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Abstract In this article, the discrete version of Legendre projection and it-
erated Legendre projection methods are considered to find the approximate
eigenfunctions (eigenvalues and eigenvectors) of a weakly singular compact
integral operator. Making use of a sufficiently accurate numerical quadra-
ture rule, we establish the error bounds of the approximated eigenvalues and
eigenvectors by discrete Legendre projection and iterated discrete Legendre
projection methods in both L2 and uniform norm. In particular, we obtain
the optimal convergence rates O(n−m) for the eigenfunctions in iterated dis-
crete Legendre projection method in L2 and uniform norms, where n is the
highest degree of the Legendre polynomial employed in the approximation and
m is the smoothness of the eigenvectors. Numerical examples are presented to
illustrate the theoretical results.
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1. Introduction
Considering X is a Banach space, find the eigenvalue λ ∈ C \ {0} and eigenvector
ϕ ∈ X such that

Fϕ = λϕ, ∥ϕ∥ = 1, (1.1)

where F is a compact linear integral operator with weakly singular kernels of al-
gebraic and logarithmic type. Numerical approximation methods such as degen-
erate kernel method, Nyström method, Galerkin, collocation and petrov-Galerkin
methods (see [1, 3, 10, 12–17]) have invited much awareness, over the years for the
approximation of the eigenfunctions (eigenvalues and eigenvectors) for the compact
integral operator F . The analysis for the convergence of Galerkin, petrov-Galerkin,
collocation, Nyström and degenerate kernel methods are well documented in [1-5].
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In [14], authors discussed the wavelet Galerkin method and obtained the supercon-
vergence results for the eigenfunctions. In the piecewise polynomial based Galerkin
and collocation methods, the bounds of error functions for the eigenvalues, iterated
eigenvectors of the above defined integral operator with smooth kernels have the
convergence rate O(h2m), whereas the error bounds for the spectral subspaces is of
the order O(hm), where h is the norm of the partition. In [3], authors considered
the fast collocation methods for the same integral operator with weakly singular
kernels and obtained the convergence rates for the eigenfunctions.

In the standard projection methods, F is approximated by πnFπn, a finite rank
operator, where πn from X onto a finite dimensional subspace Xn, is either an or-
thogonal projection or interpolatory projection for the Galerkin method or colloca-
tion method, respectively. Generally, in projection methods, the matrix eigenvalue
problem related to πnFπn cannot be evaluated precisely, due to the various in-
tegrals appearing from the integral operator F and inner products. Hence, it is
necessary to replace these integrals by an appropriate numerical quadrature rule.
Replacement by numerical quadrature rules for these integrals leads to discrete
projection methods. In [8], authors discussed the discrete multi-projection meth-
ods using piecewise polynomial bases for the approximation of eigenfunctions of a
compact integral operator for smooth kernels. In all these discrete and non-discrete
piecewise polynomially based approximated eigenvalue problems, one needs to solve
large size of matrix eigenvalue problem, which is numerically expensive to compute.
To avoid this complexity, one can use global polynomials as basis functions instead
of piecewise polynomials. In particular, one can use Legendre polynomials as basis
functions. In [13], B. L. Panigrahi et. al. discussed the eigenvalue problem of a
weakly singular compact operator (1.1) by Legendre Galerkin and Legendre multi
Galerkin methods and obtained the convergence results for the eigenfunctions. In
this paper, our main aim is to discuss the discrete Legendre projection methods of
a weakly singular compact integral operator and to find the error bounds for the
approximate eigenfunctions. We will show that eigenfunctions in the iterated dis-
crete Legendre Galerkin method have optimal convergence rates in L2 and uniform
norm.

This paper is organized as follows: The discrete version of Legendre projec-
tion and iterated Legendre projection methods are introduced in Section 2. The
convergence results for the eigenfunctions in L2 and uniform norm are explored in
Section 3. In Section 4, to verify the hypothetical results, numerical illustrations
are provided. Assume that c is a generic constant, all over the paper.

2. Discrete Legendre projection method
Let X = C[−1, 1], a Banach space with the norm ∥·∥∞. Our aim is to find the
eigenfunctions ϕ ∈ X and λ ∈ C \ {0} for the following eigenvalue problem defined
on X:

Fϕ = λϕ, 0 ̸= λ ∈ C, ∥ϕ∥ = 1, (2.1)

where the integral operator F is defined by

Fϕ(x) =
∫ 1

−1

k(x, t)ϕ(t)dt, x ∈ [−1, 1], (2.2)
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with the kernel k(x, t) = m(x, t)a(x, t), where

m(x, t) =

{
|x− t|α−1, if 1

2 < α < 1,

log(|x− t|), if α = 1,
(2.3)

and a(x, t) is sufficiently smooth w.r.t. both the variables x and t.
Note that the kernel k(x, t), for 1

2 < α ≤ 1 satisfies the following condition

A1. sup
x∈[−1,1]

∫ 1

−1

|k(x, s)|2 ds =M <∞.

A2. lim
x→x′

∫ 1

−1

|k(x, t)− k(x′, t)|2 dt = 0, − 1 ≤ x ≤ 1.

Then F : C[−1, 1] → C[−1, 1] is a compact linear operator (see [7] and [9]).
Let the space BL(X ) denotes all bounded linear operators on X, and

ρ(F) = {z ∈ C : (F − zI)−1 ∈ BL(X)} (2.4)

and σ(F) = C \ ρ(F) be the resolvent set and spectrum of F , respectively.
Let the eigenvalue λ of F have the ascent ℓ and algebraic multiplicity r. Let

Γ ⊂ ρ(F) be a rectifiable curve, which is simple closed such that σ(F) ∩ intΓ =
{λ}, 0 /∈ intΓ, where int Γ denotes the interior of Γ. Let

P = − 1

2πi

∫
Γ

(F − zI)−1 dz, (2.5)

be the spectral projection associated with F and λ (see [2]).
Let R(P), the range of P, the spectral subspace associated with F and λ. Then

R(P) = (N(F − λI)ℓ) and r is the dimension of R(P).
Let Y1,Y2 be any two non zero closed subspaces of X and for p = 2,∞, let

δp(Y1,Y2) = sup{distp(y,Y2) : y ∈ Y1, ∥y∥p = 1}.

Then the gap between the subspaces is

δ̂p(Y1,Y2) = max{δp(Y1,Y2), δp(Y2,Y1)}.

Next, we discuss the discrete Legendre projection methods for eigenvalue problem
(2.1). To do this, let Xn = span{ϖ0, ϖ1, ϖ2, . . . ϖn} be the subspace of orthonormal
Legendre polynomials of degree ≤ n on [−1, 1]. Here ϖi’s are given by

ϖi(x) =

√
2i+ 1

2
Li(x), i = 0, 1, · · · , n,

Li’s are Legendre polynomials of degree ≤ i,, generated from the following relation

L0(x) = 1, L1(x) = x, x ∈ [−1, 1],

and
(i+ 1)Li+1(x) = (2i+ 1)xLi(x)− iLi−1(x), i = 1, 2, 3 · · · , n− 1.

Let πn : X → Xn be orthogonal projection. For the eigenvalue problem (2.1), the
Galerkin method is to find ϕn ∈ Xn and λn ∈ C such that

πnFπnϕn = λnϕn, ∥ϕn∥ = 1. (2.6)
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Using ϕn =
∑n

j=0 αjϖj ∈ Xn, we have
n∑

j=0

αj < Fϖj , ϖi >= λn

n∑
j=0

αj < ϖj , ϖi >, i = 0, 1, 2, 3, . . . n, (2.7)

and iterated eigenfunction is defined as

ϕ̃n =
1

λn
Fϕn. (2.8)

In general, the integrals appeared in the projection methods for solving (2.6)-(2.8)
due to the inner products, the integral operator F can not be evaluated precisely.
The replacement of these integrals by numerical quadratures lead to the projection
methods in its discrete form.

For doing so, we choose a numerical integration as follows: for f ∈ C[−1, 1] let∫ 1

−1

f(t) dt ≃
R(n)∑
p=1

wpf(tp), (2.9)

where
(i) the weights wp are s.t.

wp > 0, p = 1, 2, · · · , R(n), (2.10)

(ii) the quadrature rule having the degree of precision is at least 2n, and for all
polynomials of degree ≤ 2n, we have∫ 1

−1

f(t) dt =

R(n)∑
p=1

wpf(tp). (2.11)

From now on, we set R(n) = R, for the notational convenient. We define the discrete
inner product by utilizing the above quadrature rule (2.9)-(2.11) (see [6], [18]) as

⟨f, g⟩R =

R∑
p=1

wpf(tp)g(tp), f, g ∈ C[−1, 1]. (2.12)

Since wj > 0, it follows that

2 =

∫ 1

−1

ds =

R∑
i=1

wi. (2.13)

Hyperinterpolation operator: The hyperinterpolation operator (Discrete or-
thogonal projection operator) Ln : X → Xn (see [18]), defined by

Lny =

n∑
j=0

⟨y,ϖj⟩Rϖj , y ∈ X, (2.14)

and Ln satisfies

⟨Lny, yn⟩R = ⟨y, yn⟩R, y ∈ X, yn ∈ Xn. (2.15)

Now we quote some essential properties of Ln from Sloan [18].
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Lemma 2.1. Let Ln : X → Xn, the hyperinterpolation operator defined by (2.14).
Then the following hold

i) For any y ∈ X,

⟨y − Lny, y − Lny⟩R = min
χ∈Xn

⟨y − χ, y − χ⟩R. (2.16)

ii) For any y ∈ X,
∥Lny∥L2 ≤ p∥y∥∞, (2.17)

where p is a constant and

∥Lny − y∥L2 ≤ 2
√
2 inf
ϕ∈Xn

∥y − ϕ∥∞ → 0, n→ ∞. (2.18)

iii) In particular, y ∈ Cm[−1, 1];

∥Lny − y∥L2 = cn−m∥y(m)∥∞, (2.19)

c is a constant not dependent of n, and n ≥ m.

From Lemma 2.4 of [5], we have that for any y ∈ Cm[−1, 1], there holds

∥Lny − y∥∞ ≤ cn−m+1∥y(m)∥∞, n ≥ m, (2.20)

c is a constant not dependent of y and n, and n ≥ m.
From [4] and [19], we have

∥Ln∥∞ = O(n), (2.21)
∥y − Lny∥L2 → 0 as n→ ∞, (2.22)
∥y − Lny∥∞ ↛ 0 as n→ ∞. (2.23)

Remark 2.1. If R = n+ 1, i.e., the number of quadrature points in discrete inner
product (2.12) and the dimension of the subspace Xn are the same, then the discrete
orthogonal projection becomes the interpolatory projection (see [18]).

Using the projection Ln, we define the Nyström operator Fn : X → Xn by

Fn(z)(x) =

∫ 1

−1

m(x, t)Ln(a(x, t)z(t)) dt, (2.24)

which is an approximation of the integral operator F . Note that for any z ∈ X,
using

Ln(a(x, t)z(t)) =

n∑
j=0

ϖj(x)a(x, tj)z(tj), (2.25)

in (2.24), we have

Fn(z)(x) =

n∑
j=0

wj(x)a(x, tj)z(tj), (2.26)

with wj(x) =
∫ 1

−1
ϖj(x)m(x, t) dt.
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The discrete Lengendre Galerkin method is to find ψn =
∑n

j=0 βjϖj ∈ Xn and
λ̃n ∈ C \ {0} such that

n∑
j=0

βj < Fnϖj , ϖi >R= λ̃n

n∑
j=0

βj < ϖj , ϖi >R, i = 0, 1, 2, 3, . . . n,

R∑
p=1

n∑
j=0

n∑
i=0

βjwpwj(tp)(a(tp, ti)z(ti)) = λ̃n

R∑
p=1

n∑
j=0

βjwpwjϖj(tp)ϖi(tp). (2.27)

Using Ln and Fn, the eigenvalue problem (2.27) can be written as

LnFnψn = λ̃nψn, ∥ψn∥∞ = 1. (2.28)

We define the iterated eigenvector as

ψ̃n =
1

λ̃n
Fnψn. (2.29)

Applying Ln of the equation (2.29), we have

Lnψ̃n = ψn. (2.30)

and
FnLnψ̃n = λ̃nψ̃n. (2.31)

This is the iterated discrete Legendre Galerkin method for the eigenvalue problem
(2.1).

3. Convergence analysis
In this section, we discuss the convergence analysis of the eigenvalues and eigenvec-
tors in the discrete Legendre projection methods.

Lemma 3.1. Let the operators Fn and F defined by (2.26) and (2.2), respectively.
Then for a(., .) ∈ Cm([−1, 1]× [−1, 1]) and ϕ ∈ Cm[−1, 1], there hold

∥(F − Fn)ϕ∥∞ ≤ cn−m∥(aϕ)(m)∥∞,
∥(F − Fn)ϕ∥L2 ≤ cn−m∥(aϕ)(m)∥∞,

∥Fnz∥∞ ≤
√
M2p∥a∥∞∥z∥∞. (3.1)

Proof. Using Schwartz inequality and estimate (2.19), we have

∥(F − Fn)ϕ∥∞ = sup
x∈[−1,1]

|(F − Fn)ϕ(x)|

= sup
x∈[−1,1]

|
∫ 1

−1

m(x, t)[(I − Ln)(a(x, t))ϕ(t)]dt|

≤ sup
x∈[−1,1]

∫ 1

−1

|m(x, t)[(I − Ln)(a(x, t))ϕ(t)]|dt

≤∥m(·, ·)∥L2∥(I − Ln)(a(·, ·)ϕ)∥L2
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≤M2cn
−m∥(a(·, ·)ϕ)(m)∥∞

≤M2M3cn
−m

=O(n−m). (3.2)

Note that ∥(a(·, ·)ϕ)(m)∥∞ ≤M3 <∞, for m = 0, 1, 2, . . . .
Now using the estimate (3.2), we obtain

∥(F − Fn)ϕ∥L2 ≤
√
2∥(F − Fn)ϕ∥∞ = O(n−m). (3.3)

Next using Holder’s inequality, for any z ∈ X, we have

|Fnz(t)| =
∣∣∣∣∫ 1

−1

m(x, t)Ln(a(t, x)z(x)) dx

∣∣∣∣ ≤ ∥m(·, ·)∥L2∥Ln(a(x, t)z(t))∥L2

≤
√
M2p∥a∥∞∥z∥∞,

which implies that

∥Fnz∥∞ ≤
√
M2p∥a∥∞∥z∥∞. (3.4)

This completes the proof.
For the rest of the paper, we assume that R = n+ 1, the number of quadrature

points used in discrete inner product (2.12) and the dimension of the subspace Xn

are the same. In this case, we have

FnLn(z)(x) =

n∑
j=0

wj(a(x, tj)Lnz(tj)) =

n∑
j=0

wj(a(x, tj)z(tj)) = Fn(z)(x). (3.5)

Thus FnLn = Fn.

Lemma 3.2. The operator Fn defined in (2.26) converges to F in collectively
compact fashion.

Proof. From (3.2), we see that the operator Fn converges to F pointwise and
since F is a compact operator, so to prove the Lemma, it is sufficient to prove that

the set M =

∞⋃
n=1

{Fnv : ∥v∥∞ ≤ 1, v ∈ X} is relatively compact set.

For any v ∈ X, and x, x′ ∈ [−1, 1], Consider

|(Fnv)(x)− (Fnv)(x
′)|

=|
∫ 1

−1

m(x, t)Ln(a(x, t)v(t))dt−
∫ 1

−1

m(x′, t)Ln(a(x
′, t)v(t))dt|

=|
∫ 1

−1

m(x, t)Ln(a(x, t)v(t))dt−
∫ 1

−1

m(x′, t)Ln(a(x, t)v(t))dt

+

∫ 1

−1

m(x′, t)Ln(a(x, t)v(t))dt−
∫ 1

−1

m(x′, t)Ln(a(x
′, t)v(t))dt|

≤|
∫ 1

−1

[m(x, t)−m(x′, t)]Ln(a(x, t)v(t))dt|

+ |
∫ 1

−1

m(x′, t)[Ln(a(x, t)v(t))− Ln(a(x
′, t)v(t))]dt|
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≤
∫ 1

−1

|[m(x, t)−m(x′, t)]Ln(a(x, t)v(t))|dt

+

∫ 1

−1

|m(x′, t)[Ln(a(x, t)v(t))− Ln(a(x
′, t)v(t))]|dt

≤∥[m(x, ·)−m(x′, ·)]∥L2∥Ln(a(x, ·)v(·))∥L2

+ ∥m(x′, ·)∥L2∥[Ln(a(x, ·)v(·))− Ln(a(x
′, ·)v(·))]∥L2

≤∥[m(x, ·)−m(x′, ·)]∥L2p1∥a∥∞∥v∥∞
+ ∥m(x, ·)∥L2p2∥v∥∞∥[a(x, .)− a(x′, .)]∥∞. (3.6)

Now using A2 and smoothness of a(·, ·) in the estimate (3.6), we obtain

|(Fnv)(x)−(Fnv)(x
′)| → 0 as x→ x′. (3.7)

Now from (3.4) and (3.7), it follows that the set M =

∞⋃
n=1

{Fnv : ∥v∥ ≤ 1, v ∈ X} is

uniformly bounded and equicontinuous. Therefore the set

M =

∞⋃
n=1

{Fnv : ∥v∥∞ ≤ 1, v ∈ X} is relatively compact set.

This complete the proof.
Since Fn converges to F in collectively compact fashion, the results of Chatelin
[2] and Osborn [11] are applicable. The spectrum of Fn inside Γ, i.e., Λn =
σ(Fn)

⋂
int(Γ) consist of r eigenvalues say λn,1, λn,2, . . . , λn,r counted accordingly

to their algebraic multiplicities. Let

ˆ̃
λn =

λn,1 + λn,2 + · · ·+ λn,r
r

,

denote the arithmetic mean of λn,i, for i = 1, 2, . . . , r and we approximate λ by ˆ̃
λn.

Let
Pn = − 1

2πi

∫
Γ

(Fn − zI)−1dz,

Pn is the spectral projection associated with Fn and Λn, and let R(Pn) denotes the
range of Pn. Then by applying the results of [2,11], we have the following theorem.

Theorem 3.1. For sufficiently large enough n, the following hold

|λ− λn,i|l ≤ c∥(F − Fn)|R(P)∥L2 , for i = 1, . . . , r,

|λ− λ̃n| ≤ c∥(F − Fn)|R(P)∥L2 ,

δ̂p(R(P),R(Pn)) ≤ c∥(F − Fn)|R(P)∥Lp , p = 2,∞,

c is a constant not dependent of n.

Next, we discuss the convergence results for the eigenvalues and eigenvectors.

Theorem 3.2. Let F be the integral operator with algebraic kernel k(x, t) =
a(x, t)|x − t|α−1 for 1

2 < α < 1 or logarithmic kernel k(x, t) = a(x, t) log |x− t|
for α = 1, where a(x, t) ∈ Cm([−1, 1] × [−1, 1]). Let the eigenvalue λ of F has
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ascent ℓ and algebraic multiplicity r, and let R(P) and R(Pn), the ranges of the
spectral projections P and Pn, respectively, with R(P) ⊂ Cm([−1, 1]) and ˆ̃

λn, the
arithmetic mean of the eigenvalues λn,j , j = 1, 2, . . . , r. Then there hold

|λ− λn,i|l = O(n−m), for i = 1, . . . , r,

|λ− ˆ̃
λn| = O(n−m),

δ̂p(R(P),R(Pn)) = O(n−m), for p = 2,∞.

Proof. Note that using Lemma 3.1, we have

∥(F −Fn)|R(P)∥∞ = sup{∥(F −Fn)ϕ∥∞;ϕ ∈ R(P), ∥ϕ∥∞ = 1} = O(n−m). (3.8)

and

∥(F−Fn)|R(P)∥L2 = sup{∥(F−Fn)ϕ∥L2 ;ϕ ∈ R(P), ∥ϕ∥L2 = 1} = O(n−m). (3.9)

Combining this with Theorem 3.1, we obtain the desired results. This completes
the proof.

Next let λ, be the simple eigenvalue of F with the corresponding eigenfunction
ϕn, i.e., r = 1 and ℓ = 1. Let λ̃n, be the corresponding simple eigenvalue of Fn

with the corresponding eigenvector ψn, i.e.

Fnψn = λ̃nψn, ∥ψn∥ = 1. (3.10)

Let ψ̃n = 1
λ̃n

Fψn be the corresponding iterated eigenvector.

Theorem 3.3. Let the compact integral operator F with algebraic kernel k(x, t) =
a(x, t)|x− t|α−1 for 1

2 < α < 1 or logarithmic kernel k(x, t) = a(x, t) log |x− t| for
α = 1, where a(x, t) ∈ Cm([−1, 1]× [−1, 1]). Assume that λ, a simple eigenvalue of
F , i.e., r = 1, ℓ = 1. Let λ̃n be a simple eigenvalue of Fn with the corresponding
eigenfunction ψn. Assume that R(Pn),R(P) ⊂ Cm[−1, 1], then there hold

|λ− λ̃n| = O(n−m),

∥ψ̃n − Pψ̃n∥∞ = O(n−m), ∥ψ̃n − Pψ̃n∥L2 = O(n−m),

∥ψn − Pψn∥∞ = O(n−m+1), ∥ψn − Pψn∥L2 = O(n−m+1).

Proof. Using Theorem 3.1, we have

|λ− λ̃n| ≤ c∥(F−Fn)|R(P)∥∞ ≤ c sup{∥(F−Fn)ϕ∥∞;ϕ ∈ R(P), ∥ϕ∥ = 1}. (3.11)

Now using lemma 3.1 in (3.11),

|λ− λ̃n| = O(n−m).

Again from Theorem 3.1, we have

∥ψ̃n − Pψ̃n∥L2 ≤ δ̂2(R(P),R(Pn)) ≤ c∥(F − Fn)|R(P)∥L2 = O(n−m), (3.12)

and

∥ψ̃n − Pψ̃n∥∞ ≤ δ̂∞(R(P),R(Pn)) ≤c∥(F − Fn)|R(P)∥∞ = O(n−m). (3.13)
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Now using the above estimate and the estimates (2.19) and (2.20), we have

∥ψn − Pψn∥∞ = ∥Lnψ̃n − PLnψ̃n∥∞
≤ ∥Pψ̃n − ψ̃n∥∞ + ∥P(I − Ln)ψ̃n∥∞ + ∥(I − Ln)ψ̃n∥∞
≤ O(n−m) + ∥P∥∞∥(I − Ln)ψ̃n∥∞ + ∥(I − Ln)ψ̃n∥∞
≤ O(n−m) + (1 + ∥P∥∞) n−m+1∥ψ̃(m)

n ∥∞
= O(n−m+1),

and

∥ψn − Pψn∥L2 = ∥Lnψ̃n − PLnψ̃n∥L2

≤ ∥Pψ̃n − ψ̃n∥L2 + ∥P(I − Ln)ψ̃n∥L2 + ∥(I − Ln)ψ̃n∥L2

≤ O(n−m) + (1 + ∥P∥L2)∥(I − Ln)ψ̃n∥L2

≤ O(n−m) + cn−m∥ψ̃(m)
n ∥∞

= O(n−m).

This completes the proof.

Remark 3.1. we observe that if the quadrature rule is minimal, that is when num-
ber of quadrature points and the dimension of the approximate space are chosen
to be the same, then from Theorems 3.2, 3.3, we conclude that the eigenfunctions
in the iterated discrete Legendre Galerkin method improves over discrete Legendre
Galerkin method. Also, we obtain the optimal results of convergence for the eigen-
functions in iterated version of discrete Legendre Galerkin method in both uniform
and L2 norms.

4. Numerical results
The numerical results for finding the eigenvalue for the problem (2.1) along with the
integral operator F defined in (2.2)-(2.3) are presented here. We choose the basis
functions of Xn as Legendre polynomials and quadrature rule as defined in section 2.
We present the error of the approximated eigenvalues, eigenvectors with exact eigen-
values, eigenvectors by discrete version of Legendre projection and iterated Legendre
projection methods in both L2 and uniform norm. For different kernels, and for
distinct n, we compute λ̃n, ψn and ψ̃n in the discrete version of Legendre projec-
tion and iterated Legendre projection methods and compare the results with exact
solutions. The numerical tests were performed on a PC Intel(R)Core(TM)i5-3470
CPU@3.20GHz Processor, 4.00GB RAM and 32-bit Operating System on Matlab
(R2012b). The computed errors in both L2 and uniform norm of the approximated
eigen solutions to those of the exact eigen solutions are presented in the following
Tables [1-2].

Example 4.1. Consider the eigenvalue problem∫ 1

−1

log |x− t|y(t) dt = λy(s).

Here α = 1.
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Table 1. Discrete Legendre Galerkin method
n |λ− λ̃n| ∥ψn − Pψn∥L2 ∥ψ̃n − Pψ̃n∥L2 ∥ψn − Pψn∥∞ ∥ψ̃n − Pψ̃n∥∞
2 1.76932589×10−1 3.32698361×10−2 3.85996321×10−3 2.02158961×10−1 4.54966324×10−3

3 1.25693544×10−2 1.25966369×10−2 2.65982365×10−3 1.32596214×10−2 2.42365414×10−3

4 2.54369144×10−3 5.96325891×10−3 1.45693012×10−4 2.35698744×10−3 1.56932544×10−4

5 7.96358244×10−4 4.68923650×10−3 7.85693214×10−5 2.45632144×10−3 8.52169874×10−5

6 5.54256394×10−4 2.35698105×10−4 5.56932145×10−5 5.36598124×10−4 6.57544289×10−5

7 2.3095442×10−5 9.03480998×10−6 1.30997890×10−6 4.00932102×10−5 3.49867021×10−6

8 1.09983589×10−7 6.02484302×10−7 5.24136952×10−7 4.26536981×10−7 1.25256918×10−7

Example 4.2. Consider the eigenvalue problem∫ 1

−1

|x− t|−1/4
(xt+ 1) y(t)dt = λy(s).

Here α = 3/4.

Table 2. Discrete Legendre Galerkin method
n |λ− λ̃n| ∥xn − Pψn∥L2 ∥ψ̃n − Pψ̃n∥L2 ∥ψn − Pψn∥∞ ∥ϕ̃n − Pψ̃n∥∞
2 3.25693654×10−1 1.45326914 ×10−1 1.73695845×10−2 1.96321454×10−1 1.85326944×10−3

3 3.22169356×10−2 1.32569801×10−2 4.61258944×10−3 1.24589634×10−2 8.58960325×10−4

4 4.12563012×10−3 4.63201544×10−3 8.75698356×10−4 5.54651325×10−3 1.56923654×10−4

5 3.01236954×10−4 5.15360248×10−4 5.42569354 ×10−5 1.72569356×10−3 8.25632145×10−5

6 8.74586914×10−4 1.85693244×10−4 1.65893214×10−5 3.56932144×10−4 2.02158694 ×10−5

7 3.78954331×10−5 7.54430976×10−5 8.65893214×10−7 7.89804356×10−5 3.67765509 ×10−6

8 9.20390987×10−6 5.56609987×10−6 7.43890965×10−8 7.01877491×10−6 1.89976544 ×10−7

From Tables 1 and 2 of Examples 1 and 2, we can see that the iterated discrete
Legendre projection method improves over the discrete Legendre Galerkin method.
Also, we have calculated the CPU times needed for computation of the above nu-
merical results. We see that the CPU times for evaluating the numerical results for
the discrete Legendre Galerkin are given in Table 1 and Table 2 are 187.30s and
176.21s, respectively and for iterated discrete Legendre Galerkin methods are given
in Tables 1 and 2 are 216.34s and 254.87s, respectively.

Remark 4.1. We use global (Legendre) polynomials of degree n, for solving the
eigenvalue problem. We need to solve the matrix eigenvalue problem of size (n +
1)× (n+ 1). For that we choose n = 2, 3, 4, 5, 6, which means that we only need to
solve the matrix eigenvalue problem of the size 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7 and
to obtain the approximate eigenvector.
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