
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 3, June 2021, 1640–1651 DOI:10.11948/20200387

GENERAL SCHWARZ LEMMAS BETWEEN
PSEUDO-HERMITIAN MANIFOLDS AND

HERMITIAN MANIFOLDS∗

Yibin Ren1 and Kai Tang1,†

Abstract From the viewpoint of differential geometry, Schwarz lemmas of
distance-decreasing type and volume-decreasing type can be obtained by the
estimates of sum functions and product functions of all eigenvalues of holo-
morphic maps. This paper investigates general Schwarz lemmas by estimating
partial sum functions and partial product functions of the eigenvalues of gener-
alized holomorphic maps between pseudo-Hermitian manifolds and Hermitian
manifolds.
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1. Introduction
The Schwarz lemma is a principal tool in various branches of mathematics. Mo-
tivated by Pick and Ahlfors, differential geometric ideas blend into the study of
Schwarz lemma, such as Chern, Lu, Yau, Chen-Cheng-Lu, Royden (cf. [3, 4, 10,
15, 18]). Essentially, these Schwarz-type lemmas can be classified as distance-
decreasing property and volume-decreasing property. Suppose that M2m and N2m

are two Kähler manifolds with fundamental forms ωM and ωN respectively. Let
f : M → N be a holomorphic map. Then the distance-decreasing Schwarz lemma
can be evaluated by estimating the density ⟨f∗ωN , ωM ⟩ or the largest eigenvalue
of f∗ωN ; the volume-decreasing one is obtained by estimating the quotient of vol-
ume elements, i.e. (f∗ωN )m/ωm

M . These two quantities are the sum and product
of eigenvalues of f∗ωN respectively. Recently, Ni [11, 12] investigated the partial
sum and partial product of eigenvalues which leads general Schwarz-type lemmas;
as an application, he reveals the relations between l-Ricci curvature and the rank of
a holomorphic map between Kähler manifolds. These general Schwarz-type lemma
have been generalized to holomorphic maps between Hermitian manifolds by the
second author [16].

CR geometry is an odd-dimensional analogue of complex geometry. A CR man-
ifold of hypersurface type which admits a positive definite pseudo-Hermitian struc-
ture is called a pseudo-Hermitian manifold. In particular, Sasakian manifolds who
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have strong connections with Kähler geometry are special pseudo-Hermitian mani-
folds. The classical Schwarz lemmas for the following generalized holomorphic maps
(see Section 2 for definitions):

(1) CR maps from pseudo-Hermitian manifolds to Hermitian manifolds,
(2) (JN , J)-holomorphic maps from Hermitian manifolds to pseudo-Hermitian man-

ifolds,
(3) transversally holomorphic maps between two pseudo-Hermitian manifolds,
(4) CR maps between two pseudo-Hermitian manifolds,

have been established by the first author and his collaborators in [6,7]. In particular,
they applied the maps of type (1) and type (4) to explore CR Carathéodory distance
and CR Kobayashi hyperbolicity. The present paper is going to discuss the general
Schwarz lemmas for types (1)–(3). Our main theorems are as follows:

Theorem 1.1. Suppose that (M2m+1,HM, J, θ) is a closed pseudo-Hermitian man-
ifold and (N2n, JN ) is a Hermitian manifold with fundamental form ωN . Let
f : M → N be a basic CR map and 1 ≤ l ≤ min{m,n}.

(a) If the pseudo-Hermitian l-Ricci curvature of M bounded from below by −k ≤ 0
and the holomorphic bisectional curvature of N bounded from above by −K < 0,
then the sum of the l-largest eigenvalues of f∗ωN is bounded by k/K.

(b) If the pseudo-Hermitian l-scalar curvature of M bounded from below by −k ≤ 0
and the first l-Chern-Ricci curvature of N bounded from above by −K < 0,

then the product of the l-largest eigenvalues of f∗ωN is bounded by
(

k

lK

)l

. In

particular, if k = 0, then rankR(df) ≤ 2l.

Theorem 1.2. Suppose that (N2n, JN ) is a closed Hermitian manifold with fun-
damental form ωN and (M2m+1,HM, J, θ) is a Sasakian manifold. Let f : M → N
be a (JN , J)-holomorphic map and 1 ≤ l ≤ min{m,n}.

(a) If the second l-Chern-Ricci curvature N bounded from below by −k ≤ 0 and the
pseudo-Hermitian bisectional curvature of M bounded from above by −K < 0,
then the sum of the l-largest eigenvalues of f∗Gθ is bounded by k/K.

(b) If the l-Chern-scalar curvature of N bounded from below by −k ≤ 0 and the
pseudo-Hermitian l-Ricci curvature of M bounded from above by −K < 0,

then the product of the l-largest eigenvalues of f∗Gθ is bounded by
(

k

lK

)l

. In

particular, if k = 0, then rankR(df) ≤ 2l.

Theorem 1.3. Suppose that (M2m+1,H, J, θ) is a closed pseudo-Hermitian mani-
fold and (M̃2n+1, H̃, J̃ , θ̃) is a Sasakian manifold. Let f : M → M̃ be a transversally
holomorphic map and 1 ≤ l ≤ min{m,n}.

(a) If the pseudo-Hermitian l-Ricci curvature of M bounded from below by −k ≤ 0
and the pseudo-Hermitian bisectional curvature of M̃ bounded from above by
−K < 0, then the sum of the l-largest eigenvalues of f∗Gθ̃ is bounded by k/K.

(b) If the pseudo-Hermitian l-scalar curvature of M bounded from below by −k ≤ 0
and the pseudo-Hermitian l-Ricci curvature of M̃ bounded from above by −K <
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0, then the product of the l-largest eigenvalues of f∗Gθ̃ is bounded by
(

k

lK

)l

.

In particular, if k = 0, then rankR(df) ≤ 2l.

The present paper will use the moving frame method to avoid the lack of com-
patible coordinates with CR structure. One can generalize Theorems 1.1–1.3 to
complete noncompact domains by maximum principle and some suitable complex
Hessian comparison theorems (cf. [6, 7]). Since the pseudo-Hermitian curvature
tensor is symmetric bihermitian, then one can also weaken the pseudo-Hermitian
bisectional curvature condition to the pseudo-Hermitian sectional curvature condi-
tion by Royden’s method [15].

For a CR map f from a pseudo-Hermitian manifold (M,H, J, θ) to a pseudo-
Hermitian manifold (N, H̃, J̃ , θ̃) which is type (4), its pull-back f∗Gθ̃ on T1,0M is
diagonal and all eigenvalues are same. Hence its general Schwarz lemmas have been
deduced in [7].

2. Preliminaries
In this section, we will briefly introduce the pseudo-Hermitian geometry (cf. [8] for
details).

A CR manifold (M,HM,J) is a real odd-dimensional C∞ manifold with an
1-codimension subbundle HM of TM and an integrable almost complex structure
J ∈ Aut(HM). Set

T1,0M = {X ∈ HM | JX =
√
−1X} and T0,1M = T1,0M. (2.1)

The integrable condition is equivalent to
[
Γ(T1,0M),Γ(T1,0M)

]
⊂ Γ(T1,0M). A

pseudo-Hermitian manifold, denoted by (M,HM,J, θ) or (M,T1,0M, θ), is an
orientable CR manifold with a positive pseudo-Hermitian structure θ which satisfies
that HM = Ker θ and its related Levi form

Lθ(X, Ȳ ) == −
√
−1dθ(X, Ȳ ) for any X,Y ∈ T1,0M (2.2)

is positive definite.
On a pseudo-Hermitian manifold (M,HM,J, θ), there is a unique globally de-

fined vector field ξ (called the Reeb vector field), with ξ⌟θ = 1 and ξ⌟dθ = 0. It
leads the decomposition TM = HM ⊕Rξ which extends the almost complex struc-
ture J to an endomorphism of TM by requiring Jξ = 0. Let πH : TM → HM be
the natural projection and

Gθ(X,Y ) = dθ(πH(X), JπH(Y )) for any X,Y ∈ TM (2.3)

which is J-invariant and symmetric. The Webster metric gθ = Gθ + θ ⊗ θ is Rie-
mannian. In pseudo-Hermitian geometry, there is a canonical linear connection ∇
(cf. [8]), called Tanaka-Webster connection, which preserves the horizontal bun-
dle HM , the almost complex structure J and the pseudo-Hermitian structure θ;
moreover, its torsion satisfies

T∇(X,Y ) = 2dθ(X,Y )ξ and T∇(ξ, JX) + JT∇(ξ,X) = 0. (2.4)
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The pseudo-Hermitian torsion τ of ∇ is a TM -valued 1-form defined by τ(X) =
T∇(ξ,X) for X ∈ TM . It induces a trace-free symmetric tensor field A given by

A(X,Y ) = gθ(τ(X), Y ). (2.5)

A pseudo-Hermitian manifold with vanishing pseudo-Hermitian torsion is Sasakian.
Such manifolds are regarded as an odd-dimensional analogue of Kähler manifolds
(cf. [2]).

The Levi form can lead a Hermitian metric on T1,0M . Let {ξi} be a local
unitary frame of T1,0M and {θi} be its dual frame. The structure equations for the
Tanaka-Webster connection can be expressed by

dθi =
∑
j

θj ∧ θij + θ ∧ τ i, θij + θj̄
ī
= 0, dθij =

∑
k

θkj ∧ θik +Πi
j , (2.6)

where

Πi
j = 2

√
−1(θi∧τj+θj∧τ i)+

∑
k,l

Ri
jkl̄θ

k∧θl̄+
∑
l

Ai
l̄,jθ∧θl̄−

∑
k

Akj,̄iθ∧θk. (2.7)

Set Rījkl̄ = Ri
jkl̄

. The pseudo-Hermitian curvature tensor is symmetric bihermitian,
that is

Rījkl̄ = Rīkjl̄ and Rījkl̄ = Rjīl̄k. (2.8)
Let R be the curvature tensor on T1,0M of Tanaka-Webster connection. As holo-
morphic bisectional curvature, one can define the pseudo-Hermitian bisectional cur-
vature of X =

∑
i X

iξi, Y =
∑

i Y
iξi ∈ T1,0M by

H(X,Y ) =
R(X̄,X, Y, Ȳ )

|X|2 |Y |2
=

∑
i,j,k,t Rījkt̄X

īXjY kY t̄

(
∑

i X
iX ī)(

∑
j Y

jY j̄)
. (2.9)

When X = Y , it becomes the pseudo-Hermitian sectional curvature (cf. [17]). As
l-Ricci curvature in Kähler geometry, we can similarly define the pseudo-Hermitian
l-Ricci curvature of an l-dimensional subspace Σx ⊂ T1,0Mx at x ∈ M as follows:

Ricl(Σx, X, Ȳ ) = traceΣx
R(Ȳ ,X, ·, ·̄) = traceΣx

R(̄·, ·, X, Ȳ ). (2.10)

If {ξi}li=1 is a unitary frame of Σx, then

Ricl(Σx, X, Ȳ ) =

m∑
i,j=1

l∑
k=1

Rījkk̄Y
īXj =

m∑
i,j=1

l∑
k=1

Rk̄kjīX
jY ī (2.11)

where dimM = 2m + 1. We say the pseudo-Hermitian l-Ricci curvature bounded
from below (above) by k if

Ricl(Σx, X, X̄) ≥ k|X|2 (≤ k|X|2) for all Σx and X ∈ Σx. (2.12)

Moreover, the pseudo-Hermitian l-scalar curvature on a l-dimensional subspace
Σx ⊂ T1,0Mx at x ∈ M is given by

Sl(Σx) =

l∑
i,j=1

Rīijj̄ (2.13)
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where {ξi}li=1 is a unitary frame of Σx. Obviously, when l = m, Ricl and Sl are
exactly the classical pseudo-Hermitian Ricci curvature and pseudo-Hermitian scalar
curvature respectively.

Suppose that (N, JN , ωN ) is a Hermitian manifold with fundamental form ωN .
Let {ηα} be a local unitary frame of T1,0N and {ωα} be its dual. The structure
equations of Chern connection are

dωα = ωβ∧ωα
β +

1

2
Tα
βγω

β∧ωγ , ωα
β +ωβ̄

ᾱ = 0, dωα
β = ωγ

β∧ωα
γ +RN

ᾱβγρ̄ω
γ∧ωρ̄ (2.14)

where T and RN are the torsion tensor and curvature tensor of Chern connection.
The holomorphic bisectional curvature of Z =

∑
α Zαηα,W =

∑
α Wαηα ∈ T1,0N

is given by

HN (Z,W ) =
RN (Z̄, Z,W, W̄ )

|Z|2 |W |2
=

∑
α,β,γ,ρ R

N
ᾱβγρ̄Z

ᾱZβW γW ρ̄

(
∑

α ZαZᾱ)(
∑

β W
βW β̄)

. (2.15)

For l ≤ n = dimC N , let Σy be an l-dimensional subspace of T1,0Ny at y ∈ N and
{ηα}lα=1 be a unitary frame of Σy. The first l-Chern-Ricci curvature and second
l-Chern-Ricci curvature of Σy are defined by

Ric
(1)
l (Σy, Z, W̄ ) = traceΣy R

N (̄·, ·, Z, W̄ ) =

n∑
α,β=1

l∑
γ=1

RN
γ̄γαβ̄Z

αW β̄ , (2.16)

Ric
(2)
l (Σy, Z, W̄ ) = traceΣy

RN (W̄ , Z, ·, ·̄) =
n∑

α,β=1

l∑
γ=1

RN
β̄αγγ̄Z

αW β̄ , (2.17)

respectively; the l-Chern-scalar curvature of Σy is defined by

SN
l (Σy) =

l∑
α,β=1

RN
ᾱαββ̄ . (2.18)

In Kähler geometry, Ric
(1)
l and Ric

(2)
l are same; one can refer to the references

[11–13] for more discussion of l-curvatures.
Next we will introduce the generalized holomorphic maps in pseudo-Hermitian

geometry. In the birth of CR geometry, mathematicians found that the function
theory of strictly pseudoconvex domains in Cn has strong connection with that of
their boundaries which inspired the study of CR functions of CR manifolds (cf. [1]).
The natural generalization of CR functions is CR maps.

Definition 2.1. Suppose that (M,HM,J) is a CR manifold and (N, JN ) is a
complex manifold. A smooth map f : M → N is called CR if df ◦ J = JN ◦ df
holds on HM .

It is notable that under a local holomorphic variables of N , the components of
a CR map are CR functions. Assume that (M,HM,J, θ) is a pseudo-Hermitian
manifold with Reeb vector field ξ. A map f : M → N is said to be basic if
df(ξ) = 0. Due to the extension of J , basic CR maps from pseudo-Hermitian
manifolds to complex manifolds are also called (J, JN )-holomorphic maps which is
an important object of Siu-type rigidity theorem (cf. [5, 9]).
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Definition 2.2. Suppose that (N, JN ) is a complex manifold and (M,HM,J, θ)
is a pseudo-Hermitian manifold. A smooth map f : M → N is called (JN , J)-
holomorphic if df ◦ JN = J ◦ df holds on TN . Here J is the extended almost
complex structure.

It is too strong to require a (JN , J)-holomorphic map to be horizontal, that is
df(TN) ⊂ HM , since it makes the image of f lying in a single fiber (cf. [6]).

Definition 2.3. Suppose that (M,H, J, θ) and (M̃, H̃, J̃ , θ̃) are two pseudo-Hermitian
manifolds. Let f : M → M̃ be a smooth map.

(1) f is said to be CR if df(H) ⊂ H̃ and df ◦ J = J̃ ◦ df holds on H;
(2) f is said to be transversally holomorphic if df ◦ J = J̃ ◦ df holds on TM .

Suppose that f : (M,H, J, θ) → (M̃, H̃, J̃ , θ̃) is a CR map between two pseudo-
Hermitian manifolds. Due to the preservation of horizontal bundles and complex
structure, we have

f∗θ̃ = λθ and then f∗Gθ̃ = λGθ (2.19)

where λ = θ̃(df(ξ)). Hence, all eigenvalues of f∗Gθ̃ are same. For CR maps between
two pseudo-Hermitian manifolds, the analogous Schwarz lemma to Theorem 1.3 can
be directly obtained by the method of Theorem 3.6 in [7] which is for noncompact
case.

3. Proof of Main Theorems
In this section, since the proofs of Theorem 1.1–1.3 are similar, we will give the
details of the first one and omit the latter two.

Suppose that (M2m+1,HM, J, θ) is a pseudo-Hermitian manifold and (N2n, JN )
is a Hermitian manifold with fundamental form ωN . Let f : M → N be a CR map
and l ≤ min{m,n} be a positive integer. Since the restriction f∗ωN on T1,0M is
positive semi-definite, then all of its eigenvalues values at x ∈ M can be listed as
follows:

λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) ≥ 0. (3.1)

Hence the sum function and product function of l-largest eigenvalues are

σl(x) =

l∑
i=1

λi(x) and pl(x) =

l∏
i=1

λi(x) (3.2)

respectively. Let Gl(M) be the Grassmann l-plane bundle of T1,0M and πG :
Gl(M) → M be the projection. Then we find that

σl(x) = max
Σx∈π−1

G (x)
traceΣx

f∗ωN (3.3)

which leads the continuity of σl. Moreover, letting

E =
{
e ∈ ∧lT1,0M

∣∣ |e| = 1
}

(3.4)
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and the natural projection πE : E → M , the product function can be reformulated
by

pl(x) = max
e∈π−1

E (x)

(
f∗ωN

)l
(e, ē) (3.5)

which implies the continuity of pl.
Let {ξi} be a local unitary frame of T1,0M and {θi} be its dual. Let {ηα} be

a local unitary frame of T1,0N and {ωα} be its dual. Denote by {fα
A}, {fα

AB} and
{fα

ABC} the components of df, ∇df and ∇2df under these frames respectively. In
particular, we use the index “0” to denote the covariant derivative along the Reeb
vector field ξ. Using the structure equations of Tanaka-Webster connection and
Chern connection, the authors in [6] have deduced the commutation relations of
high-order covariant derivatives for (J, JN )-holomorphic maps which are just basic
CR maps.

Lemma 3.1 (Equations (3.6), (3.7) and (3.10) in [6]). Suppose that

f : (M,HM,J, θ) → (N, JN , ωN )

is a basic CR map. Then

fα
ī = 0, fα

0 = 0, (3.6)
fα
i0 = fα

ij̄ = 0, fα
ij = fα

ji, (3.7)

fα
ijk̄ =

m∑
t=1

fα
t R

M
t̄jk̄ −

n∑
β,γ,ρ=1

fβ
i f

γ
j f

ρ̄

k̄
RN

ᾱβγρ̄. (3.8)

Now we can prove (a) of Theorem 1.1.
Proof of Theorem 1.1(a). Since σl is continuous, then there is at least one
maximum point x ∈ M . Choose a suitable unitary frame {ξi,x} of T1,0Mx such that
f∗ωN is diagonal; in other words,(∑

α

fα
i f

ᾱ
j̄

)
(x) = λi(x)δij̄ . (3.9)

Without loss of generality, λi(x) is decreasing about i. In this proof, we always
take the sum of α, β, γ, . . . over 1, 2, . . . , n. Parallelly extend the frame {ξi,x} to a
neighborhood of x and denote by {ξi}. Set

σ̃l =

l∑
i=1

f∗ωN (ξi, ξī) =

l∑
i=1

∑
α

fα
i f

ᾱ
ī . (3.10)

On one hand, due to (3.3), σ̃l ≤ σl and σ̃l(x) = σl(x) which implies that x is still
a local maximum point of σ̃. On the other hand, by the commutation relations for
second-order covariant derivatives (see Lemma 3.1 in [14]), we know that

(σ̃l)jk̄ − (σ̃l)k̄j = 2
√
−1δjk̄(σ̃l)0 = 2

√
−1

l∑
i=1

∑
α

(fα
i0f

ᾱ
ī + fα

i f
ᾱ
ī0)δjk̄ = 0 (3.11)

due to (3.7). Hence

(σ̃l)jj̄(x) =
1

2

l∑
i,j=1

[∑
α

(fα
i f

ᾱ
ī )jj̄ +

∑
α

(fα
i f

ᾱ
ī )j̄j

]
(x) ≤ 0. (3.12)
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The commutation relation (3.8) leads the following calculation at x

l∑
j=1

(σ̃l)jj̄ =

l∑
i,j=1

∑
α

(fα
ijf

ᾱ
īj̄ + fα

ijj̄f
ᾱ
ī )

=

l∑
i,j=1

∑
α

fα
ijf

ᾱ
īj̄ +

l∑
i,j=1

∑
α

m∑
k=1

fα
k f

ᾱ
ī R

M
k̄ijj̄ −

l∑
i,j=1

∑
α,β,γ,ρ

f ᾱ
ī f

β
i f

γ
j f

ρ̄
j̄
Wα

βγρ̄

=

l∑
i,j=1

∑
α

fα
ijf

ᾱ
īj̄+

l∑
i,j=1

λi(x)R
M
īijj̄−

l∑
i,j=1

RN

(
df(ξī), df(ξi), df(ξj), df(ξj̄)

)
.

(3.13)

By the curvature assumptions, we know that

l∑
i,j=1

λi(x)R
M
īijj̄ =

l∑
i=1

λi(x)

l∑
j=1

RM
īijj̄ ≥ −k

l∑
i=1

λi(x) = −kσl(x) (3.14)

and

−
l∑

i,j=1

RN

(
df(ξī), df(ξi), df(ξj), df(ξj̄)

)
≥

l∑
i,j=1

K
∣∣df(ξi)∣∣2 · ∣∣df(ξj)∣∣2

= K

l∑
i,j=1

λiλj = Kσ2
l (x) (3.15)

since f is basic CR. Using (3.14) and (3.15), the inequality (3.13) becomes

0 ≥ −kσl(x) +Kσ2
l (x) =⇒ σl(x) ≤

k

K
. (3.16)

Hence the proof is finished by

max
M

σl = σl(x) ≤
k

K
.

Next we prove (b) of Theorem 1.1.
Proof of Theorem 1.1(b). Since pl is continuous, then we can choose a maximum
point x ∈ M of pl. Without loss of generality, assume that pl(x) > 0. Choose a
suitable frame {ξi,x} of T1,0Mx such that f∗ωN is diagonal; in other words,(∑

α

fα
i f

ᾱ
j̄

)
(x) = λi(x)δij̄ . (3.17)

Without loss of generality, λi(x) is decreasing about i. Extend {ξi,x} to a local
frame {ξi} in a neighborhood of x by parallel transformation of Tanaka-Webster
connection. Due to (3.5), we know that

p̃l
∆
= (f∗ωN )l(ξ1, . . . , ξl, ξ1̄, . . . , ξl̄) =

∑
α1,...,αl

l∏
i=1

fαi
i f ᾱi

ī
≤ pl (3.18)
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which implies that x is still a maximum point of p̃l. By (3.7) and Lemma 3.1 in [14],

l∑
j=1

[(p̃l)jj̄ − (p̃l)j̄j ] = 2l
√
−1(p̃l)0 = 2l

√
−1

∑
α1,...,αl

l∏
i=1

(
fαi
i0 f

ᾱi

ī
+ fαi

i f ᾱi

ī0

)
= 0

(3.19)
which states that (p̃l)jj̄ is real and thus

l∑
j=1

(p̃j)jj̄(x) ≤ 0. (3.20)

Using (3.8), we can do the following calculation at x

(p̃l)jj̄ =
∑
αI

∑
i1

f
αi1
i1j

f
ᾱi1

ī1

∏
i ̸=i1

fαi
i f ᾱi

ī


j̄

=
∑
αI

∑
i1

(
f
αi1

i1jj̄
f
ᾱi1

ī1
+ f

αi1
i1j

f
ᾱi1

ī1 j̄

) ∏
i ̸=i1

fαi
i f ᾱi

ī

+
∑
αI

∑
i1 ̸=i2

f
αi1
i1j

f
ᾱi1

ī1
f
αi2
i2

f
ᾱi2

ī2 j̄

∏
i ̸=i1,i2

fαi
i f ᾱi

ī

=
∑
i1

∑
αi1

pl
λi1

∑
k

f
ᾱi1

ī1
f
αi1

k RM
k̄i1jj̄

−
∑
β,γ,ρ

f
ᾱi1

ī1
fβ
i1
fγ
j f

ρ̄
j̄
RN

ᾱi1
βγρ̄ + f

αi1
i1j

f
ᾱi1

ī1 j̄


+
∑
αI

∑
i1 ̸=i2

pl
λi1λi2

f
αi1
i1j

f
ᾱi1

ī1
f
αi2
i2

f
ᾱi2

ī2 j̄

=
∑
i

∑
α

pl
λi

∑
k

f ᾱ
ī f

α
k R

M
k̄ijj̄ −

∑
β,γ,ρ

f ᾱ
ī f

β
i f

γ
j f

ρ̄
j̄
RN

ᾱβγρ̄ + fα
ijf

ᾱ
īj̄


+
∑
α,β

∑
i ̸=k

pl
λiλk

fα
ijf

ᾱ
ī f

β
k f

β̄

k̄j̄
(3.21)

where αI = (α1, . . . , αl) and the sums about i, j, k, . . . are taken over 1, 2, . . . , l. The
first term of (3.21) can be written as∑

i

plR
M
īijj̄ −

∑
i

pl
λi

RN

(
df(ξj̄), df(ξj), df(ξi), df(ξj̄)

)
+
∑
i

∑
α

pl
λi

fα
ijf

ᾱ
īj̄ . (3.22)

Since at x,

(p̃l)j =
∑
αI

∑
i1

f
αi1
i1j

f
ᾱi1

ī1

∏
i ̸=i1

fαi
i f ᾱi

ī
=
∑
i

∑
α

pl
λi

fα
ijf

ᾱ
ī (3.23)

then the second term of (3.21) becomes

∑
i,α

1

λi
fα
ijf

ᾱ
ī

∑
k,β

pl
λk

fβ
k f

k̄
k̄j̄ −

∑
β

pl
λi

fβ
i f

β̄
īj̄

 =
1

pl

∣∣(p̃l)j∣∣2 −∑
i

pl
λ2
i

∑
α,β

f ᾱ
ī f

α
ijf

β
i f

β̄
īj̄
.

(3.24)
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By substituting (3.22) and (3.24) into (3.21), we have

∑
j

(p̃l)jj̄ =
∑
i,j

[
plR

M
īijj̄ −

pl
λi

RN

(
df(ξj̄), df(ξj), df(ξi), df(ξj̄)

)]
+
∑
j

1

pl

∣∣(p̃l)j∣∣2
+
∑
i,j

pl
λ2
i

∑
α,β

(
fα
ijf

ᾱ
īj̄f

β
i f

β̄
ī
− f ᾱ

ī f
α
ijf

β
i f

β̄
īj̄

)
. (3.25)

To deal with the last term in the above equation, fix i, j and denote

a = (f1
ij , . . . , f

n
ij) and b = (f1

i , . . . , f
n
i ). (3.26)

By Schwarz inequality: ∣∣a · b̄
∣∣ ≤ |a| · |b|, (3.27)

we find ∣∣∣∣∣∑
α

fα
ijf

ᾱ
ī

∣∣∣∣∣
2

≤

(∑
α

fα
ijf

ᾱ
īj̄

)
·

∑
β

fβ
i f

β̄
ī

 (3.28)

where

left side =
∑
α

fα
ijf

ᾱ
ī ·
∑
β

fβ
ijf

β̄
ī
=
∑
α,β

fα
ijf

ᾱ
ī f

β̄
īj̄
fβ
i , (3.29)

right side =
∑
α,β

fα
ijf

ᾱ
īj̄f

β
i f

β̄
ī

(3.30)

which implies that the last term in (3.25) is nonnegative. Since pl(x) > 0 and

⟨df(ξi), df(ξj̄)⟩ =
∑
α

fα
i f

ᾱ
j̄ = λiδij̄ , at x ∈ M, (3.31)

then {
df(ξi,x)√

λi

, i = 1, . . . , l

}
(3.32)

is a unitary frame of l-dimensional subspace df(Σx) ⊂ T1,0Nf(x), where Σx is an
l-dimensional space formed by {ξi,x}li=1. By geometric inequality and curvature
assumptions, we find

−
∑
i,j

pl
λi

RN

(
df(ξī), df(ξi), df(ξj), df(ξj̄)

)

= −pl
∑
i,j

RN

(
df(ξī)√

λi

,
df(ξi)√

λi

, df(ξj), df(ξj̄)

)
= −pl

∑
j

Ric
(1)
l

(
df(Σx), df(ξj)

)
≥ Kpl

∑
j

λj ≥ Klp
1+ 1

l

l . (3.33)
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Applying (3.20), (3.25) and (3.33) with the curvature assumption on M , we have

0 ≥
∑
j

(p̃l)jj̄ ≥ −plk +Klp
1+ 1

l

l (3.34)

at x. The proof is finished by

max
M

pl = pl(x) ≤
(

k

lK

)l

. (3.35)

The key ingredient for Theorem 1.1 is the commutation relations (Lemma 3.1) for
CR maps under suitable local frames. The similar results for (JN , J)-holomorphic
maps and transversally holomorphic maps have been deduced in [6,7] which will be
listed at the end of the paper. The rest of the proofs of Theorem 1.2 and Theorem
1.3 is left to the reader.

Lemma 3.2 (cf. Equations (3.21) and (3.25) in [6]). Suppose that (N2n, JN , ωN )
is a Hermitian manifold and (M2m+1,H, J, θ) is a pseudo-Hermitian manifold. Let
f : N → M be a (JN , J)-holomorphic map. Then

f i
αβ = f i

βα +

n∑
γ=1

f i
γT

γ
αβ , f i

αβ̄ = −
m∑
j=1

f0
αf

j̄

β̄
Aīj̄ , (3.36)

f i
αβγ̄ − f i

αγ̄β =

n∑
ρ=1

f i
ρR

N
ρ̄αβγ̄ −

m∑
j,k,t=1

f j
αf

k
βf

t̄
γ̄R

M
ījkt̄

−
m∑

j,k=1

f j
α(Aīk̄,jf

0
βf

k̄
γ̄ +Akj,̄if

0
γ̄f

k
β ),

(3.37)

where fα
AB and fα

ABC are components of ∇df and ∇2df under some local unitary
frames {ηα} and {ξi} of T1,0N and T1,0M .

Lemma 3.3 (cf. Equations (2.11) and (2.14) in [7]). Suppose that (M2m+1,H, J, θ)
is a pseudo-Hermitian manifold and (M̃2n+1, H̃, J̃ , θ̃) is a Sasakian manifold. Let
f : M → M̃ be a transversally holomorphic map. Then

fα
ij = fα

ji, fα
ij̄ = fα

i0 = 0, (3.38)

fα
ijk̄ − fα

ik̄j =

m∑
t=1

fα
t Rt̄ijk̄ −

n∑
β,γ,ρ=1

fβ
i f

γ
j f

ρ̄

k̄
R̃ᾱβγρ̄, (3.39)

where R and R̃ are pseudo-Hermitian curvature of M and M̃ respectively, fα
AB and

fα
ABC are components of ∇df and ∇2df under some local unitary frames {ξi} and
{ηα} of T1,0M and T1,0M̃ .
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