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Abstract In this paper, the Banach fixed point theorem combined with
Mittag-Leffler functions has been used to obtain the existence and unique-
ness of global mild solution for a kind of time-space fractional stochastic
Schrödinger-BBM equation driven by Gaussian noise. The spatial-temporal
regularity of the nonlocal stochastic convolution is established. Furthermore
the convergence and simulation is provided by the Galerkin finite element
method as well.
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1. Introduction
The propagation of unidirectional, one-dimensional, small-amplitude long waves in
nonlinear dispersive media is sometimes well approximated by the Benjamin-Bona-
Mahony (BBM) equation, which is generally understood as an alternative to the
Korteweg-de Vries (KdV) equation [2, 3],

nt(t, x) + nx(t, x) + nnx(t, x)− nxxt(t, x) = 0, (t, x) ∈ R+ × R,

where the real function n(t, x), t ≥ 0, x ∈ R is an approximation for moderately
long waves of small but finite amplitude in particular physical systems.

Zakharov studied the one-dimensional long-wave Langmuir turbulence in a plasma
by the following set of coupled equations [1, 6, 17], iϵt(t, x) + ϵxx(t, x)− nϵ(t, x) = 0, (t, x) ∈ R+ × R,

ntt(t, x)− nxx(t, x)− (|ϵ(t, x)|2)xx = 0, (t, x) ∈ R+ × R,
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where the complex value function ϵ(t, x) is the electric field of Langmuir oscillations
and the real value function n(t, x) is the low-frequency density perturbation.

By means of the integral estimation method and the fixed point theorem, Guo
established the global solvability of the following Cauchy problem of the coupled
system of BBM-nonlinear Schrödinger equations [8],
iϵt(t, x) + ϵxx(t, x)− n(t, x)ϵ(t, x) + βq(|ϵ(t, x)|2)ϵ(t, x) = 0, (t, x) ∈ R+ × R,
nt(t, x) + f(n(t, x))x − nxxt(t, x) + (|ϵ(t, x)|2)x = 0, (t, x) ∈ R+ × R,
ϵ(0, x) = ϵ0(x), n(0, x) = n0(x), x ∈ R,

where β ∈ R is a constant, both f(s) and q(s) are real valued functions, and
ϵ(t, x), n(t, x) denote complex and real function, respectively.

Guo et al. in [7] used the Strichartz estimate technique and the contraction
mapping principle to establish the global existence for the Cauchy problem of the
following Schrödinger-BBM equations,

iϵt(t, x) + ϵxx(t, x) = ϵ(t, x)n(t, x) + a|ϵ(t, x)|p−1ϵ(t, x), (t, x) ∈ R× R,
nt(t, x)− nxxt(t, x) = (|ϵ(t, x)|2 + n(t, x)2)x, (t, x) ∈ R× R,
ϵ(0, x) = ϵ0(x), n(0, x) = n0(x), x ∈ R,

where a ∈ R, 1 < p < +∞, and ϵ(t, x), n(t, x) denote complex and real function,
respectively. The paper [18] is devoted to the large time behavior and especially to
the regularity of the global attractor for the semi-discrete in time Crank-Nicolson
scheme to discretize a class of system of nonlinear Schrödinger-BBM equations on
R× R.

There are many papers focusing on the space-fractional Schrödinger equation,
which used the path integral over the Lévy-like quantum mechanical paths, see [9]
for details. Recently, the existence and uniqueness of the mild solution and the
Hölder continuity for the time fractional and space nonlocal stochastic nonlinear
Schrödinger equation driven by multiplicative white noise are established in [11]
with the following form,

iDα
t u = (−∆)

β
2 u+ λ|u|2u+ g(u)Ẇ ,

u(t, x) = 0, x ∈ ∂Dd,

u(0, x) = u0(x),

(1.1)

where the fixed number α ∈ (0, 1) represents the order of time fractional differential
operator, Dα

t is the Caputo time fractional derivative, λ ∈ R, β ∈ (1, 2), d ∈ N∗,
Dd = [0, 1]d and W stands for L2(Dd)-Q Wiener process on a complete probability
space (Ω,F ,P) with normal filtration Ft = σ{W (s) : s ≤ t, t ∈ [0, T ]}. And the
space-fractional operator (−△)β/2 can be realized through the Fourier transform:

̂(−∆)β/2u(ξ) = |ξ|β û(ξ),

where û represents the Fourier transform of u. Moreover, a full discrete scheme with
spectral Galerkin method in space and exponential method in time was provided to
obtain the convergence order of the time discretization and the spatial discretization
for the equations (1.1) respectively.
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Motivated by the idea presented in [7, 9, 11], we consider the following time-
space fractional stochastic Schrödinger-BBM equation (FSSBE for short) driven by
Gaussian white noise:

iDα
t u+∆

β1
2 u = un+ a|u|p−1u+ Ẇ1(t),

Dα
t (n−∆

β2
2 n) = (|u|2 + n2)x + Ẇ2(t),

u(0) = u0(x), n(0) = n0(x).

(1.2)

where Dα
t (0 < α < 1) denotes the α-order Caputo time derivative operator,

(−△)
βi
2 , i = 1, 2 is the space fractional Laplacian operator with βi ∈ (1, 2), i = 1, 2.

Ẇ1(t) and Ẇ2(t) are Gaussian white noises which are independent of each other.
To understand the effect of the index α for Caputo type time fractional operator,

the index β1, β2 for the space-fractional operator (−∆)βi and the noise on the
FSSBE equation (1.2), the time regularity and the space regularity for the nonlocal
stochastic convolution are established firstly. The restrictions α ∈ ( 34 , 1) on the order
of time fractional derivative and 2α < βi ≤ 2, i = 1, 2, p < 3 on the order of spatial
nonlocal are required. The local existence and uniqueness of mild solutions of the
FSSBE (1.2) in space Hσ for 1

6 ≤ σ ≤ 1
2 are proven by the application of a Banach

fixed point Theorem. Due to the nonlinear term (|u|2 + n2)x, we restrict β2 = 2
to obtain the global existence of the mild solution of the FSSBE equation (1.2).
Moreover, in contrast to the result of integer-order-time FSSBE equations (1.2) for
β1 = β2 = 2, α = 1, we obtain the convergence order of the time discretization
with the exponential method and the space discretization with the Galerkin finite
element method respectively.

The rest of the paper is organized as follows. The definitions of fractional opera-
tors, Mainardi function, Mittag-Leffler function and the mild solutions for stochas-
tic system are provided in section 2. In section 3, the regularity of the nonlocal
stochastic convolution is established. The local and global existence and unique-
ness of mild solutions for FSSBE equations are also presented. The convergence
order of the time and space discretization are provided respectively in section 4.

2. Preliminaries
In this section, we present the definitions of fractional operators, special functions
and the mild solutions for the stochastic system (1.1), which are cited from [4].

Definition 2.1. For α > 0, the Riemann-Liouville fractional integral operator of
order α for function f ∈ L1([0, T ],R) is defined by

Iαt f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ [0, T ]. (2.1)

Definition 2.2. For α ∈ (0, 1), the Caputo fractional derivative of order α for
function f ∈ C([0, T ];R) is defined by

Dα
t f(t) :=

d

dt
[I1−α

t (f(t)− f(0))] =
1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds. (2.2)

Definition 2.3. The Mainardi’s function is given by

Mα(z) =

∞∑
k=0

(−z)k

k!Γ(−αk + 1− α)
, 0 < α < 1, z ∈ C. (2.3)
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Moreover, Mα(z) ≥ 0 for all t ≥ 0 and satisfies the following equality∫ ∞

0

trMα(t)dt =
Γ(r + 1)

Γ(αr + 1)
, r > −1, 0 < α < 1. (2.4)

Definition 2.4. The Mittag-Leffler functions is defined by

Eα,η(z) =

∞∑
k=0

zk

Γ(αk + η)
, α, η ∈ C, Re(z) > 0. (2.5)

Definition 2.5. The Mittag-Leffler families operators based on the analytic semi-
group S(t) generated by the space fractional operator (−∆)γ is defined by:

Tα,γ(t) =

∫ ∞

0

Mα(s)S(st
α)ds =

∫ ∞

0

Mα(s)e
−stα(−∆)γds (2.6)

and
Sα,γ(t) =

∫ ∞

0

αsMα(s)S(st
α)ds =

∫ ∞

0

αsMα(s)e
−stα(−∆)γds. (2.7)

Remark 2.1. Just as Section 3 of [4], although Mittag-Leffler operator does not
have the same good properties of a classical semigroup, it is important to notice
that for each fixed x ∈ X , the function t → Tα,γ(t)x is continuous and satisfies

cDα
t Tα,γ(t)x = −AγTα,γ(t)x.

Then, for any v ∈ L2, there exists a constant C = C (N,α) > 0 such that

∥Tα,γ (−tαA) v∥L2 ≤ C (N,α) ∥v∥L2 , t > 0.

Definition 2.6. Let (Ω,F ,P) be a complete probability space,the Gaussian white
noise is defined as

Wi(t) =

∞∑
k=1

√
akβk,i(t)ek(x), i = 1, 2 (2.8)

with a :=
∑∞

k=1 ak < ∞. Here the βk,i(t) are standard one dimensional Wiener
process on t > 0, ek(x) are an orthonormal basis in L2(R).

Now we shall introduce some notations of functional spaces given as follow:

Hσ =
{
u =

∑
unen ∈ L2[R]

∥u∥Hσ = (Σu2
nλ

σ
n)

1
2 < ∞

}
,

with the norm: ∥u∥Hσ =(Σu2
nλ

σ
n)

1
2 , where en(x)=

√
2/π sin(nπx), λn=π2n2. Then

(en(x), λ
β
n) are the eigenvectors and eigenvalues of (−∆)β with Dirichlet boundary

conditions, and the operator (−∆)
σ
2 is well defined in the Hilbert space Hσ.

Definition 2.7. A (Hσ, L2)-valued stochastic process (u(t), n(t)) is called a mild
solution of (1.2) with initial value u0 and n0 if the following equation is satisfied:

u(t, x) = Tα,β1
u0 +

∫ t

0

(t− τ)α−1Sα,β1
(t− τ)(un+ a|u|p−1u)dτ

+

∫ t

0

(t− τ)α−1Sα,β1(t− τ)dW1(τ),

n(t, x) = n0 +
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗ (|u|2 + n2)dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1R0(x) ∗ Ẇ2(τ)dτ.

(2.9)



Well-posedness and convergence. . . 1753

HereR(x) = F−1
(

ik
1−(ik)β2

)
, R0(x) = F−1

(
1

1−(ik)β2

)
, the * denote the convolution

on R and∫ t

0

(t− τ)α−1R(x) ∗ Ẇ2(τ)dτ ≜
∫
R

∫ t

0

(t− τ)α−1R(x− y)dW (τ, y)dy.

Remark 2.2. when β = 2, the ∆β/2n = nxx. And the R(x) = 1
2sgn(x)e

−|x|, more
details can be seen in [7] .

3. Well-Posedness of the mild solution
In this section, we will establish the basic properties of the following stochastic
integrals:

z1(t, x) =

∫ t

0

(t− τ)α−1Sα,β(t− τ)dW1(τ, y), (3.1)

z2(t, x) =

∫
R

∫ t

0

(t− τ)α−1R(x− y)dW2(τ, y)dy. (3.2)

Lemma 3.1. Let 1 < β2 ≤ 2, then for every t ∈ R+, the stochastic convolution
z2(t) belongs to L2, i.e.,

E∥z2(t, x)∥2L2 < ∞. (3.3)

Proof. It follows from the fact that ∥ek∥∞ < 1, then

E∥z2(t, x)∥2 = E
wwww∫

R

∫ t

0

(t− τ)α−1R(x− y)dW (τ, y)dy

wwww2

L2

= E

wwwww
∫
R

∫ t

0

(t− τ)α−1
∞∑
k=1

R(x− y)
√
akek(y)dβk(τ)dy

wwwww
2

L2

= E

wwwww
∫ t

0

(t− τ)α−1

∫
R
R(x− y)

∞∑
k=1

√
akek(y)dydβk(τ)

wwwww
2

L2

≤
∫
R
E|

∞∑
k=1

∫ t

0

(t− τ)α−1R ∗ fk(x)dβk(τ)|2dx

≤
∫
R

∫ t

0

(t− τ)2(α−1)|R ∗ f(x)|2dτdx

≤ C∥R ∗ f∥2L2 < ∞,

where fk(x) :=
√
akek(x), and f(x) :=

∑∞
k=1 fk(x).

Lemma 3.2. Let 1
2 < α ≤ 1, then the stochastic convolution z2(t), t ∈ [0, T ] has a

continuous version.

Proof. For s, t ∈ [0, t], s < t, we have

E|z2(t, x)− z2(s, x)|2

= E|
∫ t

s

∫
R
(t− τ)α−1R(x− y)dW (τ, y)dy
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+

∫ s

0

∫
R

(
(t− τ)α−1 − (s− τ)α−1

)
R(x− y)dW (τ, y)dy|2

= 2E
∫ t

s

∣∣∣∣∣(t− τ)α−1

∫
R
R(x− y)

∞∑
k=1

√
akek(y)dy

∣∣∣∣∣
2

dτ

+2E
∫ s

0

∣∣∣∣∣[(t− τ)α−1 − (s− τ)α−1
] ∫

R
R(x− y)

∞∑
k=1

√
akek(y)dy

∣∣∣∣∣
2

dτ

= 2I1 + 2I2.

Then we caculate that

I1 = E
∫ t

s

∣∣∣∣∣(t− τ)α−1

∫
R
R(x− y)

∞∑
k=1

√
akek(y)dy

∣∣∣∣∣
2

dτ

≤
∫ t

s

(t− τ)2α−2∥R(x)∥2∥
∞∑
k=1

√
akek(y)∥2dτ

≤ ∥R(x)∥2∥
∞∑
k=1

√
akek(y)∥2

∫ t

s

(t− τ)2α−2dτ

≤ C

∫ t

s

(t− τ)2α−2dτ ≤ C(t− s)2α−1,

and

I2 = E
∫ s

0

∣∣∣∣∣[(t− τ)α−1 − (s− τ)α−1
] ∫

R
R(x− y)

∞∑
k=1

√
akek(y)dy

∣∣∣∣∣
2

dτ

≤ ∥R(x)∥2∥
∞∑
k=1

√
akek(y)∥2

∫ s

0

[
(t− τ)α−1 − (s− τ)α−1

]2
dτ

≤ C

∫ s

0

[(t− τ)1−α − (s− τ)1−α]2

(t− τ)2−2α(s− τ)2−2α
dτ

≤ C|t− s|2−2α

∫ s

0

1

(t− τ)2−2α(s− τ)2−2α
dτ

≤ CT 4α−3|t− s|2−2α.

Thus, by the Kolmmogorov’s test theorem [5], the Lemma was proven.
The regularity of z1(t) can be seen in [13], we state them as following

Lemma 3.3 ([13]). Let 0 < σ < 1
2 , then it permits that

E∥Aσ/2z1(t, x)∥2Hσ < ∞. (3.4)

Lemma 3.4 ([13]). Let β1 ∈ ( 34 , 1), 2α < β1 ≤ 2, then the stochastic convolution
z1(t), t ∈ [0, T ] has a continuous version.

In order to give the piro estimation of solution, we need the following Gronwall
inequality

Lemma 3.5 ( [16]). Suppose that β > 0,a(t) is a nonnegative function that is
locally integrable on 0 ≤ t < T and g(t) is a nonnegative, nondecreasing continuous
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function defined on 0 ≤ t < T , g(t) < M(constant), and suppose u(t) is nonnegative
and locally integrable with

u(t) ≤ a(t) + g(t)

∫ t

0

(t− s)β−1u(s)ds.

on 0 ≤ t < T , then

u(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=0

[g(t)Γ(β)]n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds.

Let X be the product space of C([0, t],Hσ)× C([0, t], L2), with the norm

∥(u, n)∥X =
√

∥u∥2Hσ + ∥n∥2L2 .

To establish the local well-posedness of the mild solution, consider the space BT
R by

BT
R = {(u, n) ∈ X| ∥(u, n)∥X ≤ R}.

Denote the (u′, n′) = (u− z1, n− z2),then the (u′, n′) solves the problem{
id[I1−α

t (u′ − u0)]+ ∆
β1
2 u′dt=

(
(u′ + z1)(n

′ + z2)+ a|u′ + z1|p−1(u′ + z1
)
dt,

d[I1−α
t (n′ −∆

β2
2 n′)]=

(
|u′ + z1|2 + (n′ + z2)

2)x
)
dt.

(3.5)

Now we give the well-posedness of the mild solution of (3.5).

Theorem 3.1. Assume (u0, n0) ∈ BT
R, then for α ∈ ( 34 , 1), 2α < βi ≤ 2(i = 1, 2),

p < 3, and 1
6 ≤ σ ≤ 1

2 , there exist a random variable T > 0, such that the equation
has a unique local mild solution in BT

R.

Proof. Taking any (u′, n′) ∈ BT
R, and denote the operator L by

L(u′, n′) = (U ′, N ′),

where

U ′=Tα,β1u0+

∫ t

0

(t−τ)α−1Sα,β(t−τ)
[
(u′+z1)(n

′+z2)+a|u′+z1|p−1(u′+z1)
]
dτ,

and
N ′ = n0 +

1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
|u′ + z1|2 + (n′ + z2)

2
]
dτ.

Then we have

∥U ′∥Hσ ≤∥Tα,β1u0∥Hσ +

wwww∫ t

0

(t− τ)α−1Sα,β1(t− τ)(u′ + z1)(n
′ + z2)dτ

wwww
Hσ

+

wwww∫ t

0

(t−τ)α−1Sα,β1
(t−τ)a|u′+z1|p−1(u′ + z1)dτ

wwww
Hσ

:= I1 + I2 + I3.

We deduce that

I1 =

wwwwA
σ
2

∫ ∞

0

Mα(s)e
−stαA

β1
2 u0ds

wwww ≤
wwA

σ
2 u0

ww = ∥u0∥Hσ ,
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and

I2 ≤
wwwwA

σ
2

∫ ∞

0

αsMα(s)e
−s(t−τ)αA

β 1
2 (u′ + z1)(n

′ + z2)dτ

wwww2

=

∞∑
k=1

Re

〈
λ

σ
2

k

∫ ∞

0

αsMα(s)e
−s(t−τ)αλ

β 1
2

k (u′ + z1)(n
′ + z2), ek

〉2

≤ C

∞∑
k=1

Re

〈
λ

σ
2 − β1θ

2

k

∫ ∞

0

αs1−θMα(s)(t− τ)−αθ(u′ + z1)(n
′ + z2), ek

〉2

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθRe⟨(u′ + z1)(n
′ + z2), ek⟩2

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθ∥u′ + z1∥L2∥n′ + z2∥L2

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθ
(
∥u′∥Hσ + ∥Aσ

2 z1∥
)
∥n′ + z2∥L2 < ∞.

For I3, we have

I3 ≤
wwwwA

σ
2

∫ ∞

0

αsMα(s)e
−s(t−τ)αA

β 1
2 a|u′ + z1|p−1(u′ + z1)dτ

wwww2

=

∞∑
k=1

Re

〈
λ

σ
2

k

∫ ∞

0

αsMα(s)e
−s(t−τ)αλ

β 1
2

k a|u′ + z1|p−1(u′ + z1), ek

〉2

≤ C

∞∑
k=1

Re

〈
λ

σ
2 − β1θ

2

k

∫ ∞

0

αs1−θMα(s)(t− τ)−αθ|u′ + z1|p−1(u′ + z1), ek

〉2

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθRe⟨|u′ + z1|p−1(u′ + z1), ek⟩2

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθ∥u′∥pLp + ∥z1∥pLp

≤ C

∞∑
k=1

k2(σ−β1θ)(t− τ)−2αθ∥u′∥pHσ + ∥Aσ
2 z1∥p < ∞,

where p ≤ 3. Choosing 1
6 < θ < 1

2α , α > 3
4 ensures that I1 < ∞. Then for the

N ′,we have

∥N ′∥L2 = ∥n0∥L2 +
1

Γ(α)

wwww∫ t

0

(t− τ)α−1R(x) ∗
[
|u′ + z1|2 + (n′ + z2)

2
]
dτ

wwww
L2

:= J1 + J2.

Recalling that ∥n0∥L2 < ∞, then we deduce that

J2 ≤
∫ t

0

(t− τ)α−1
wwR(x) ∗

[
|u′ + z1|2 + (n′ + z2)

2
]ww

L2 dτ

≤ CTα
wwR(x) ∗

[
|u′ + z1|2 + (n′ + z2)

2
]ww

L2
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≤ CTα ∥R(x)∥L2

ww|u′ + z1|2 + (n′ + z2)
2
ww

L1

≤ CTα∥R(x)∥L2

(
∥u′ + z1∥

2
L2 + ∥n′ + z2∥

2
L2

)
≤ CTα ∥R(x)∥L2

(
∥u′∥2Hσ + ∥Aσ

2 z1∥2 + ∥n′∥2 + ∥z2∥2
)
< ∞.

Thus, we obtained that L : BT
R → BT

R. Next we will prove L is compressed for any
(u1, n1), (u2, n2) ∈ BT

R. To the end, it suffices to show that

L[(u1, n1)− (u2, n2)] = (U ′
1,2, N

′
1,2).

In fact, direct computation implies that

∥U ′
1,2∥Hσ ≤

wwww∫ t

0

(t−τ)α−1Sα,β1
(t−τ) [(u′

1+z1)(n
′
1+z2)−(u′

2+z1)(n
′
2+z2)] dτ

wwww
Hσ

+

wwww∫ t

0

(t− τ)α−1Sα,β(t− τ)(u′
1 + z1)a

[
|u′

1 + z1|p−1(u′
1 + z1)

− |u′
2 + z1|p−1(u′

2 + z1)
]
dτ

ww
Hσ := K1 +K2,

and

∥N ′
1,2∥L2 =

wwww 1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
|u′

1 + z1|2 − |u′
2 + z1|2

+ (n′
1 + z2)

2 − (n′
2 + z2)

2
]
dτ

ww
L2 .

Similarly, we obtain that

K1 ≤
∫ t

0

(t− τ)α−1Sα,β(t− τ) [(u′
1 + z1)(n

′
1 + z2)− (u′

2 + z1)(n
′
2 + z2)] dτ

≤ C

∞∑
k=1

k2(σ−βθ)(t− τ)−2αθRe⟨(u′
1 + z1)(n

′
1 + z2)− (u′

2 + z1)(n
′
2 + z2), ek⟩2

≤ C

∞∑
k=1

k2(σ−βθ)(t− τ)−2αθ∥(u′
1 − u′

2)(n
′
2 + z2) + (u′

1 + z1)(n
′
1 − n′

2)∥2L1

≤ CR2
∞∑
k=1

k2(σ−βθ)(t− τ)−2αθ
(
∥(u′

1 − u′
2)∥2Hσ + ∥(n′

1 − n′
2)∥2L2

)
,

and

K2 ≤ C

∞∑
k=1

k2(σ−βθ)(t− τ)−2αθRe⟨
[
|u′

1 + z1|p−1 + |u′
2 + z1|p−1

]
(u′

1 − u′
2), ek⟩2

≤ C

∞∑
k=1

k2(σ−βθ)(t− τ)−2αθ∥u′
1 − u′

2∥L3(∥u′
1∥

2p
L3 + ∥u′

2∥
2p
L3 + ∥z1∥2pL3)

≤ CR2p
∞∑
k=1

k2(σ−βθ)(t− τ)−2αθ∥u′
1 − u′

2∥Hσ .

As for N ′
1,2, we deduce that

∥N ′
1,2∥L2 ≤ CTα ∥R(x)∥L2 ∥

[
|u′

1 + z1|2 − |u′
2 + z1|2 + (n′

1 + z2)
2 − (n′

2 + z2)
2
]
∥L1
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≤ CTα ∥R(x)∥L2 ∥
[
|u′

1|2 − |u′
2|2 + 2Re (z̄1(n

′
1 − n′

2))

+(n′
1)

2 − (n′
2)

2 + 2z2(n
′
1 − n′

2)
]
∥L1

≤ CTα∥|u′
1|2 − |u′

2|2∥L1 + ∥2Re (z̄1(n
′
1 − n′

2)) ∥L1

+ ∥(n′
1)

2 − (n′
2)

2∥L1 + 2∥z2(n′
1 − n′

2)∥L1

≤ CR2Tα [∥u′
1 − u′

2∥L2+2∥(n′
1 − n′

2)∥L2+∥n′
1 − n′

2∥L2+2∥(n′
1 − n′

2)∥L2 ]

≤ CR2Tα [∥u′
1 − u′

2∥Hσ + ∥(n′
1 − n′

2)∥L2 ] .

Choosing T be small enough such that L is compressed. Thus, L has a unique point
in BT

R. The proof is complete.
Next,we will prove the global well-poseness of (1.2). Some prior estimates are

required.

Lemma 3.6. Assume that (u′, n′) is the solution over [0, T ] and β2 = 2, then it
holds that

∥u′∥+ ∥n′∥+ ∥n′
x∥+∥(−∆)σ/2u′∥2

≤C(T,ϵ,∥u0∥,∥n0∥,∥Aσ/2z1∥,∥Aσ/2z2∥)

+

∫ t

0

∞∑
k=1

ck

Γ(αk)
(t− s)αk−1Iαt

(
∥Aσ/2z1∥+ ∥Aσ/2z2∥

)
ds.

(3.6)

Proof. Mulitiply the first equation of (3.5) by ū′, and take the real part :

∥∆β1/4u′∥2 + ⟨|u′ + z1|2, (n′ + z2)⟩+ ∥u′ + z1∥pLp

= Re⟨(u′ + z1)(n
′ + z2), z1⟩+Re⟨|u′ + z1|p−1(u′ + z1), z1⟩.

Using the Hölder inequality, we have

Re⟨(u′ + z1)
2(n′ + z2), z1⟩+Re⟨|u′ + z1|p−1(u′ + z1), z1⟩

≤ ϵ⟨|u′ + z1|2, (n′ + z2)⟩+ C(ϵ)⟨|n′ + z2|, z1⟩+ ϵ∥u′ + z1∥pLp + C(ϵ)∥z1∥Lp

≤ ϵ⟨|u′ + z1|2, (n′ + z2)⟩+ ϵ∥u′ + z1∥pLp + C(ϵ)∥n+ z2∥+ C(ϵ)∥z21∥Lp

≤ ϵ⟨|u′ + z1|2, (n′ + z2)⟩+ ϵ∥u′ + z1∥pLp + C(ϵ)∥n+ z2∥+ C(ϵ)∥Aσ/2z1∥.

Take ϵ < 1 to get

∥∆β/4u′∥2+⟨|u′+z1|2, (n′+z2)⟩+∥u′+z1∥pLp ≤ C(ϵ)∥n′+z2∥+C(ϵ)∥Aσ/2z1∥. (3.7)

Taking the imaginary part, and using (3.7), we have

Dα
t ∥u′∥2 ≤ Im⟨(u′ + z1)(n

′ + z2), z1⟩+ Im⟨|u′ + z1|p−1(u′ + z1), z1⟩
≤ C(ϵ)∥n′ + z2∥+ C(ϵ)∥Aσ/2z1∥,

then with the Gronwall inequality, we obtain

∥u′∥2 ≤ C(ϵ)Iαt

(
∥n′ + z2∥+ ∥Aσ/2z1∥

)
+ C(T, ϵ, ∥u0∥, ∥n0∥). (3.8)

Multiplying the second equation of (3.5) by n′. By (3.7) and Gagliardo-Nirenberg
inequality, we have

Dα
t (∥n′2∥+ ∥n′

x∥2)
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≤
∫
Ω

(|u+ z1|2 + (n+ z2)
2)|n′

x|dx

≤ ϵ∥u′ + z1∥L4 + ϵ∥n′ + z2∥L4 + C(ϵ)∥nx∥
≤ ϵ∥u′∥L4 + ϵ∥n′∥L4 + C(ϵ)∥Aσ/2z2∥+ C(ϵ)∥Aσ/2z1∥+ C(ϵ)∥n′

x∥
≤ ϵ∥Aβ/4u′∥∥u′∥+ ϵ∥n′

x∥∥n′∥+ C(ϵ)∥Aσ/2z2∥+ C(ϵ)∥Aσ/2z1∥+ C(ϵ)∥n′
x∥

≤ C(ϵ)
(
∥n′∥+ ∥n′

x∥+ ∥Aβ/4u′∥+ ∥Aσ/2z2∥+ ∥Aσ/2z1∥
)

≤ C(ϵ)
(
∥n′∥+ ∥n′

x∥+ ∥z2∥+ ∥Aσ/2z2∥+ ∥Aσ/2z1∥
)
.

It is easily to show that ∥Aσz2∥ < ∞ when β = 2 in the second equation. Then
together with the (3.7), (3.8) and Gronwall inequality, the following conculsion can
be present,

∥u′∥+ ∥n′∥+ ∥n′
x∥

≤C(t, ϵ, ∥u0∥, ∥n0∥, ∥Aσ/2z1∥, ∥Aσ/2z2∥)

+

∫ t

0

∞∑
k=1

ck

Γ(αk)
(t− s)αk−1Iαt

(
∥Aσ/2z1∥+ ∥Aσ/2z2∥

)
ds.

(3.9)

Multiply the first equation of (3.5) by Aσū′, and take the real part :

∥Aβ/4+σ/2u′∥2 =Re⟨(u′ + z1)(n
′ + z2), A

σ/2u′⟩
+Re⟨|u′ + z1|p−1(u′ + z1), A

σ/2u′⟩.

Using the Hölder inequality, we have

Re⟨(u′ + z1)
2(n′ + z2), A

σ/2u′⟩+Re⟨|u′ + z1|p−1(u′ + z1), A
σ/2u′⟩

≤ ϵ⟨|u′ + z1|2, (n′ + z2)⟩+ C(ϵ)⟨|n+ z2|, Aβ/4+σ/2u′⟩
+ϵ∥u′ + z1∥pLp + C(ϵ)∥Aβ/4+σ/2u′∥L4

≤ ϵ∥Aβ/4+σ/2u′∥2 + ϵ∥u′ + z1∥2L4 + C(ϵ)∥n+ z2∥+ C(ϵ)∥Aβ/4+σ/2z1∥.

Take ϵ < 1 to get

∥Aβ/4+σ/2u′∥2 ≤ C(ϵ)∥n+ z2∥+ C(ϵ)∥Aσ/2z1∥. (3.10)

Taking the imaginary part,

Dα
t ∥Aσ/2u′∥2 ≤ Im⟨(u′+z1)

2(n′+z2), A
σ/2u′⟩+Im⟨|u′+z1|p−1(u′+z1), A

σ/2u′⟩
≤ C(ϵ)∥n′ + z2∥+ C(ϵ)∥Aβ/4+σ/2u′∥2.

Using (3.10) and applying the generalized Gronwall inequality, we can obtain that
the conclusion. Thus, the proof is completed.

If we set R be the bounded gotten in Lemma 3.6, the solution exists in the
interval [0, T ∗]. Then we can repeat the proof of Theorem 3.1 to get the existence
and uniqueness in [T ∗, 2T ∗], [2T ∗, 3T ∗], ..., hence we can get the following theorem

Theorem 3.2. Assume that (u0, n0) ∈ BT
R, then for α ∈ ( 34 , 1), 2α < β1 ≤ 2,

p < 3, β2 = 2, and 1
6 ≤ σ ≤ 1

2 , the equations (1.1) posses a global mild solution
{(u, n), t ∈ [0, T ]} in C([0, T ],Hσ)× C([0, T ], L2) for all u0 ∈ Hσ, n0 ∈ L2.
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4. Numerical simulation
In this section, we set β1 = β2 = 2, and use the Galerkin finite element method to
approximate the solution of time fractional equation (4.1),

iDα
t u− (−∆)u = un+ a|u|p−1u+ Ẇ1(t),

Dα
t (n−∆n) = (|u|2 + n2)x + Ẇ2(t),

u(0) = u0(x), n(0) = n0(x).

(4.1)

This method is developed by Li et al. [10] for stochastic space-time fractional wave
equations. Zou [19] developed Galerkin finite element method for time-fractional
stochastic heat equation. Liang et al. [11] gave the analysis of time fractional and
space nonlocal stochastic nonlinear Schrödinger equation driven by multiplicative
white noise.

Let VJ denoted the Galerkin subspace by

VJ := span{ei}Ji=1,

and the orthogonal projection operator PJ is defined as

uh = PJu =

J∑
j=1

⟨u, ej⟩ej , u =

∞∑
j=1

⟨u, ej⟩ej .

Now we give the semi-discrete finite element approximation. For convenience, we
set β1 = β2 = 2, denote (uh, nh) be the numerical approximation

iDα
t uh +∆uh = PJ(uhnh) + aPJ(|uh|p−1uh) + PJdW1(t),

Dα
t (nh −∆nh) = PJ(|uh|2 + n2

h)x + dW2(t),

u(0) = PJu0(x), n(0) = PJn0(x).

(4.2)

Similar to the proof of Theorem 3.1, we have the following conclusion

Theorem 4.1. Assume (u0, n0) ∈ BT
R, for α ∈ ( 34 , 1), and 1

6 ≤ σ ≤ 1
2 , p = 3,there

exist a random variable T > 0, such that the equation has a unique mild solution
with the form

uh(t, x) =Tα,β1
uh(0) +

∫ t

0

(t− τ)α−1Sα,β1
(t− τ)PJ(uhnh + a|uh|p−1uh)dτ

+

∫ t

0

(t− τ)α−1Sα,β1
(t− τ)PJdW1(τ),

nh(t, x) =nh(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗ PJ(|uh|2 + n2
h)dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1R0(x) ∗ PJẆ2(τh)dτ.

(4.3)

Firstly, we give the following two lemmas

Lemma 4.1 ( [11]). If PJ defined as above, and I denote the identify operator.
then we have the following estimate:

∥I − PJ∥L(Hσ,L2) ≤ CJ−σ. (4.4)
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Lemma 4.2 ( [14]). For complex function U,V,u,n we have∣∣|U |2V − |u|2v
∣∣ ≤ (max{|U |, |V |, |u|, |n|}) ∗ (2|U − u|+ |V − v|). (4.5)

In the sequel, denote

ϵ1(t) = Tα,2(t), ϵ2(t) = tα−1Sα,2(t).

The regularity of ϵ1(t), ϵ2(t) can be found from [11, 19]. Then we can deduce the
spatial convergence order of the semi-discrete form(4.2).

Theorem 4.2. Assume (u0, n0) ∈ BT
R and α ∈ ( 34 , 1),

1
6 ≤ σ ≤ 1

2 . Then for all
t ∈ (0, T ), it holds that

E∥u(t)− uh(t)∥2 + E∥n(t)− nh(t)∥2 ≤ CJ−2σ. (4.6)

Proof. It suffices to estimate the norms between (4.1) and (4.3) . In fact, we have

u(t)−uh(t) = ϵ1(t) [u(0)−uh(0)] +

∫ t

0

ϵ2(t− τ) [un− PJuhnh] dτ

+

∫ t

0

ϵ2(t−τ)
[
|u|p−1u−|uh|p−1uh

]
dτ+

∫ t

0

ϵ2(t−τ) [dW1(τ)−PJdW1(τ)]

:= I1 + I2 + I3 + I4,

and

n(t)− nh(t, x) = n(0)− nh(0) +
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
u2 − PJ |uh|2

]
dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
n2 − PJ |nh|2

]
dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1R0(x) ∗
[
Ẇ2(τh)− PJẆ2(τh)

]
dτ

:= J1 + J2 + J3 + J4.

It follows from Lemma 4.1 and Theorem 3.2 that

E∥I1∥2 ≤ CE∥u0∥HσJ−2σ.

For I2, we can derive that

E∥I2∥2 =

∫ t

0

ϵ2(t− τ) [un− PJun] dτ +

∫ t

0

ϵ2(t− τ) [PJun− PJuhnh] dτ

:= I21 + I22.

We deduce from Lemma 4.1 and Lemma 4.2 that

E∥I21∥2 ≤ E
∫ t

0

∥ϵ2(t− τ) [un− PJun] ∥2dτ

≤ E
∫ t

0

(t− τ)2α−2∥(I − PJ)(un)∥2dτ ≤ Ct2α−1J−2σ,

E∥I22∥2 ≤ E
∫ t

0

∥ϵ2(t− τ)PJ [un− uhnh] ∥2dτ
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≤
∫ t

0

(t− τ)2α−2E∥PJ(un− uhnh)∥2dτ

≤ C

∫ t

0

(t− τ)2α−2E∥u− uh∥2 + E∥n− nh∥2dτ.

Similar to I3, we can get

E∥I3∥2 =

∫ t

0

ϵ2(t− τ)
[
|u|2u− PJ |u|2

]
dτ+

∫ t

0

ϵ2(t− τ)
[
PJ |u|2u− PJ |uh|2uh

]
dτ

= I31 + I32.

Then use Lemma 4.1 and 4.2, we have

E∥I31∥2 ≤ E
∫ t

0

(t− τ)2α−2∥(I − PJ)(|u|2u)∥2dτ ≤ Ct2α−1J−2σ

and

E∥I32∥2 ≤
∫ t

0

(t− τ)2α−2E∥PJ(|u|2u− |uh|2uh)∥2dτ

≤ C

∫ t

0

(t− τ)2α−2E∥u− uh∥2dτ.

For I4, we have the following estimate

E∥I4∥2 =

∫ t

0

ϵ2(t− τ) [dW1(τ)− PJdW1(τ)] ≤
∫ t

0

∥ϵ2(t− τ)(I − PJ)Φ∥2 dτ

≤
∫ t

0

(t− τ)2α−2 ∥(I − PJ)Φ∥2 dτ ≤ Ct2α−1J−2σ.

Then for J1 and J2, according to the regularity of R(x), we have

E∥J1∥2 ≤ CJ−σ

and

E∥J2∥2 ≤ 1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
|u|2 − PJ |u|2

]
dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗
[
PJ |u|2 − PJ |uh|2

]
dτ

≤
∫ t

0

(t− τ)2α−2E∥u− uh∥2dτ + Ct2α−1J−σ.

Then we estimate the J3

E∥J3∥2 ≤
∫ t

0

(t− τ)2α−2E∥n− nh∥2dτ + Ct2α−1J−σ.

For J4, we have

E∥J4∥2 ≤
∫
R

∫ t

0

(t− τ)α−1R(x− y)dW (τ, y)dy
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−
∫
R

∫ t

0

(t− τ)α−1R(x− y)PJdW (τ, y)dy

≤
∫
R

∫ t

0

(t− τ)α−1R(x− y)(I − PJ)dW (τ, y)dy

≤ Ct2α−1J−2σ.

Applying the Gronwall inequality, the proof of the conclusion can be drawn.
Next, we will provide a fully discrete scheme. Let δt be the time mesh size, un

h

be the approximation of uh(tn). Then the fully discretized scheme at time tn is
defined as follows

un
h =ϵ1(tn)uh(0) + δt

n−1∑
j=0

(tn − tj)
α−1ϵ2(tn)(tn − tj)PJ(uhnh + a|uh|2uh)

+ δt

n−1∑
j=0

(tn − tj)
α−1ϵ2(tn)(tn − tj)PJδWj ,

nn
h =nh(0) +

δt

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(|uh|2 + n2

h)

+
δt

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(δW2(tj)).

(4.7)

The temporal convergence order of the fully discrete scheme is given as following
theorem:

Theorem 4.3. Assume (u0, n0) ∈ BT
R, and α ∈ ( 34 , 1),

1
6 ≤ σ ≤ 1

2 . Then for all
t ∈ (0, T ), it holds that

E∥uh(tj)− uj
h∥

2 + E∥nh(tj)− nj
h∥

2 ≤ Cδt2α−1. (4.8)

Proof. Firstly, direct calculation gives

uh(tn)− un
h =

∫ tn

0

ϵ2(tn − τ)PJ(uhnh)dτ − δt

n−1∑
j=1

ϵ2(tn − tj)PJ(u
j
hn

j
h)

+

∫ tn

0

ϵ2PJ(|uh|2uh)dτ − iδt

n−1∑
j=1

ϵ2(tn − tj)PJ(|uj
h|

2uj
h)

+

∫ tn

0

ϵ2dW (τ)− δt

n−1∑
j=1

ϵ2(tn − tj)PJδW
j := I1 + I2 + I3.

For I1, we have

I1 =

n−1∑
j=0

∫ tj+1

tj

ϵ2(tn − τ)PJ(uhnh)− ϵ2(tn − tj)PJ(u
j
hn

j
h)dτ

=

n−1∑
j=0

∫ tj+1

tj

ϵ2(tn − τ)PJ(uhnh)− ϵ2(tn − τ)PJ(uh(tj)nh(tj))dτ
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+

n−1∑
j=0

∫ tj+1

tj

ϵ2(tn − τ)PJ(uh(tj)− ϵ2(tn − tj)PJ(uh(tj)nh(tj))dτ

+

n−1∑
j=0

∫ tj+1

tj

ϵ2(tn − tj)PJ(uh(tj)nh(tj))− ϵ2(tn − tj)PJ(uhj)n
j
h)dτ

= I11 + I12 + I13.

It follows from Lemma 4.1 that

E∥I11∥2 ≤ E
n−1∑
j=0

∫ tj+1

tj

(tn − τ)2α−2∥uhnh − uh(tj)nh(tj)∥2dτ

≤ CE
∫ tj+1

tj

(tn − τ)2α−2dτ ≤ t2n−1

2α− 1
δt2α−1,

and

E∥I12∥2 ≤ E
n−1∑
j=0

∫ tj+1

tj

∥ϵ2(tn − τ)− ϵ2(tn − tj)PJ(∥uh(tj)nh(tj)∥2dτ

≤ E
n−1∑
j=0

∫ tj+1

tj

(τ − tj)
2∥PJ(∥uh(tj)nh(tj)∥2dτ ≤ δt2.

Similarly,

E∥I13∥2 ≤ E
n−1∑
j=0

∫ tj+1

tj

(tn − τ)2α−2∥uhnh − uh(tj)nh(tj)∥2dτ

≤ CE
∫ tj+1

tj

(tn − τ)2α−2E∥uh(tj)− uj
h∥

2 + E∥nh(tj)− nj
h∥

2dτ

≤ δt2α−1
n−1∑
j=1

E∥uh(tj)− uj
h∥

2 + E∥nh(tj)− nj
h∥

2.

Direct computation gives that

E∥I2∥2 ≤ Cδt2 + Cδt2α−1E
n−1∑
j=1

∥uh(tj)− uj
h∥

2,E∥I3∥2 ≤ Cδt2α−1.

Then we talk about nh

nh(tn)− nn
h =

1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗ PJ(|uh|2)dτ

− δt

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(|uh|2)

+
1

Γ(α)

∫ t

0

(t− τ)α−1R(x) ∗ PJ(n
2
h)dτ

− δt

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(n

2
h)
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+
1

Γ(α)

∫ t

0

(t− τ)α−1R0(x) ∗ PJẆ2(τh)dτ

− δt

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(δW2(tj))

:=K1 +K2 +K3.

For K1 and K2, we have

E∥K1∥2 ≤ Cδt2α−1
n−1∑
j=1

E∥uh(tj)− uj
h∥

2,

E∥K2∥2 ≤ Cδt2α−1
n−1∑
j=1

E∥nh(tj)− nj
h∥

2.

For K3, we derive that

K3 ≤ 1

Γ(α)

∫ t

0

(t− τ)α−1R0(x) ∗ PJẆ2(τ)dτ

− 1

Γ(α)

n∑
j=1

(tn − tj)
α−1R(x) ∗ PJ(δW2(tj))δt

≤
n−1∑
j=0

∫ tj+1

tj

(t− τ)α−1R0(x) ∗ PJẆ2(τ)dτ

−
n−1∑
j=0

∫ tj+1

tj

(t− tj)
α−1R0(x) ∗ PJδW2(τj)dτ

≤
n−1∑
j=0

∫ tj+1

tj

[
(t− τ)α−1 − (t− tj)

α−1
]
R0(x) ∗ PJẆ2(τ)dτ

+

n−1∑
j=0

∫ tj+1

tj

(t− tj)
α−1R0(x) ∗ PJ [Ẇ (τ)− δW2(τj)]dτ.

Finally, The Gronwall inequality guarantees the conclusion (4.8) holds.
As we can see , when we take α = 0.5, 0.8, respectively. Figure 1 shows the sim-

ulation results (u, n) in coupled time fractional Schrödinger-BBM equations driven
by Gaussian noises obtained by numerical scheme. When we set n = 0, the equation
(4.1) reduces to a time fractional Schrödinger equation driven by Gaussian noises.
The simulation results obtained by the same method are shown as Figure 2.

We can see from those figures that the smaller the time derivative is, the faster
the solution of the equation decays. At the same time, n decays faster than u. Under
the influence of n, u will have more fluctuation than when there is no influence.
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Figure 1. Coupled time fractional Schrödinger-BBM equations driven by Gaussian noises.
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Figure 2. Fractional Schrödinger equations driven by Gaussian noises.
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