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KAMAL TRANSFORM AND ULAM
STABILITY OF DIFFERENTIAL EQUATIONS
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Abstract In the growth of the field of functional-differential equations and
their Ulam stability, many researchers have utilized various methods to prove
the Ulam stability of functional and differential equations. Hyers method
and the fixed-point method are remarkably applied by many researchers to
investigate the Ulam stability of functional and differential equations. In this
research work, we propose a new method for investigating the Ulam stability
of linear differential equations by using Kamal transform.
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1. Introduction and preliminaries
Very often instead of a functional equation, we consider a functional inequality
and one can ask the following question: When can one assert that the solutions of
the inequality lie near to the solutions of the equation? A definition of stability
in the case of homomorphisms between groups was suggested by a problem posed
by Ulam [30] in 1940: Let (G1, ∗) be a group and let (G2, ⋄, d) be a metric group
with the metric d (.,.). Given ϵ > 0, does there exists a δ(ϵ) > 0 such that if a
mapping h : G1 → G2 satisfies the inequality d (h(x ∗ y), h(x) ⋄ h(y)) < δ for all
x, y ∈ G1, then there is a homomorphism H : G1 → G2 with d (h)(x),H(x)) <
ϵ for all x ∈ G1? In other words, if a mapping is almost homomorphism then
there is a true homomorphism near it with small error as much as possible. If the
answer is affirmative, we would call that the equation H(x ∗ y) = H(x) ⋄ H(y) of
homomorphism is stable.

In 1941, Hyers [8] was the first mathematician to present the result concerning
the stability of functional equations. He brilliantly answered the question of Ulam
for the cases where X and Y are assumed to be Banach spaces. The result of Hyers
is stated in the succeeding celebrated theorem.

Theorem 1.1. Assume that G and H are Banach spaces. If a mapping g : G → H
fulfills the inequality

∥g(u+ v)− g(u)− g(v)∥ ≤ ϵ (1.1)
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for some ϵ > 0 and for all u, v ∈ G, then the limit

A(u) = lim
n→∞

1

2n
g(2nu) (1.2)

is the unique additive mapping such that

∥g(u)−A(u)∥ ≤ ϵ (1.3)

for all u ∈ G.

Based on the above said outcome, one can finalize that the additive functional
equation g(u+ v) = g(u) + g(v) has Hyers-Ulam stability on (X ,Y) . In the above
Theorem 1.1, an additive function A is created directly from the given function g
which also fulfills (1.3) and it is most dominant technique to investigate the stability
of several functional equations. Hyers theorem was indiscriminated by Aoki [2] in
1950 for additive mappings. See [1, 14–16, 19] for more information on functional
equations and their stability.

The generalization of Ulam’s problem was recently proposed by replacing func-
tional euations with differential equations. Obloza seems to be the first author
who proved the Ulam stability of differential equation in [23]. Thereafter, Alsina
and Ger [3] published their papers, which handle the Hyers-Ulam stability of the
linear differential equation y′(t) = y(t). The result obtained by Alsina and Ger was
generalized by Takahasi et al. [27] to the case of the complex Banach space valued
differential equation. Recently, many researchers have investigated the Hyers-Ulam
stability of ordinary differential equations (see [5–7,9–13,17,18,20–22,24–26,28,29].
Alqifiary and Jung [4] have proved the generalized Hyers-Ulam stability of linear
differential equations by applying the Laplace transform method.

In this paper, our main aim is to study the Hyers-Ulam stability of the first
order homogeneous linear differential equation of the form

p′(t) + µp(t) = 0 (1.4)

and the non-homogeneous linear differential equation

p′(t) + µp(t) = r(t) (1.5)

by applying Kamal transform method, where µ is a scalar, p(t) and r(t) are contin-
uously differentiable functions.

Throughout this paper, F denotes the real field R or complex field C.
A function f : (0,∞) → F is of exponential order if there exist constants A,B ∈

R such that |f(t)| ≤ AetB for all t > 0. For each function f : (0,∞) → F of
exponential order, let us consider the set A

A =
{
f(t) : ∃M, τ1, τ2 > 0 |f(t)| < Me|t|/kj , t ∈ (−1)j × [0,∞)

}
where the constant M must be finite, while τ1 and τ2 may be infinite. The Kamal
transform is defined by

G(u) = K{f(t)} =

∫ ∞

0

f(t)e−t/udt, t ≥ 0, u ∈ (−τ1, τ2)

where the variable u in the Kamal transform is used to factor the variable t in the
argument of the function f , specially for f(t) in A.
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Definition 1.1 (Convolution of two functions). Let f and g be Lebesgue integrable
functions on (−∞,+∞). Let S denote the set of x for which the Lebesgue integral

h(x) =

∫ ∞

−∞
f(t) g(x− t) dt

exists. This integral defines a function h on S called the convolution of f and g.
We also write h = f ∗ g to denote this function.

Now, we give the definitions of Hyers-Ulam stability and generalized Hyers-Ulam
stability of the differential equations (1.4) and (1.5).

Definition 1.2. The linear differential equation (1.4) is said to have the Hyers-
Ulam stability if there exists a constant K > 0 satisfying the following property:
If for every ϵ > 0, there exists a continuously differentiable function p(t) satisfying
the inequality |p′(t) + µp(t)| ≤ ϵ, then there exists some q : (0,∞) → F satisfying
the differential equation (1.4) and |p(t) − q(t)| ≤ Kϵ for all t > 0. We call such K
as the Hyers-Ulam stability constant for the differential equation (1.4).

Definition 1.3. We say that the non-homogeneous linear differential equation (1.5)
has the Hyers-Ulam stability if there exists a continuously differentiable function p(t)
satisfying the following condition: If for every ϵ > 0, there exists a positive constant
K such that |p′(t) + µp(t) − r(t)| ≤ ϵ, then there exists a solution q : (0,∞) → F
satisfying the differential equation (1.5) and |p(t)− q(t)| ≤ Kϵ for all t > 0. We call
such K as the Hyers-Ulam stability constant for the differential equation (1.5).

Definition 1.4. We say that the homogeneous linear differential equation (1.4) has
the generalized Hyers-Ulam stability if there exists a constant K > 0 satisfying the
following property: For every ϵ > 0 and a continuously differentiable function p(t),
if there exists ϕ : (0,∞) → (0,∞) satisfying the inequality |p′(t) + µp(t)| ≤ ϕ(t)ϵ,
then there exists some q : (0,∞) → F satisfying the differential equation (1.4) and
|p(t)− q(t)| ≤ K ϕ(t)ϵ for all t > 0. We call such K as the generalized Hyers-Ulam
stability constant for the differential equation (1.4).

Definition 1.5. The differential equation (1.5) is said to have the generalized
Hyers-Ulam stability if there exists a positive constant K satisfying the follow-
ing condition: For every ϵ > 0, there exists a continuously differentiable function
x(t), if ϕ : (0,∞) → (0,∞) satisfies the inequality |p′(t)+µp(t)−r(t)| ≤ ϕ(t)ϵ, then
there exists a solution q : (0,∞) → F satisfying the differential equation (1.5) and
|p(t)− q(t)| ≤ K ϕ(t)ϵ for all t > 0. We call such K as the generalized Hyers-Ulam
stability constant for the differential equation (1.5).

2. Hyers-Ulam stability of differential equations
In this section, we prove the Hyers-Ulam stability of the homogeneous and non-
homogeneous linear differential equations (1.4) and (1.5) by using Kamal transform.
Firstly, we prove the Hyers-Ulam stability of the first order homogeneous differential
equation (1.4) by using Kamal transform method.

Theorem 2.1. Let µ be a constant in F. For every ϵ > 0, there exists a positive
constant K such that if p : (0,∞) → F is a continuously differentiable function
satisfying the inequality

|p′(t) + µp(t)| ≤ ϵ (2.1)
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for all t > 0, then there exists a solution q : (0,∞) → F of the differential equation
(1.4) such that |p(t)− q(t)| ≤ Kϵ for all t > 0.

Proof. Assume that p(t) is a continuously differentiable function satisfying the
inequality (2.1). Let us define a function z : (0,∞) → F such that z(t) =: p′(t) +
µp(t) for all t > 0. In view of (2.1), we have |z(t)| ≤ ϵ. Now, taking Kamal
transform to z(t), we have

Z(u) = K{z(t)} = K{p′(t)+µp(t)} = K{p′(t)}+µ K{p(t)} =
P (u)

u
−p(0)+µP (u).

Thus
K{p(t)} = P (u) =

uZ(u)

1 + µu
+

up(0)

1 + µu
. (2.2)

Set q(t) = e−µtp(0). Then p(0) = q(0). Taking Kamal transform to q(t), we get

K{q(t)} = Q(u) =
up(0)

1 + µu
. (2.3)

Thus K{p′(t) + µp(t)} = K{p′(t)}+µK{p(t)} =
Q(u)

u
−q(0)+µQ(u). Using (2.3),

we have K{p′(t) + µ p(t)} = 0. Since K is a one-to-one operator, q′(t) + µq(t) = 0.
Hence q(t) is a solution of the differential equation (1.4). So G(u) =

u

1 + µu
. Then

the equality K{g(t)} =
u

1 + µu
implies that g(t) = K−1

{
u

1 + µu

}
. Moreover, by

(2.2) and (2.3), we obtain

K{p(t)} − K {q(t)} = P (u)−Q(u) =
uZ(u)

1 + µu
= Z(u)G(u) = K{z(t)}K {g(t)}

= K{p(t)− q(t)} = K{z(t) ∗ g(t)} ,

which gives p(t)− q(t) = z(t) ∗ g(t). Taking modulus on both sides, we have

|p(t)−q(t)| = |z(t)∗g(t)| =
∣∣∣∣∫ ∞

−∞
z(t) g(t− x) dx

∣∣∣∣ ≤ |z(t)|
∣∣∣∣∫ ∞

−∞
q(t− x) dx

∣∣∣∣ ≤ Kϵ.

Here K =
∣∣∣∫∞

−∞ q(t− x) dx
∣∣∣ and the integral exists for each value of t. Thus the

homogeneous linear differential equation (1.4) has the Hyers-Ulam stability.

Theorem 2.2. Let µ be a constant in F. For every ϵ > 0, there exists a positive
constant K such that if p : (0,∞) → F is a continuously differentiable function
satisfying the inequality

|p′(t) + µp(t)− r(t)| ≤ ϵ (2.4)

for all t > 0, then there exists a solution q : (0,∞) → F of the non-homogeneous
differential equation (1.5) such that |p(t)− q(t)| ≤ Kϵ for all t > 0.

Now, we prove the Hyers-Ulam stability of the first order non-homogeneous
differential equation (1.5) by using Kamal transform method.
Proof. Assume that p(t) is a continuously differentiable function satisfying the
inequality (2.4). Let us define a function z : (0,∞) → F such that z(t) =: p′(t) +
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µp(t) − r(t) for all t > 0. In view of (2.4), we have |z(t)| ≤ ϵ. Now, taking Kamal
transform to z(t), we have K{z(t)} = K{p′(t) + µp(t)− r(t)} and

Z(u) = K{p′(t)}+ µ K{p(t)} − K{r(t)} =
P (u)

u
− p(0) + µP (u)−R(u).

Thus
K{z(t)} = Z(u) =

u

1 + µu
Z(u) +

up(0)

1 + µu
+

u

1 + µu
R(u). (2.5)

Set q(t) = e−µtp(0) + (r(t) ∗ q(t)) . Then p(0) = q(0). Taking Kamal Transform to
q(t), we obtain

K{q(t)} = Q(u) =
up(0)

1 + µu
+R(u)G(u). (2.6)

Thus K{p′(t) + µp(t)} = K{p′(t)}+µK{p(t)} =
Q(u)

u
−q(0)+µQ(u). Using (2.6),

we have K{p′(t) + µ p(t)} = R(u) = K{r(t)} . Since K is a one-to-one operator,
q′(t) + µq(t) = r(t). Hence q(t) is a solution of the differential equation (1.5).
Let G(u) =

u

1 + µu
. Then the equality K{g(t)} =

u

1 + µu
implies that g(t) =

K−1

{
u

1 + µu

}
. Moreover, by (2.5) and (2.6), we obtain

K{p(t)} − K {q(t)} = P (u)−Q(u) =
uZ(u)

1 + µu
= Z(u)G(u) = K{z(t)}K {g(t)}

= K{p(t)− q(t)} = K{z(t) ∗ g(t)} ,

which gives p(t)− q(t) = z(t) ∗ g(t). Taking modulus on both sides, we have

|p(t)−q(t)| = |z(t)∗g(t)| =
∣∣∣∣∫ ∞

−∞
z(t) g(t− x) dx

∣∣∣∣ ≤ |z(t)|
∣∣∣∣∫ ∞

−∞
q(t− x) dx

∣∣∣∣ ≤ Kϵ.

Here K =
∣∣∣∫∞

−∞ q(t− x) dx
∣∣∣ and the integral exists for each value of t. Thus the

homogeneous linear differential equation (1.5) has the Hyers-Ulam stability.

3. Generalized Hyers-Ulam stability of differential
equations

In this scetion, we prove the generalized Hyers-Ulam stability of the differential
equations (1.4) and (1.5). Firstly, we prove the generalized Hyers-Ulam stabil-
ity of the first order non-homogeneous differential equation (1.4) by using Kamal
transform method.

Theorem 3.1. Let µ be a constant in F. For every ϵ > 0, there exists a positive
constant K such that if p : (0,∞) → F is a continuously differentiable function and
ϕ : (0,∞) → (0,∞) is an integrable function satisfying

|p′(t) + µp(t)| ≤ ϕ(t)ϵ (3.1)

for all t > 0, then there exists a solution q : (0,∞) → F of the homogeneous
differential equation (1.4) such that |p(t)− q(t)| ≤ K ϕ(t)ϵ for all t > 0.
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Proof. Assume that p(t) is a continuously differentiable function satisfying the
inequality (3.1). Let us define a function z : (0,∞) → F such that z(t) =: p′(t) +
µp(t) for all t > 0. In view of (3.1), we have |z(t)| ≤ ϕ(t)ϵ. Now, taking Kamal
Transform to z(t), we have

K{p(t)} = P (u) =
uZ(u)

1 + µu
+

up(0)

1 + µu
. (3.2)

Set q(t) = e−µtp(0). Then p(0) = q(0). Taking Kamal transform to q(t), we obtain

K{q(t)} = Q(u) =
up(0)

1 + µu
. (3.3)

Thus K{p′(t) + µp(t)} = K{p′(t)}+µK{p(t)} =
Q(u)

u
−q(0)+µQ(u). Using (3.3),

we have K{p′(t) + µ p(t)} = 0. Since K is a one-to-one operator, q′(t) + µq(t) = 0.
Hence q(t) is a solution of the differential equation (1.4). So G(u) =

u

1 + µu
. Then

the equality K{g(t)} =
u

1 + µu
implies that g(t) = K−1

{
u

1 + µu

}
. Moreover, by

(3.2) and (3.3), we obtain

K{p(t)} − K {q(t)} = P (u)−Q(u) =
uZ(u)

1 + µu
= Z(u)G(u) = K{z(t)}K {g(t)}

= K{p(t)− q(t)} = K{z(t) ∗ g(t)} ,

which gives p(t) − q(t) = z(t) ∗ g(t). Similar to the proof of Theorem 2.1, we have
|p(t)− q(t)| ≤ Kϕ(t)ϵ, where K =

∣∣∣∫∞
−∞ q(t− x) dx

∣∣∣, the integral exists for each
value of t and ϕ(t) is an integrable function. Thus the differential equation (1.4)
has the generalized Hyers-Ulam stability.

Now, we prove the Hyers-Ulam stability of the non-homogeneous linear differ-
ential equation (1.5) by using Kamal transform method.

Theorem 3.2. Let µ be a constant in F. For every ϵ > 0, there exists a positive
constant K such that if p : (0,∞) → F is a continuously differentiable function and
ϕ : (0,∞) → (0,∞) is an integrable function satisfying the condition

|p′(t) + µp(t)− r(t)| ≤ ϕ(t)ϵ (3.4)

for all t > 0, then there exists a solution q : (0,∞) → F of the non-homogeneous
differential equation (1.5) such that |p(t)− q(t)| ≤ K ϕ(t)ϵ for all t > 0.

Proof. Assume that p(t) is a continuously differentiable function satisfying the
inequality (3.4). Let us define a function z : (0,∞) → F such that z(t) =: p′(t) +
p(t)− r(t) for all t > 0. In view of (3.4), we have |z(t)| ≤ ϕ(t)ϵ. Now, taking Kamal
Transform to z(t), we have

K{z(t)} = Z(u) =
u

1 + µu
Z(u) +

up(0)

1 + µu
+

u

1 + µu
R(u). (3.5)

Set q(t) = e−µtp(0) + (r(t) ∗ q(t)) . Then p(0) = q(0). Taking Kamal Transform to
q(t), we get

K{q(t)} = Q(u) =
up(0)

1 + µu
+R(u)G(u). (3.6)
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Thus K{p′(t) + µp(t)} = K{p′(t)}+µK{p(t)} =
Q(u)

u
−q(0)+µQ(u). Using (3.6),

we have K{p′(t) + µ p(t)} = R(u) = K{r(t)} . Since K is a one-to-one operator,
q′(t) + µq(t) = r(t). Hence q(t) is a solution of the differential equation (1.5).
So G(u) =

u

1 + µu
. Then the equality K{g(t)} =

u

1 + µu
implies that g(t) =

K−1

{
u

1 + µu

}
. Moreover, by (3.5) and (3.6), we obtain

K{p(t)} − K {q(t)} = P (u)−Q(u) =
uZ(u)

1 + µu
= Z(u)G(u) = K{z(t)}K {g(t)}

⇒ K{p(t)− q(t)} = K{z(t) ∗ g(t)} ,

which gives p(t)− q(t) = z(t) ∗ g(t).
The rest of the proof is similar to the proof of Theorem 3.1.

4. An example
Consider the non-homogeneous differential equation

p′(t) + p(t) = 5 sin t, p(0) = 1. (4.1)

Using Theorem 2.2, we have |p′(t) + p(t) − 5 sin t| ≤ ϵ, where p is a continuously
differentiable function. Let z(t) = p′(t) + p(t) − 5 sin t for all t > 0. Then we have
|z(t)| ≤ ϵ. Now, taking Kamal Transform to z(t), we get

Z(u) =
P (u)

u
− p(0) + P (u)− 5

(
u2

1 + u2

)
,

P (u) =
u

1 + u

[
Z(u) + 1 +

5u2

1 + u2

]
.

Let G(u) =
u

(1 + u)
. Then we have K{g(t)} =

u

(1 + u)
. Then we have a solu-

tion function y(t) = e−tp(0) + [(5 sin t) ∗ g(t)] with p(0) = q(0) and taking Kamal
transform to q(t), we get

K{q(t)} = Q(u) =
u

(1 + u)
+

5u2

1 + u2
Q(u).

Also, K{p′(t) + p(t)} = 5K{sin t}. Since K is a one-to-one operator, p′(t) + p(t) =
5 sin t. Hence q(t) is a solution of the differential equation (4.1). Then by Theorem
2.2, we obtain that |p(t) − q(t)| ≤ Kϵ. Hence the non-homogeneous differential
equation (4.1) has the Hyers-Ulam stability.

5. Conclusion
In this paper, we have proposed a new method by using Kamal transform, alter-
natively, the existing Hyers method and the fixed-point method. Using the prosed
new method, we have investigated the Hyers-Ulam stability and the generalized
Hyers-Ulam stability of linear differential equations with a suitable example.
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