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BIALGEBRAS∗
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Abstract Let (H,αH) be a Hom-Hopf algebra and (A,αA) be an (H,αH)-
Hom-bimodule algebra with the maps αA, αH bijective. Then in this paper,
we first introduce the notion of Hom-twisted smash product (A ⋆H,αA ⋆ αH)
and then study the conditions for the Hom-twisted smash product and tensor
coproduct to form a Hom-bialgebra and a Hom-Hopf algebra. Furthermore,
we give a non-trival example of Hom-twisted smash product Hopf algebra and
a characterization of left (A ⋆ H,αA ⋆ αH)-Hom module.
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1. Introduction
Hom-type algebras appeared in the physics literature of the 1990’s, when looking
for quantum deformations of some algebras of vector fields, like Witt and Virasoro
algebras ( [2, 7]). It was observed that algebras obtained by deforming certain
Lie algebras no longer satisfied the Jacobi identity, but a modified version of it
involving a homomorphism. An axiomatization of this type of algebras (called
Hom-Lie algebras) was given in [11] for the first time. Here the associativity was
replaced by the Hom-associativity: α(a)(bc) = (ab)α(c). The coalgebra counterpart
and the related notions of Hom-bialgebra and Hom-Hopf algebra were introduced
in [12] and some of their properties were described. The original definitions of Hom-
bialgebra and Hom-Hopf algebra involved two different linear maps α and β, with α
twisting the associativity condition and β the coassociativity condition. Afterwards,
two directions of study were developed, one considering the class such that β = α,
which are still called Hom-bialgebras and Hom-Hopf algebras ( [16]) and another
one, initiated in [3], where the map α is assumed to be invertible and β = α−1 (these
are called monoidal Hom-bialgebras and monoidal Hom-Hopf algebras). Since Hom-
bialgebras and monoidal Hom-bialgebras are different concepts, it turns out that
our definitions, formulae and results are also different from the ones in [8]. There
is a growing literature on Hom and BiHom-type algebras, let us just mention the
very recent papers [1, 4, 9, 10].
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The concept of twisted smash product algebra for H-bimodule algebra has been
introduced in Wang and Li [15]. If A is an H-bimodule algebra, then one can
establish a twisted smash product A ⋆ H. The usual smash product [14], and
Doi-Takeuchi’s double algebra [5] are all special cases of that algebra. Moreover,
Drinfeld’s double [6] is also such a twisted smash product algebra H∗cop ⋆H, where
H is a finite dimensional Hopf algebra.

The main purpose of this paper is to study the twisted smash products A ⋆ H
on Hom-Hopf algebra and give the conditions for the Hom-twisted smash product
algebra and tensor coproduct to form a Hom-bialgebra. Meanwhile, we should give
some non-trvial examples of Hom-twisted smash product algebras.

2. Preliminaries
Throughout the paper, let k denote a fixed field. All vector spaces, tensor products,
and homomorphisms are over k. We will use the Sweedler’s notation for terminolo-
gies on coalgebras. Let C be a coalgebra, we write comultiplication ∆(c) = c1⊗ c2,
for any c ∈ C.

In this section, we recall the definitions of the Hom-algebras, Hom-coalgebras,
Hom-modules, Hom-smash products and so on (see [12,13]).

Definition 2.1. A Hom-associative algebra is a triple (A,µ, αA), in which A is
a linear space, αA : A → A and µ : A ⊗ A → A are linear maps, with notation
µ(a⊗ b) = ab such that

αA(a)(bc) = (ab)αA(c),

αA(ab) = αA(a)αA(b), (2.1)

for all a, b, c ∈ A. We call αA the structure map of (A,µ, αA).
If η : k → A is a linear map, such that 1Aa = αA(a) = a1A, αA(1A) = 1A, here

we write η(1k) = 1A, then (A,µA, η, αA) is called a Hom-associative algebra with
an unit 1A.

Definition 2.2. A Hom-coassociative coalgebra is a triple (C,∆, αC) in which C
is a linear space, αC : C → C and ∆ : C → C ⊗ C are linear maps such that

(αC ⊗ αC) ◦∆ = ∆ ◦ αC ,

(∆⊗ αC) ◦∆ = (αC ⊗∆) ◦∆. (2.2)

If ε : C → k is a linear map, such that (ε⊗Id)◦∆ = αC = (Id⊗ε)◦∆, ε◦αC = ε,
then (C,∆, ε, αC) is called a Hom-coassociative coalgebra with counit ε.

Definition 2.3. Let (A,µA, αA) be a Hom-associative algebra, M a linear space
and αM : M →M a linear map.
(i) A left (A,αA)-Hom module structure on (M,αM ) consists of a linear map A⊗
M →M,a⊗m 7→ a ·m, satisfying the conditions (for all a, a′ ∈ A, m ∈M)

αM (a ·m) = αA(a) · αM (m),

αA(a) · (a
′
·m) = (aa

′
) · αM (m). (2.3)

(ii) A right (A,αA)-Hom module structure on (M,αM ) consists of a linear map
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M ⊗A→M,m⊗ a 7→ m · a, satisfying the conditions (for all a, a′ ∈ A, m ∈M)

αM (m · a) = αM (m) · αA(a),

(m · a) · αA(a
′
) = αM (m) · (aa

′
). (2.4)

Definition 2.4. A Hom-bialgebra is quadruple (H,µH ,∆, αH), in which (H,µH , αH)
is a Hom-associative algebra, (H,∆, αH) is a Hom-coassociative coalgebra and more-
over ∆ is a morphism of Hom-associative algebras.

Thus, a Hom-bialgebra is a Hom-associative algebra (H,µH , αH) endowed with
comultiplication ∆ : H → H ⊗H, with notation ∆(h) = h1 ⊗ h2, such that, for all
h, h

′ ∈ H, we have:
∆(hh

′
) = h1h

′

1 ⊗ h2h
′

2, (2.5)

If (H,µH , η, αH) is a Hom-associative algebra with an unit 1H , (H,∆, ε, αH) is
a Hom-coassociative coalgebra with a counit ε, satisfying ∆(hh

′
) = ∆(h)∆(h

′
),

∆(1H) = 1H ⊗ 1H , ε(hh
′
) = ε(h)ε(h

′
), then (H,µH , η,∆, ε, αH) is a Hom-bialgebra

with unit and counit.
In fact, if there exists a morphism (called antipode) SH : H → H such that

SH(h1)h2 = ε(h)1H = h1SH(h2), (2.6)
SH ◦ αH = αH ◦ SH ,

for all h ∈ H, then (H,µH , η,∆, ε, αH , SH) is called a Hom-Hopf algebra.

Definition 2.5. Assume that (H,µH ,∆H , αH) is a Hom-bialgebra. A Hom-associative
algebra (A,µA, αA) is called a left (H,αH)-Hom module algebra if (A,αA) is a left
(H,αH)-Hom module, with action denoted by H ⊗A→ A, h⊗ a 7→ h · a, such that
the following condition is satisfied:

α2
H(h) · (aa

′
) = (h1 · a)(h2 · a

′
), ∀h ∈ H, a, a

′
∈ A. (2.7)

Similarly we can define right (H,αH)-Hom module algebra.

Definition 2.6. Let (A,αA) be a Hom-algebra and (M,αM ) be a left and right
(A,αA)-Hom-module satisfying the following condition

(a→ m)← αA(b) = αA(a)→ (m← b), (2.8)

for all a, b ∈ A and m ∈M , then we call (M,αM ) be an (A,αA)-Hom-bimodule.

If (A,αA) is both left (H,αH)-Hom module algebra and right (H,αH)-Hom
module algebra, and (A,αA) is an (H,αH)-Hom-bimodule, then we call (A,αA) is
an (H,αH)-Hom-bimodule algebra.

Definition 2.7. Let (A,αA) be a left (H,αH)-Hom module algebra. The Hom-
smash product (A#H,αA#αH) of (A,αA) and (H,αH) is defined as follows, for all
a, b ∈ A, h, k ∈ H:

(1) as k-spaces, A#H = A⊗H,
(2) Hom-multiplication is given by

(a#h)(b#k) = a(α−2
H (h1)→ α−1

A (b))#α−1
H (h2)k.

Note that (A#H,αA#αH) is a Hom-algebra with the unit 1A#1H .
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3. The Hom-twisted smash product bialgebras A⋆H

In this section, we assume that the Hom-algebra is always unital. First we introduce
the notion of a Hom-twisted smash product (A⋆H,αA⋆αH) and give the Hom-smash
product and Drinfeld’s double as examples. Next we find a necessary and sufficient
condition making it into a Hom-bialgebra with the tensor coproduct, generalizing
the main constructions in [15]. Finally we give a non-trival example of Hom-twisted
smash product Hopf algebra and a characterization of left (A ⋆ H,αA ⋆ αH)-Hom
module.

Proposition 3.1. Let (A,µA, αA) be a Hom-algebra and (H,µH , η,∆, ε, αH , SH)
be a Hom-Hopf algebra with unit 1H and counit ε. (A,αA) is an (H,αH)-bimodule
algebra with the left (H,αH)-Hom module action → and the right (H,αH)-Hom
module action ←. We define a Hom-twisted smash product (A ⋆ H,αA ⋆ αH) with
the multiplication on the vector space A⊗H as follows

(a⊗ h)(b⊗ l) = a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2))⊗ α−2

H (h12)l,

for all a, b ∈ A, h, l ∈ H. The element a ⊗ h of A ⋆ H will usually be written as
a ⋆ h. Then (A ⋆ H,αA ⋆ αH) is a Hom-algebra with the unit 1A ⋆ 1H .

Proof. We first compute (1A ⋆1H)(b⋆ l) = 1A((1H → α−2
A (b))← SH(1H))⋆1H l =

1Ab ⋆αH(l) = αA(b) ⋆αH(l), and similarly we get (a ⋆h)(1A ⋆ 1H) = αA(a) ⋆αH(h).
Next for any a ⋆ h, b ⋆ l, c ⋆ g ∈ A ⋆ H, we have

[(a ⋆ h)(b ⋆ l)](αA(c) ⋆ αH(g))

= [a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2)) ⋆ α

−2
H (h12)l](αA(c) ⋆ αH(g))

= [a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2))][(α

−6
H (h1211)α

−4
H (l11)→ α−1

A (c))

← SH(α−4
H (h122)α

−2
H (l2))] ⋆ (α

−4
H (h1212)α

−2
H (l12))αH(g),

and

(αA(a) ⋆ αH(h))[(b ⋆ l)(c ⋆ g)]

= (αA(a) ⋆ αH(h))[b((α−4
H (l11)→ α−2

A (c))← SH(α−2
H (l2))) ⋆ α

−2
H (l12)g]

= αA(a)[α
−3
H (h11)→α−2

A (b((α−4
H (l11)→α−2

A (c))←SH(α−2
H (l2))))←SHα−1

H (h2)]

⋆ α−1
H (h12)(α

−2
H (l12)g)

= αA(a)[(α
2
H(α−5

H (h11))→ α−2
A (b((α−4

H (l11)→ α−2
A (c))← SHα−2

H (l2))))

← SH(α2
H(α−3

H (h2)))] ⋆ α
−1
H (h12)(α

−2
H (l12)g)

(2.7)
= αA(a)([(α

−5
H (h111)→α−2

A (b))(α−5
H (h112)→((α−6

H (l11)→α−4
A (c))←SHα−4

H (l2)))]

← SH(α2
H(α−3

H (h2)))) ⋆ α
−1
H (h12)(α

−2
H (l12)g)

=αA(a)([(α
−5
H (h111)→α−2

A (b))←SH(α−3
H (h22))]((α

−5
H (h112)→((α−6

H (l11)→α−4
A (c))

← SHα−4
H (l2))))← SH(α−3

H (h21)))) ⋆ α
−1
H (h12)(α

−2
H (l12)g)

(2.3)
= αA(a)([(α

−5
H (h111)→α−2

A (b))←SH(α−3
H (h22))]((α

−6
H (h112)α

−5
H (l11)→α−2

A (c))

← SHα−3
H (l2))SH(α−4

H (h21)))) ⋆ α
−1
H (h12)(α

−2
H (l12)g)

(2.4)
= [a((α−5

H (h111)→ α−2
A (b))← SH(α−3

H (h22)))]((α
−5
H (h112)α

−4
H (l11)→ α−1

A (c))
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← SH(α−3
H (h21)α

−2
H (l2)))← (α−2

H (h12)α
−2
H (l12))αH(g).

From the coassociativity of (H,∆, αH),

(h11)1 ⊗ (h11)2 ⊗ h12 ⊗ (h2)1 ⊗ (h2)2

= (α−1
H (h111))1 ⊗ (α−1

H (h111))2 ⊗ α−1
H (h112)⊗ h12 ⊗ αH(h2)

(2.2)
= (h11)1 ⊗ (h11)2 ⊗ α−1

H (h121)⊗ α−1
H (h122)⊗ αH(h2)

= h111 ⊗ h112 ⊗ α−1
H (h121)⊗ α−1

H (h122)⊗ αH(h2)

(2.2)
= αH(h11)⊗ h121 ⊗ α−1

H (h1211)⊗ α−2
H (h1222)⊗ αH(h2)

= αH(h11)⊗ α−1
H (h1211)⊗ α−2

H (h1212)⊗ α−1
H (h122)⊗ αH(h2),

we get

h11 ⊗ h1211 ⊗ h1212 ⊗ h122 ⊗ h2

= α−1
H (h11)1 ⊗ αH(h11)2 ⊗ α2

H(h12)⊗ αH(h2)1 ⊗ α−1
H (h2)2

and it follows

[(a ⋆ h)(b ⋆ l)](αA(c) ⋆ αH(g)) = (αA(a) ⋆ αH(h))[(b ⋆ l)(c ⋆ g)].

Thus (A ⋆ H,αA ⋆ αH) is a Hom-algebra.
The following lemma is obvious.

Lemma 3.1. Let (A,αA) be an (H,αH)-Hom-bimodule algebra, then there are two
Hom-algebra isomorphisms A ∼= A ⋆ 1H via a 7→ a ⋆ 1H and H ∼= 1A ⋆ H via
h 7→ 1A ⋆ h. So we denote ah = (a ⋆ 1H)(1A ⋆ h) and ha = (1A ⋆ h)(a ⋆ 1H).

As special cases of the Hom-twisted smash product, we get the following exam-
ples.

Example 3.1. Let (A,αA) be a left (H,αH)-Hom module algebra with the trivial
right (H,αH)-action, that is a ← h = αA(a)ε(h). Then (A,αA) is an (H,αH)-
Hom-bimodule algebra. The Hom-twisted smash product is actually a Hom-samsh
product (A#H,αH#αH) (see Definition 2.7).

Example 3.2. Let (H,µH , η,∆, ε, αH) be a finite dimensional Hom-Hopf algebra
with a bijective antipode SH . Then (H∗, α∗

H) is an (H,αH)-Hom-bimodule algebra
with module maps: h→ f = α∗2

H (f1)〈f2, α−1
H (h)〉, f ← h = α∗2

H (f2)〈f1, S−2
H α−1

H (h)〉.
The Drinfeld’s double D(H) (see [13]) is defined as a vector space H∗cop ⊗H with
the multiplication:

(f ⊗ a)(g ⊗ b) = 〈g1, S−1
H (a22)〉〈g22, a1〉fg21 ⊗ a21b

= f((α−4
H (a11)→ α∗−2

H (g))← SHα−2
H (a2))⊗ α−2

H (a12)b,

for all a, b ∈ H and f, g ∈ H∗. The unit is ε⊗ 1H , αD(H) = α∗
H ⊗ αH .

Lemma 3.2. Let (A⋆H,αA ⋆αH) be a Hom-twisted smash product, a⋆1H , 1A ⋆h ∈
A ⋆ H. Then

(a ⋆ 1H)(1A ⋆ h) = αA(a) ⋆ αH(h), (3.1)
(1A ⋆ h)(a ⋆ 1H) = ((α−3

H (h11)→ α−1
A (a))← Sα−1

H (h2)) ⋆ α
−1
H (h12). (3.2)
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Now we give the main result of the paper as follows.

Theorem 3.1. Let (A,αA) be a Hom-bialgebra and an (H,αH)-Hom-bimodule al-
gebra.

(1) The Hom-twisted smash product algebra (A ⋆ H,αA ⋆ αH) equipped with the
tensor product Hom-coalgebra structure (i.e. ∆(a⋆h) = (a1⋆h1)⊗(a2⋆h2), ε(a⋆h) =
ε(a)ε(h)) makes (A ⋆H,αA ⋆ αH) into a Hom-bialgebra, if the following conditions
hold:

(a) ε((α−2
H (h1)→ α−1

A (a))← SHα−1
H (h2)) = ε(h)ε(a),

(b) ∆((α−2
H (h1)→α−1

A (a))←SHα−1
H (h2))=((α−2

H (h11)→α−1
A (a1))←SHα−1

H (h12))

⊗((α−2
H (h21)→α−1

A (a2))←SHα−1
H (h22)),

(c) (h1 → a)⊗ h2 = (h2 → a)⊗ h1,

(d) a← SH(h1)⊗ h2 = a← SH(h2)⊗ h1,

for all a ∈ A, h ∈ H. Furthermore, if (A,αA, SA) is a Hom-Hopf algebra, then
(A ⋆ H,αA ⋆ αH) is also a Hom-Hopf algebra with the antipode SA⋆H defined by

SA⋆H(a ⋆ h) = (1A ⋆ SH(α−1
H (h)))(SA(α

−1
A (a)) ⋆ 1H).

(2) If the right action of (H,αH) on (A,αA) satisfies the condition εA(a← h) =
εA(a)εH(h), then the Hom-twisted smash product algebra (A⋆H,αA ⋆αH) equipped
with the tensor product Hom-coalgebra structure, makes (A ⋆ H,αA ⋆ αH) into a
Hom-bialgebra if and only if conditions (a), (b), (c) and (d) in (1) hold.

Proof. (1) It is easy to check (A ⋆ H,∆A⋆H , εA⋆H , αA ⋆ αH) is a Hom-coalgebra.
Taking a ⋆ h, b ⋆ l ∈ A ⋆ H, we have

∆[(a ⋆ h)(b ⋆ l)]

= ∆[a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2)) ⋆ α

−2
H (h12)l]

(2.5)
= [a1((α

−4
H (h11)→ α−2

A (b))← SHα−2
H (h2))1 ⋆ α

−2
H (h121)l1]

⊗[a2((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2))2 ⋆ α

−2
H (h122)l2]

(2.2)
= [a1((α

−4
H (h11)→ α−2

A (b))← SHα−3
H (h22))1 ⋆ α

−1
H (h12)l1]

⊗[a2((α−4
H (h11)→ α−2

A (b))← SHα−3
H (h22))2 ⋆ α

−1
H (h21)l2]

(c)
= [a1((α

−4
H (h12)→ α−2

A (b))← SHα−3
H (h22))1 ⋆ α

−1
H (h11)l1]

⊗[a2((α−4
H (h12)→ α−2

A (b))← SHα−3
H (h22))2 ⋆ α

−1
H (h21)l2]

(d)
= [a1((α

−4
H (h12)→ α−2

A (b))← SHα−3
H (h21))1 ⋆ α

−1
H (h11)l1]

⊗[a2((α−4
H (h12)→ α−2

A (b))← SHα−3
H (h21))2 ⋆ α

−1
H (h22)l2]

= [a1((α
−5
H (h211)→ α−2

A (b))← SHα−4
H (h212))1 ⋆ h1l1]

⊗[a2((α−5
H (h211)→ α−2

A (b))← SHα−4
H (h212))2 ⋆ α

−1
H (h22)l2]

(b)
= [a1((α

−5
H (h2111)→ α−2

A (b1))← SHα−4
H (h2112)) ⋆ h1l1]

⊗[a2((α−5
H (h2121)→ α−2

A (b2))← SHα−4
H (h2122)) ⋆ α

−1
H (h22)l2]

= [a1((α
−4
H (h112)→ α−2

A (b1))← SHα−2
H (h12)) ⋆ α

−2
H (h111)l1]

⊗[a2((α−3
H (h21)→ α−2

A (b2))← SHα−3
H (h221)) ⋆ α

−2
H (h222)l2]
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(c)(d)
= [a1((α

−4
H (h111)→ α−2

A (b1))← SHα−2
H (h12)) ⋆ α

−2
H (h112)l1]

⊗[a2((α−3
H (h21)→ α−2

A (b2))← SHα−3
H (h222)) ⋆ α

−2
H (h221)l2]

= [a1((α
−4
H (h111)→ α−2

A (b1))← SHα−2
H (h12)) ⋆ α

−2
H (h112)l1]

⊗[a2((α−4
H (h211)→ α−2

A (b2))← SHα−2
H (h22)) ⋆ α

−2
H (h212)l2]

= [(a1 ⋆ h1)(b1 ⋆ l1)]⊗ [(a2 ⋆ h2)(b2 ⋆ l2)]

= [(a1 ⋆ h1)⊗ (a2 ⋆ h2)][(b1 ⋆ l1)⊗ (b2 ⋆ l2)] = ∆(a ⋆ h)∆(b ⋆ l).

This shows that ∆A⋆H is an algebra map. By condition (a) it is easy to verify that
εA⋆H = εA ⊗ εH is also an algebra map. Now we show that SA⋆H is the antipode
of A ⋆ H as follows:

(a1 ⋆ h1)SA⋆H(a2 ⋆ h2)

= (a1 ⋆ h1)[(1A ⋆ SHα−1
H (h2))(SAα

−1
A (a2) ⋆ 1H)]

(2.1)
= [(α−1

A (a1) ⋆ α
−1
H (h1))(1A ⋆ SHα−1

H (h2))](SA(a2) ⋆ 1H)

= [α−1
A (a1)((α

−5
H (h111)→1A)←SHα−3

H (h12))⋆α
−3
H (h112)SHα−1

H (h2)](SA(a2)⋆1H)

= [α−1
H (a1)1AεH(h111)εH(h12) ⋆ α

−3
H (h112)SHα−1

H (h2)](SA(a2) ⋆ 1H)

= [a1 ⋆ α
−1
H (h1)SHα−1

H (h2)](SA(a2) ⋆ 1H)

= (a1 ⋆ 1H)(SA(a2) ⋆ 1H)εH(h) = (a1SA(a2) ⋆ 1H)εH(h)

= 1A ⋆ 1HεA(a)εH(h) = 1A ⋆ 1HεA⋆H(a ⋆ h).

Similarly one can get SA⋆H(a1 ⋆ h1)(a2 ⋆ h2) = 1A ⋆ 1HεA⋆H(a ⋆ h).

(2) (⇐) See (1).
(⇒) Condition (a) is a consequence of ε(h)ε(a) = εA⋆H((1A ⋆ h)(a ⋆ 1H)) =

ε((α−3
H (h11) → α−1

A (a)) ← Sα−1
H (h2))ε(α

−1
H (h12)) = ε((α−3

H (h11) → α−1
A (a)) ←

SHα−1
H (h2))ε(h12) = ε((α−2

H (h1)→ α−1
A (a))← SHα−1

H (h2)).
Since ∆((1A ⋆ h)(a ⋆ 1H)) = ∆(1A ⋆ h)∆(a ⋆ 1H), we get
[((α−3

H (h11)→ α−1
A (a))← SHα−1

H (h2))1⋆α
−1
H (h121)]⊗[((α−3

H (h11)→ α−1
A (a))←

SHα−1
H (h2))2⋆α

−1
H (h122)] = [((α−3

H (h111)→ α−1
A (a1))← SHα−1

H (h12))⋆α
−1
H (h112)]⊗

[((α−3
H (h211)→ α−1

A (a2))← SHα−1
H (h22)) ⋆ α

−1
H (h212)]. (∗)

Applying IdA ⊗ εH ⊗ IdA ⊗ εH to (∗), we obtain
((α−3

H (h11) → α−1
A (a)) ← SHα−1

H (h2))1 ⋆ ε(h121) ⊗ ((α−3
H (h11) → α−1

A (a)) ←
SHα−1

H (h2))2 ⋆ ε(h122) = ∆((α−2
H (h1)→ α−1

A (a))← SHα−1
H (h2))

and
((α−3

H (h111)→ α−1
A (a1))← SHα−1

H (h12)) ⋆ ε(h112)⊗ ((α−3
H (h211)→ α−1

A (a2))←
SHα−1

H (h22)) ⋆ ε(h212)] = ((α−2
H (h11) → α−1

A (a1)) ← SHα−1
H (h12)) ⊗ ((α−2

H (h21) →
α−1
A (a2))← SHα−1

H (h22)).
It follows that condition (b) holds. Using the fact εA(a← h) = εA(a)εH(h) and

condition (a), we have εA(h→ a) = εA(a)εH(h). Hence we get εA((h→ a)← l) =
εA(h→ a)εH(l) = εA(a)εH(h)εH(l).

Applying εA ⊗ IdH ⊗ IdA ⊗ IdH to (∗), we have
α−1
H (h121)⊗ ((α−2

H (h11)→ a)← SH(h2))⊗ α−1
H (h122) = α(h1)⊗ ((α−3

H (h211)→
α−2
A (a))← SHα−1

H (h22))⊗ α−1
H (h212). (∗∗)

Applying (IdH⊗ ←)(IdH ⊗ IdA ⊗ S2
H) to (∗∗), we obtain

αH(h1)⊗ [((α−3
H (h211)→ α−2

A (a))← SHα−1
H (h22))← S2

Hα−1
H (h212)]
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(2.8)
= αH(h1)⊗ [(α−2

H (h211)→ α−1(a))← (SHα−1
H (h22)S

2
Hα−2

H (h212))]

(2.2)
= h11 ⊗ [(α−1

H (h12)→ α−1
A (a))← (SHα−1

H (h22)S
2
Hα−1

H (h21))]

(2.6)
= h11 ⊗ [(α−1

H (h12)→ α−1
A (a))← 1Hε(h2)]

= αH(h1)⊗ (α−1
H (h2)→ a),

and

α−1
H (h121)⊗ [((α−2

H (h11)→ a)← SH(h2))← S2
Hα−1

H (h122)]

(2.8)
= α−1

H (h121)⊗ [(α−1
H (h11)→ αA(a))← (SH(h2)S

2
Hα−2

H (h122))]

(2.2)
= h12 ⊗ [(α−1

H (h11)→ αA(a))← (SHα−1
H (h22)S

2
Hα−1

H (h21))]

(2.6)
= h12 ⊗ [(α−1

H (h11)→ αA(a))← 1Hε(h2)]

= αH(h2)⊗ (α−1
H (h1)→ a).

Thus we have (α−1
H (h1)→ a)⊗αH(h2) = (α−1

H (h2)→ a)⊗αH(h1), and this equals
to (h1 → a)⊗ h2 = (h2 → a)⊗ h1. This means condition (c) holds.

Applying IdA ⊗ IdH ⊗ εA ⊗ IdH to (∗) and using (c), we have
h11⊗((α−2

H (h12)→ a)← SHα−1
H (h22))⊗h21 = α−1

H (h111)⊗((α−3
H (h112)→ a)←

SHα−1
H (h12))⊗ αH(h2). (∗ ∗ ∗)

Applying (→ ⊗IdH)(SH ⊗ IdA ⊗ IdH) to (∗ ∗ ∗), we obtain

[SH(h11)→ ((α−2
H (h12)→ a)← SHα−1

H (h22))]⊗ h21

(2.8)
= [SH(h11)→ (α−1

H (h12)→ (a← SH(α−2
H (h22))))]⊗ h21

(2.3)
= [(SHα−1

H (h11)α
−1
H (h12))→ (αA(a)← SHα−1

H (h22))]⊗ h21

(2.6)
= [ε(h1)1H → (αA(a)← SHα−1

H (h22))]⊗ h21

= (α2
A(a)← SHαH(h2))⊗ αH(h1),

and

[SHα−1
H (h111)→ (α−2

H (h112)→ (a← SHα−2
H (h12))]⊗ αH(h2)

(2.3)
= [(SHα−2

H (h111)α
−2
H (h112))→ (αA(a)← SHα−1

H (h12))]⊗ αH(h2)

(2.6)
= [ε(h11)(α

2
A(a)← SH(h12))]⊗ αH(h2)

= (α2
A(a)← SHαH(h1))⊗ αH(h2).

This means (α2
A(a)← SHαH(h1))⊗αH(h2) = (α2

A(a)← SHαH(h2))⊗αH(h1), and
this equals to (a← SH(h1))⊗ h2 = (a← SH(h2))⊗ h1. Thus condition (d) holds.
The proof is finished.

Example 3.3. Let H4 = sp{1H , g, x, gx} and the automorphism α defined as:
H4 → H4, α(1H) = 1H , α(g) = g, α(x) = −x, α(gx) = −gx. Then (H4, α) is a
Hom-algebra with multiplication: 1H1H = 1H , 1Hg = g, 1Hx = −x, g2 = 1H , x2 =
0, xg = −gx, and (H4, α) is a Hom-Hopf algebra with comultiplication, counit and
antipode defined by

∆(1H) = 1H ⊗ 1H ,∆(x) = (−x)⊗ g + 1H ⊗ (−x),
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∆(g) = g ⊗ g,∆(gx) = xg ⊗ 1H + g ⊗ xg,

ε(1H) = 1, ε(g) = 1, ε(x) = 0, ε(gx) = 0,

SH(1H) = 1H , SH(g) = g, SH(x) = −gx, SH(gx) = x.

Let A = sp{1A, a} be the group Hopf algebra with a2 = 1A and ∆(a) = a⊗a, S(a) =
a = a−1. Then (A, IdA) is a Hom-bialgebra.

Define left action H ⊗ A → A as h · 1A = ε(h)1A, 1H · a = a, g · a = a, x · a =
0, (gx) · a = 0 and right action A ⊗ H → A such that 1A · h = 1Aε(h), a · 1H =
a, a · g = a, a ·x = 0, a · (gx) = 0. It is easy to check (A, IdA) is an (H4, α)-bimodule
algebra.

Thus (A⋆H = {1A⊗1H , 1A⊗x, 1A⊗g, 1A⊗gx, a⊗1H , a⊗x, a⊗g, a⊗gx}, IdA⊗α)
is a Hom-twisted smash product Hopf algebra. Its multiplication is defined as
follows:

· 1A ⊗ 1H 1A ⊗ x 1A ⊗ g 1A ⊗ gx a⊗ 1H a⊗ x a⊗ g a⊗ gx
1A ⊗ 1H 1A ⊗ 1H 1A ⊗ (−x) 1A ⊗ g 1A ⊗ (xg) a⊗ 1H a⊗ (−x) a⊗ g a⊗ xg
1A ⊗ x 0 0 0 0 0 0 0 0
1A ⊗ g 1A ⊗ g 1A ⊗ gx 1A ⊗ 1H 1A ⊗ x a⊗ g a⊗ gx a⊗ 1H a⊗ x
1A ⊗ gx 0 0 0 0 0 0 0 0
a⊗ 1H a⊗ 1H a⊗ (−x) a⊗ g a⊗ xg 1A ⊗ 1H 1A ⊗ (−x) 1A ⊗ g 1A ⊗ xg
a⊗ x 0 0 0 0 0 0 0 0
a⊗ g a⊗ g a⊗ gx a⊗ 1H a⊗ x 1A ⊗ g 1A ⊗ gx 1A ⊗ 1H 1A ⊗ x
a⊗ gx 0 0 0 0 0 0 0 0

Its comultiplication, counit and antipode are defined as follows:

∆(1A ⊗ 1H) = (1A ⊗ 1H)⊗ (1A ⊗ 1H), ε(1A ⊗ 1H) = 1,

∆(1A ⊗ g) = (1A ⊗ g)⊗ (1A ⊗ g), ε(1A ⊗ g) = 1,

∆(1A ⊗ x) = (1A ⊗ (−x))⊗ (1A ⊗ g) + (1A ⊗ 1H)⊗ (1A ⊗ (−x)), ε(1A ⊗ x) = 0,

∆(1A ⊗ gx) = (1A ⊗ xg)⊗ (1A ⊗ 1H) + (1A ⊗ g)⊗ (1A ⊗ xg), ε(1A ⊗ gx) = 0,

∆(a⊗ 1H) = (a⊗ 1H)⊗ (a⊗ 1H), ε(a⊗ 1H) = 0,

∆(a⊗ g) = (a⊗ g)⊗ (a⊗ g), ε(a⊗ g) = 0,

∆(a⊗ x) = (a⊗ (−x))⊗ (a⊗ g) + (a⊗ 1H)⊗ (a⊗ (−x)), ε(a⊗ x) = 0,

∆(a⊗ gx) = (a⊗ xg)⊗ (a⊗ 1H) + (a⊗ g)⊗ (a⊗ xg), ε(a⊗ gx) = 0,

S(1A ⊗ 1H) = 1A ⊗ 1H , S(1A ⊗ g) = 1A ⊗ g,

S(1A ⊗ x) = 1A ⊗ xg, S(1A ⊗ gx) = 1A ⊗ x,

S(a⊗ 1H) = a⊗ 1H , S(a⊗ g) = a⊗ g,

S(a⊗ x) = a⊗ xg, S(a⊗ gx) = a⊗ x.

Definition 3.1. Let (H,αH) be a Hom-bialgebra. A Hom-coalgebra (B,αB) is
called a left (H,αH)-Hom module coalgebra if (B,αB) is a left (H,αH)-Hom module
with action → obeying the following axioms:

∆(h→ b) = h1 → b1 ⊗ h2 → b2, εB(h→ b) = εH(h)εB(b),

for all b ∈ B and h ∈ H.

If the right action is trivial, then condition (d) in Theorem 3.1 holds and condi-
tions (a) and (b) are satisfied if and only if (A,αA) is a left (H,αH)-Hom module
coalgebra. Thus we have:
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Corollary 3.1. Let (A,αA) be a Hom-bialgebra and a left (H,αH)-Hom-module al-
gebra. Then the usual Hom-smash product (A#H,αA#αH) equipped with the tensor
product Hom-coalgebra structure makes (A#H,αA#αH) into a Hom-bialgebra if and
only if (A,αA) is a left (H,αH)-Hom module coalgebra and (h1 → a)⊗ h2 = (h2 →
a)⊗ h1 holds, for all h ∈ H, a ∈ A.

Finally, we give a characterization of left (A ⋆ H,αA ⋆ αH)-Hom module.

Proposition 3.2. Let (A,αA) be an (H,αH)-Hom-bimodule algebra and (M,γ) be
a vector space over k. Then (M,γ) is a left (A ⋆ H,αA ⋆ αH)-Hom module if and
only if (M,γ) is a left (A,αA)-Hom module and a left (H,αH)-Hom module such
that

h · (a ·m) = ((α−4
H (h11)→ α−1

A (a))← SH(α−2
H (h2))) · (α−3

H (h12) ·m), (3.3)

for all h ∈ H, a ∈ A and m ∈M .

Proof. (⇒) Let (M,γ) be a left (A ⋆ H,αA ⋆ αH)-Hom module with the module
action ⇀. We define:

a ·m = (a ⋆ 1H) ⇀ m, h ·m = (1A ⋆ h) ⇀ m.

Then (M,γ) is both a left (A,αA)-Hom module and a left (H,αH)-Hom module by
Lemma 3.1. Moreover,

h·(a·m) = (1A ⋆ h) ⇀ ((a ⋆ 1H) ⇀ m)

(2.3)
= [(1A ⋆ α−1

H (h))(a ⋆ 1H)] ⇀ γ(m)

(3.2)
= [((α−4

H (h11)→ α−1
A (a))← SHα−2

H (h2)) ⋆ α
−2
H (h12)] ⇀ γ(m)

(3.1)
= [(((α−5

H (h11)→ α−2
A (a))← SHα−3

H (h2)) ⋆ 1H)(1A ⋆ α−3
H (h12))] ⇀ γ(m)

= (((α−4
H (h11)→α−1

A (a))←SHα−2
H (h2))⋆1H) ⇀ [(1A ⋆ α−3

H (h12)) ⇀ m]

= ((α−4
H (h11)→ α−1

A (a))← SHα−2
H (h2)) · (α−3

H (h12) ·m).

(⇐) Let (a ⋆ h) ⇀ m = a · (α−1
H (h) · γ−1(m)). Then (1A ⋆ 1H) ⇀ m = 1A · (1H ·

γ−1(m)) = γ(m). For any a ⋆ h, b ⋆ l ∈ A ⋆ H and m ∈M , we compute

[(a ⋆ h)(b ⋆ l)] ⇀ γ(m)

= [a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2)) ⋆ α

−2
H (h12)l] ⇀ γ(m)

= [a((α−4
H (h11)→ α−2

A (b))← SHα−2
H (h2))] · ((α−3

H (h12)α
−1
H (l)] · γ(m))

(2.3)
= [a((α−4

H (h11)→ α−2
A (b))← SHα−2

H (h2))] · (α−2
H (h12) · (α−1

H (l) · γ−1(m)))

= αA(a)·[((α−4
H (h11)→α−2

A (b))←SHα−2
H (h2))·(α−3

H (h12)·(α−2
H (l) · γ−2(m)))]

(3.3)
= αA(a) · [h · (α−1

A (b) · (α−2
H (l) · γ−2(m)))]

= (αA(a) ⋆ αH(h)) ⇀ (b · (α−1
H (l) · γ−1(m)))

= (αA(a) ⋆ αH(h)) ⇀ ((b ⋆ l) ⇀ m).

Thus (M,γ) is a left (A ⋆ H,αA ⋆ αH)-Hom-module. This finishes the proof.
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