
(3.6a).
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