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THE MODIFIED ASSOR-LIKE METHOD FOR
SADDLE POINT PROBLEMS
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Abstract In this paper, we established the modified accelerated symmetric
SOR-like (MASSOR) method for solving the large sparse saddle point systems
of linear equations. The convergence of the MASSOR method for solving
saddle point problems is analyzed. Numerical examples are presented to show
the effectiveness of the proposed method.
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1. Introduction

Consider the following iterative solutions of saddle point problems of the form

A B x P
du = = =0, (1.1)
—-BT 0 Y —q

where A € R™*™ is a symmetric positive definite matrix, B € R™*" is a matrix of
full column rank, p € R™ and ¢ € R™ with m > n, BT denotes the transpose of the
matrix B. This kind of linear systems arise in many of scientific and engineering
applications including mixed finite element approximation of elliptic PDEs [1, 38],
Stokes equations and Navier-Stokes equations [21-23,25], computational fluid dy-
namics [24], weighted least-squares problems [32,46], the electronic networkss [13],
a Karush-Kuhn-Tucker (KKT) system [18,30] and so on.

Usually, the coefficient matrices A, B of (1.1) are large and sparse in appli-
cations, iterative methods become more effective because of storage requirements
and preservation sparsity. For solving the saddle point problem (1.1), Golub,
Wu and Yuan [26] have proposed the SOR-like method by applying the splitting
o/ =D — L —U, where

A0 00 0-B
D: ,L: 7U: )

00Q BT 0 0Q
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with @ € R™*" being nonsingular symmetric. Thus, the SOR-like iteration takes
the following form

a* ) = (1 - w)a®™ —wAH(By™® — p),
y D = (k) Q=1 (BTz(+D) —¢).

By taking advantages of the same splitting above, Darvishi and Hessari [19] studied
SSOR method. Then the SSOR-like iteration takes the following form

2+ 2) = (1 — w)z®) — wA=L(By® — p),

y#+2) =y 0@ (BT —g),

y(FD) = g (k+3) 4 ﬁQ—I(BTx(kJr%) —q),

2D = (1 — w)zk+2) — WA= (By*+D — p).
Moreover, Darvishi and Hessari [20] considered the splitting &/ = D — L — U, where

A0 0 0 0 -B

. L , U

0@Q BT BQ 0(1-p8)Q

with 5 € R, and presented a modified SSOR method:

203 = (1 - w)a® —wA™ (By® —p),
yk+3) = y(k) 4 1_wﬁwal(BTx(k+%) —q),
yk+D) = y(k-i-%) + Q—1(BTx(k+§) —q),
2D = (1 — w)zk+2) — WA= (By*+D — p).

W
1—w+pw

Recently, Saberi and Najafi [36] considered the splitting & = D — L — U, where

aA 0 0 0 1-a)A -B
. L LU
0 Q BT pQ 0 (1-pBQ

with a, 8 € R, a # 0 and established the NMSSOR method. In addition, a number
of efficient iterative methods have been studied in the literature, such as the Uzawa-
type methods [10,11,47], the SOR-like methods and its variants [15,27, 33, 34, 40,
41,48], the Hermitian and skew-Hermitian splitting (HSS) methods and its variants
[2-9], the preconditioned Krylov subspace methods [12,14,16,17,29,31,39] and so
on.

In this paper, by taking advantages of the same splitting [28,35,37], we establish
the modified accelerated symmetric SOR-like (MASSOR) method for solving (1.1).

The remainder of this paper is organized as follows. In Section 2, we introduce
the modified ASSOR-like (MASSOR) method for solving saddle point problems.
The convergence of the MASSOR method is studied in Section 3. In Section 4, some
numerical experiments are performed to illustrate the effectiveness of the proposed
method. Finally, some brief conclusions are given in Section 5.

)
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2. Modified ASSOR method

For the coefficient matrix of (1.1), we consider the following matrix splitting

& =D-L-TU, (2.1)

where D is the block diagonal matrix and L, U are full block lower-upper triangular
matrices, with

aA 0 —-A 0 aA -B
L , U
0 @ BT Q 0 (1-p5)Q

Here Q € R™ ™ is a nonsingular symmetric matrix, a, 5 € R, o # 0.
Let b= (pT, —¢™)T and u® = ((z@)T, (y)T)T be the ith approximate solution
of the system (1.1), w # 0. By using the forward SOR method, we get
(

D — wL)uh+3) = (1= w)D +wU)u™ + wb.

That is .
w2 = £, 5 u® 4 w(D - wL)™h, (2.2)

where

Lopw=(D—wL) " ((1-w)D+wl)

@ w —1

_ aerIm _a+wA B
aw 1T w? —1pRT 4-1
@0 i-p @ B In— mrjaam@ B ATB

Similar to the backward SOR method, we have
(D —wU)ut+Y) = ((1 —w)D + wL)u(kJr%) + wh,

ie.,
wk+D) — ua,ﬁ,wu(k+%) +w(D —wU) ™', (2.3)

where

Unpw=(D—wU) " ((1-w)D+wL)

a—ow—w w? —1 —1pT w —1
a(l—w) Im — a(l—w)(l—w+,3w)A BQ B _a(l—w)A B
lfwiBwQ_lBT In
Note that
a+w)A 0 a(l—w)A wB
(D—wlL) = ( ) , (D—wU) = ( )
—wBT (1 -Bw)Q 0 (1-w+ Bw)@

Since A is SPD and Q is nonsingular, therefore

det(D —wL) = (a4 w)™(1 — fw)"™ det(A) det(Q) # 0,
det(D —wU) =a™(1 —w)™(1 —w + Pw)" det(A) det(Q) # 0
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if and only if (o +w)(1 — fw) # 0 and a(l —w)(1 —w+ fw) #0 , i.e
ot
B1-p

From equations (2.2) and (2.3), we get the modified ASSOR (MASSOR) iterative
method as follows:

a0, w#{l,—«a }. (2.4)

u(kH):HQ,@,wu —|—./\/laﬁw, (2.5)
with
H,, H
Hoz,ﬂ,w - ‘Ca,ﬁ,wua,ﬁ,w - H - 5
Hyy Hoo
where
a—oaw—w w?(2 - w)
Hii = Im_ A—lB —lBT
N et T T oa)atw)( eI —wtpw) ¢ B
_ w(2-w) .
Mz = (1—w)(a+w)A B
w3 (2 —w)
A'BQ'BTA'B
Tl -t A et e P9 ’
ow(2 — w) R
Hyy = B
1= aro - pei-wrpn)® D
W2(2_W) —1pT 4-1
Hyy = I, — BTA1B,
22 (a+w)(1—ﬂw)(1—w+ﬂw)Q
and
__ v 5 ~1p_
Maﬁ,w_w(%w)(p wL)D™Y(D — wU)
1 (a+w)(1—w)A wlote) p
W2=w) | (1 —w)BT (1-Bw)(l —w+ fw)Q — L BTAIB
Let

Nagw = Mapgw— A
1 (0 —aw—w)A —WB
w(2=w) wBT (1 fw)(l-w+ fw)Q ~ L BTA'B
then the MASSOR method can also be induced by the splitting
A =Magw—Napws

the matrix Mg g, w Can be regarded as the preconditioner of the linear system (1.1)

and Ha g = M Na B.w is the iteration matrix of the MASSOR method.
Therefore, the MASSOR method has the following algorithmic form.

The MASSOR method. Let Q be a nonsingular symmetric matrix. Given initial

vectors (9 € R™ and y(® € R™ , and three relaxed parameters o, 3, w satisfied
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(2.4). For k = 0,1,2, ... until the iteration sequence {((z®*)T, (y*)T)T} converges,
compute

k3 — _a (k) _ awﬁA_l(By(k) —p),

atw

yhtz) = y(k) 4 ﬁQfl(BTz(H%) —q),

X (2.6)
y(k+1) _ y(k+%) + 17wiﬁwal(BTx(k+§) —q),
o) = oqpegalttd) — i AT (By*HY —p).

It is obvious that when 8 = %, the MASSOR method reduces to the ASSOR
method [35]. In fact, the MASSOR method is a special case of the SSOR-like
methods [43,44].

3. Convergence of the MASSOR method

In this section, the convergence conditions of the MASSOR method are obtained.
Firstly, we gave some lemmas, which are useful for our discussions.

Lemma 3.1 (Young [45]). Consider the quadratic equation x* —bx + ¢ = 0, where
b and ¢ are real numbers. Both roots of the equation are less than one in modulus
if and only if |c| <1 and |b] <1+ c.

Lemma 3.2. If X is an eigenvalue of Ha g, then A # 1.

Proof. Let A = 1 be an eigenvalue of iteration matrix Ha g, and z = (2T, y™)T
be the corresponding eigenvector, i.e.

o ()= )

equivalently,

z = —A"'By,
(3.1)
aQ BTz =wQ 'BTA ' By.

It follows from w # —a, @ is nonsingular and B is full column rank that z = 0 and
y = 0, which contradicts that (zT,yT)T is an eigenvector of the iteration matrix
Ha gw- Therefore, A # 1. O

Theorem 3.1. Suppose that A\ and p satisfy
A?(2—w)?p = (A=1)(1-Bw)(1—w+Bw)((a —aw—w) = A1 —w)(a+w)). (3.2)

If X is an eigenvalue of He g, such that A # % and w # {%, ﬁ}, then p is
a nonzero eigenvalue of the matriz Q ' BT A™'B. Conversely, if ju is an eigenvalue

of Q" 'BTA-1B, then ) is an eigenvalue of the matriz Hea,pw-

Proof. Let A be an eigenvalue of iteration matrix Hq g, and z = (2T, yT)T be the
corresponding eigenvector. Then we get

o ()2 (0)
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equivalently,

(e — aw —w) = AMa+w)(l —w))Az = w(Ma + w) + (0 — aw — w)) By,

w(l+A1l-w)BTz=A-1)((1-Bw)(l —w+ fw)Q — L*’FQBTA_lB)y.
(3.3)
From the first equation, it follows from the assumption that

Aw(a+w) + w(a — aw — w) .

v a(afawfw)f)\a(lfw)(aer)A By.

Taking the place of x in the second equation yields
Aw? (2—w)?’Q ' BT A7 By = (A—1)(1—Bw) (1-w+Bw) ((a—aw—w)—A(1-w) (a+w) )y,

it follows from (3.2) that
Q 'BTAT'By = py.
Thus 4 is an eigenvalue of Q" 'BTA~!B and y is the corresponding eigenvector.
Moreover, if i = 0 then QBT A~ B is a singular matrix, which is impossible. So
4 is a nonzero eigenvalue of Q 'BTA~!B.
We can prove the second assertion by reversing the process. O

Lemma 3.3. Suppose that Hq .., s the iteration matriz of ASSOR method, o, 3, w
satisfy (2.4) and m = n. Then

(a) If m > n, then \ = % # 0 is an eigenvalue of Ha g at least with
multiplicity m — n.

(b) If m =n, then A = % # 0 is not an eigenvalue of Ho g -

Proof. See [35]. O
Then, we have the following convergence results.

Theorem 3.2. Let A € R™*"™ be symmetric positive definite and B € R™*™ be of
full column rank. Assume that o, f and w satisfy aw(a+w)(l — fw)(2 —w)(1 —w+
Bw)(1 —w) #0, Q € R™™™ is nonsingular symmetric such that all eigenvalues p of
QBT A=1B are real number, let fmayx = max {u}, pmin = min{u}. Then

(1) If pmin > 0, the MASSOR method is convergent if the following conditions
hold:
e Forw € (0,1) U (2,+00), it holds o > 55— w), for w € (—o0,0) U (1,2),
2
it holds o < 2(1 mE
e (1-w)(a+w)(l—-pFw)(l—w+pw)>0;

. w2 (2—w)? ftmax

T 0Tt as ot < 2(1 + @2 5tasy)-

(2) i pmax < 0, the MASSOR method is convergent if the following conditions
hold:

e Forwe (0,1)U ( +00), it holds o >
it holds o < ( w)
e 1—-w)(a+w)(l-pw)(l—w+pw)<0

2(1 o for w € (—o00,0) U (1,2),
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WQ(Q—W)zﬂmin a—ow—w
s Tttt < 2(1+ @55ty )-

Proof. Making use of Theorem 3.1 and by some algebra, we obtain

)\2_)\<1+ a—ow-w w?(2—w)?p > a-aw-w o
(1-w)(atw) (1-w)(atw)(1-Fw)(l-w+pfw))  (1-w)(atw)
By Lemma 3.1, |A\| < 1 if and only if
a—ow—w
e ke I 3.4
e o4
and
g @mawmw w?(2 —w)?p ‘<1+ a—ow—w
(1-w)(atw) (1 -w)(a+w)(l-pw)(l —w+ fw) (1-w)(a+w)
(3.5)
Firstly, it follows from (3.4) that
9 _
0< & < 27
(1-w)(a+w)
noticing w # {1, —a}, the above inequality is equivalent to
w(2—-w)>0, w(2—-w) <0,
(1-w)(a+w)>0, or (1-w)(a+w) <0,
w(2-w) <2(1 —-w)(a+w), w2-w)>2(1—-w)(a+w).
By some algebra we get
w2 w2
O<w<1, C¥>m, or w<0, a<m,
2
1<w<2, a<psy, w>2, o> 55
ie.,
we (0,1)U (2, +00), w € (—o0,0) U (1,2),
R or ) (3.6)
> 5am0y @ < 55y

Secondly, it follows from (3.5) that

0<

w2 -w)?p a—ow—w
(1= w)(a+w)(1— Buw)(l —w+ ) <2(1+(1w)(a+w))- (3.7)
)

)
Therefore, if i, > 0, then (3.7) holds if

(1-w)(a+w)(l—-Pw)(l—w+fw)>0

and

(.4}2(2 — LU)QM < w2(2 - UJ)Q,Umax
et ) ) —wif0) S (- o)+ w)(— Aol ot f)

0<
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And if pmax < 0, then (3.7) holds if
(1 )@+ )1 - fw)(1 - w + fw) <0,
and

w2(2 7&))2# < w2(2 7W)2,Ufmin
lI-w(a+w)(1-pw)(l—w+pw)  (1-w)(la+w)(l-Lw)(l—w+ fw)

<9 (1 L GTow—w )
1-w)(at+w)/
Together this with (3.6), thus the desired results hold. O
According to Lemma 3.3, we obtain the following results.

0<

Corollary 3.1. Let A be symmetric positive definite and B be of full column
rank, and let Q be nonsingular symmetric. If u is an eigenvalue of Q"' BTA™'B,

then the eigenvalues of the matriv Ha g are given by A = % and \ =
1 _ —w— w2 (2—w)? _
3(t £ Vi* —4h), where t = 1+ g5y — (17w)(a+w)((176w)lélfw+ﬁw) and h =

(a—aw—w)

(1-w)(atw) -
Remark 3.1. The assumption that all eigenvalues of Q 'BTA~!'B are real in
Theorem 3.2 is reasonable. According to Theorem 3.2, the MASSOR method is not
only suitable to the case that all the eigenvalues of Q"'BTA~!B are positive but
also to the case that all the eigenvalues of Q! BT A~! B are negative.

4. Numerical examples

In this section, we give some examples to compare the performance of the MASSOR
method, SSOR [19] and MSSOR [42] methods.

All the computations are show in MATLAB 2017a [version 9.2.0.538062] on a
personal computer with 3.20 GHz central processing unit (Intel(R) Core(TM) i5-
6500 CPU) and 16.00G memory. We report the number of iterations (denoted by
‘IT?), elapsed CPU time in seconds ( denoted by ‘CPU’). All iteration processes are
terminated when the current residuals satisfy RES < 1079, where

RES = norm((a™)T — (z*=)T, (V)T — (y*=D)T)T,

with {((z®*)7T, (3*))T)T} being the current approximate solution, or the number of
iteration steps kmax < 2000. In actual computation, we choose the right-hand-side
vector (pT,qT)T € R™*™ such that the exact solution of (1.1) is ((z4)7, (y.)1)T =
(1,1,...,1)T and the initial vector was set to the zero vector.

Example 4.1 ( [3]). Consider the saddle point problem (1.1), where
IQT+T®I 0

A= eR¥ W p—
0 I0T+Tel Fel

TOF ) op
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and

1 1
T= ﬁtridiag(—l,l —1) eRP*P F = Etridiag(—l, 1,0) € RPXP

with ® being the Kronecker product symbol and h = ﬁ being the discretization
mesh-size.

In this example, we let m = 2p? and n = p?, i.e., the total number of variables
is m +n = 3p®>. We consider three cases: p = 8,16 and p = 24 for solving (1.1).
Table 1 lists the minimum and maximum eigenvalues of Q! BTA~! B for different
preconditioned matrix Q.

Table 1. The minimum finyin and the maximum pmax eigenvalues of QleTAle.

m 128 512 1152

n 64 256 576
m+n 192 768 1728

Case I min  1.6e-3  4.4e-4  2.0e-4

(Q = BTB) fmax 4362 4.0e-2  3.9¢-2
Case 11 min -4.3e-2  -4.0e-2  -3.9e-2
(Q=-BTB) fmax -1.6e-3  -4.4e-4 -2.0e-4
Case 111 Pmin  1.82 9.9e-2  6.9e-2

(Q = tridiag(B"A™'B))  fimax 1.25 1.25 1.25

Tables 2-4 show the numerical results and the parameters are chosen to be the
experimentally found optimal ones that minimize the total number of iteration steps
for those methods. By observing the numerical results, it is not difficult to find that
the number of iterations and CPU time of the MASSOR method are much lesser
than those of the SSOR and MSSOR methods when the experimentally optimal
parameter is employed.

Table 2. Numerical results of the MASSOR, NMSSOR and MSSOR methods for Case I.

m 128 512 1152
n 64 256 576

m-+n 192 768 1728
SSOR Wi 0.978 0.979 0.980

IT 288 731 1513
CPU 0.073 0911 4.128
MSSOR Wi 1.5 1.8 1.8
B 0.65 045 0.55
IT 150 163 413
CPU 0.041 0.204 1.121
MASSOR  w, 1.5 1.8 1.8
Ol -5.66 -3.28 -4.75
B 0.65 045 0.55
IT 121 153 337
CPU 0.033 0.192 0.813
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Table 3. Numerical results of the MASSOR, NMSSOR and MSSOR methods for Case II.

m 128 512 1152
n 64 256 o976
m-+n 192 768 1728
SSOR W 1.023 1.021  1.020
IT 218 730 1512
CPU 0.088 1.173 5.273
MSSOR Wy 1.5 1.8 1.8
B 0.68 0.43 0.56
IT 130 985 358
CPU 0.057 0.890 1.244
MASSOR  w; 1.5 1.8 1.8
o 0.68 0.43 0.56
B -5.223  -5.731 -4.432
IT 106 468 291
CPU 0.046 0.735 1.009

Table 4. Numerical results of the MASSOR, NMSSOR and MSSOR methods for Case III.

m 128 512 1152
n 64 256 576
m-4+n 192 768 1728
SSOR Wy 0.552 0.439 0.380
IT 52 180 338
CPU 0.014 0.138 0.548
MSSOR Wy 0.54 055 0.60
B 0.65 0.70 0.65
IT 67 142 191
CPU 0.018 0.107 0.305
MASSOR  w, 0.54 055 0.60
Oy 223 313 485
B 0.58 0.63 0.66
IT 52 111 128
CPU 0.013 0.085 0.218

5. Conclusions

In this paper,we have discussed a modified accelerated symmetric SOR-Like (MAS-
SOR) method to solve saddle point problem (1.1). The convergence of the proposed
method have been given in this context. However, the determination of optimum
values of the parameters needs further study.
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