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Abstract In this paper, we establish an upper bound and sharp lower bounds
on the minimum M -eigenvalue of elasticity Z-tensors without irreducible con-
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merical examples are given to show the efficiency of the proposed results.
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1. Introduction
A fourth-order real tensor A is called a partially symmetric tensor, denoted by
A = (aijkl) ∈ E4,n, if

aijkl = ajikl = aijlk, i, j, k, l ∈ N = {1, 2, · · · , n}.

The fourth-order partially symmetric tensor is useful in nonlinear elastic material
analysis [6–8, 10, 12, 15, 16, 19]. For example, a fourth-order partially symmetric
tensor with n = 2 or 3, called the elasticity tensor, can be used in the two/three-
dimensional field equations for a homogeneous compressible nonlinearly elastic ma-
terial without body forces [2, 4, 17, 29]. To identify the strong ellipticity in elastic
mechanics, Han et al. [8] introduced M -eigenvalue of a fourth-order partially sym-
metric tensor. For λ ∈ R, x, y ∈ Rn, if

Axy2 = λx,

Ax2y = λy,

x⊤x = 1,

y⊤y = 1,
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where (Axy2)i =
∑

j,k,l∈N

aijklxjykyl, (Ax2y)l =
∑

i,j,k∈N

aijklxixjyk, then the scalar

λ is called an M -eigenvalue of the tensor A, and x and y are called left and right
M -eigenvectors associated with the M -eigenvalue.

Tensors with special structures, such as nonnegative tensors and M -tensors,
are becoming the keynote in recent research [1,3,5,6,11,25–28]. Particularly, some
important properties of M -tensors and nonsingular M -tensors have been established
in [6, 26]. Further, some bounds for the minimum H-eigenvalue of nonsingular M -
tensors have been proposed in [3, 5, 9, 26, 27]. To characterize the strong ellipticity
condition, Ding et al. [6] introduced a structured partially symmetric tensor named
elasticity Z-tensors and elasticity M -tensors as follows.

Definition 1.1. Tensor A = (aijkl) ∈ E4,n is called an elasticity Z-tensor if there
exist a nonnegative tensor B ∈ E4,n and a real number s such that

A = sIM − B,

where IM = (eijkl) ∈ E4,n is called elasticity identity tensor with its entries

eijkl =

1, if i = j and k = l

0, otherwise

and aiikk(i, k ∈ N) is called diagonal entry. Further, if s ≥ ρM (B), we call A
an elasticity M -tensor, and if s > ρM (B), then we call A a nonsingular elasticity
M -tensor.

An interesting problem arises: can the minimum M -eigenvalue of elasticity M -
tensors be estimated as the minimum H-eigenvalue of M -tensors? Unfortunately,
the following example gives us a negative answer.

Example 1.1. A = (aijkl) ∈ E4,2 be an elasticity M -tensor, whose entries are

aijkl =



a1111 = 6, a1122 = 3, a2211 = 4, a2222 = 5,

a1112 = a1121 = −2, a2212 = a2221 = −1,

a2111 = a1211 = −1, a1222 = a2122 = −1,

aijkl = 0, otherwise.

By computations, we obtain that the minimum M -eigenvalue and corresponding
with left and right M -eigenvectors are (τM (A), x̄, ȳ) = (1.4884, (0.9202, 0.3914),
(0.4781, 0.8783)). It follows from Theorem 2.1 of [9] that

[min
i∈N

Ri(A),max
i∈N

Ri(A)] = [3, 5].

However,
τM (A) = 1.4884 /∈ [min

i∈N
Ri(A),max

i∈N
Ri(A)].

This stimulates researchers to establish new characterizations for the minimum
M -eigenvalue of elasticity M -tensors. Based on the minimum diagonal entries, He
et al. [10] proposed some bounds for the minimum M -eigenvalue of elasticity M -
tensors under irreducible conditions. As we know, the strong ellipticity condition



2116 G. Wang, L. Sun & X. Wang

holds for an elasticity tensor if and only if it is M -positive, and that it is M -
positive if and only if its minimum M -eigenvalue is positive. Certainly, elasticity
M -tensors are M -positive and satisfies the strong ellipticity condition [6]. However,
elasticity Z-tensors are usually not M -positive definite, and the strong ellipticity
condition is not satisfied. Can we provide some checkable sufficient conditions for
the strong ellipticity by estimating lower bounds for the minimum M -eigenvalue
of elasticity Z-tensors? Meanwhile, many elasticity M -tensors and Z-tensors, such
as anisotropic tensors, are not irreducible, which reveals that irreducibility is a
relatively strict condition. Inspired by these observations, combining the maximum
diagonal entries with accurate eigenvector information, we want to establish sharp
bound estimations on the minimum M -eigenvalue of elasticity Z-tensors without
irreducible conditions, and identify whether the strong ellipticity condition holds.
This constitutes the motivation of the paper.

The remainder of this paper is organized as follows. In Section 2, some prelimi-
nary results are recalled. In Section 3, we establish an upper bound and two sharp
lower bounds for the minimum M -eigenvalue of elasticity Z-tensors. In Section 4,
we propose some sufficient conditions to verify whether an elasticity Z-tensor is
a nonsingular elasticity M -tensor and strong ellipticity condition is satisfied. The
given numerical experiments show its validity.

2. Preliminaries
In this section, we firstly introduce some definitions and important properties of
elasticity M -tensors [6, 10,16].

Definition 2.1. Let A = (ai1i2...im) ∈ R[m,n] be an m-th order n dimensional real
square tensor, then A = (ai1i2...im) is called reducible if there exists a nonempty
proper index subset J ⊂ {1, 2, . . . , n} such that ai1i2...im = 0, ∀ i1 ∈ J,∀ i2, . . . , im /∈
J. If A is not reducible, then we call A to be irreducible.

Lemma 2.1 (Theorem 1 of [16]). M -eigenvalues always exist. If x and y are left
and right M -eigenvectors of A, associated with an M -eigenvalue λ, then λ = Ax2y2.

Lemma 2.2 (Theorem 6 of [6]). The M -spectral radius of any nonnegative tensor in
E4,n is exactly its greatest M -eigenvalue. Furthermore, there is a pair of nonnegative
M -eigenvectors corresponding to the M -spectral radius.

Lemma 2.3 (Lemma 2.4 of [10]). Let A = (aijkl) ∈ E4,n be an irreducible elasticity
M -tensor and τM (A) be the minimum M -eigenvalue of A, then

τM (A) ≤ min
i,k∈N

{aiikk}.

In the following, we characterize the M -eigenvector associated with the minimum
M -eigenvalue by relaxing the irreducible condition.

Lemma 2.4. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be
the minimum M -eigenvalue. Then, there exist nonnegative left and right M -
eigenvectors (x, y) corresponding to τM (A) such that

Axy2 = τM (A)x, Ax2y = τM (A)y.
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Proof. Since A is an elasticity Z-tensor, there exist a nonnegative tensor B ∈ E4,n

and a real number s such that

A = sIM − B.

It follows Lemmas 2.1 and 2.2 that

τM (A) = min
x,y

{fA(x, y) = Ax2y2 : x⊤x = 1 and y⊤y = 1}

= min
x,y

{(sIM − B)x2y2 : x⊤x = 1 and y⊤y = 1}

= s−max
x,y

{Bx2y2 : x⊤x = 1 and y⊤y = 1} = s− ρM (B),

where ρM (B) is the greatest M -eigenvalue of B with a nonnegative eigenvector
(x, y). Meanwhile, elasticity identity tensor IM has the following property:IMxy2 = x,

IMx2y = y.

Further,
Bxy2 = ρM (B)x = (s− τM (A))x = sIMxy2 − τM (A)x,

Bx2y = ρM (B)y = (s− τM (A))y = sIMx2y − τM (A)y,

which imply

Axy2 = (sIM − B)xy2 = τM (A)x, Ax2y = (sIM − B)x2y = τM (A)y.

3. Bounds for the minimum M-eigenvalue of elas-
ticity Z-tensors

In this section, inspired by H-eigenvalue inclusion theorems [13,20,22], Z-eigenvalue
intervals and M -eigenvalue intervals [10,11,14,18,21,23], we establish sharp bounds
on the minimum M -eigenvalue of the elasticity Z-tensors. To proceed, we give the
following lemma.

Lemma 3.1. For unit vector x ∈ Rn, it holds that max
i,j∈N,i ̸=j

|xi||xj | ≤ 1
2 .

Proof. For all i ̸= j ∈ N , it follows from 2|xi||xj | ≤ x2
i + x2

j that

2|xi||xj | ≤ x2
i + x2

j ≤ x2
1 + x2

2 + . . .+ x2
n = 1,

which implies max
i,j∈N,i ̸=j

|xi||xj | ≤ 1
2 .

Without irreducible conditions, we propose a sharp upper bound for the mini-
mum M -eigenvalue.
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Theorem 3.1. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be the
minimum M -eigenvalue. Then,

τM (A) ≤ min{min
i,l∈N

aiill,

∑
i∈N

Si(A)

n2
},

where Si(A) =
∑

j,k,l∈N

aijkl.

Proof. Let τM (A) be the minimum M -eigenvalue of A. It follows Lemma 2.1 that

τM (A) = min
x,y

{fA(x, y) = Ax2y2 : x⊤x = 1 and y⊤y = 1}. (3.1)

Setting a feasible solution of (3.1)

(x̄, ȳ) = (
1√
n
, . . . ,

1√
n
,

1√
n
, . . . ,

1√
n
),

we obtain

τM (A) ≤ fA(x̄, ȳ) =
∑
i,j∈N

∑
k,l∈N

aijkl
n2

=

∑
i∈[n]

Si(A)

n2
. (3.2)

Following the similar arguments to the proof Lemma 2.4 of [10], we obtain

τM (A) ≤ min
i,l∈N

aiill.

Thus,

τM (A) ≤ min{min
i,l∈N

aiill,

∑
i∈N

Si(A)

n2
}.

Remark 3.1. Without irreducible conditions, we propose an improved upper bound
for the minimum M -eigenvalue of elasticity Z-tensors, and extend Lemma 2.4 of [10]
from elasticity M -tensors to elasticity Z-tensors.

Next, we propose sharp lower bound estimations for the minimum M -eigenvalue
of elasticity Z-tensors based on the maximum diagonal entries.

Theorem 3.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be the
minimum M -eigenvalue. Then,

τM (A) ≥ max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}},

where

Gi(A) = ωi −
1

2
ri(A), µi = max

l∈N
{aiill},

ωi(A) = max
l∈N

(µi − aiill −
∑

j ∈ N,

j ̸= i

aijll), ri(A) =
∑

j, k, l ∈ N,

k ̸= l

aijkl,

Ml(A) = ml −
1

2
cl(A), κl = max

i∈N
{aiill},
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ml(A) = max
i∈N

(κl − aiill −
∑

k ∈ N,

k ̸= l

aiikl), cl(A) =
∑

i, j, k ∈ N,

i ̸= j

aijkl.

Proof. Let τM (A) be the minimum M -eigenvalue of A. It follows from Lemma
2.4 that there exist nonnegative left and right M -eigenvectors (x, y) corresponding
to τM (A). Setting xp = max

i∈N
{xi}, by x⊤x = 1, one has 0 < xp ≤ 1. Recalling the

p-th equation of τM (A)x = Axy2, we obtain

((app11y
2
1 + · · ·+ appnny

2
n)− τM (A))xp = −

∑
j, k, l ∈ N,

k ̸= l

apjklxjykyl −
∑

j, l ∈ N,

j ̸= p

apjllxjy
2
l .

(3.3)
Setting µp = max

l∈N
{appll}, by (3.3) and apjkl ≤ 0 for all j ̸= p, j, k, l ∈ N , one has

(µp − τM (A))xp =
∑
l∈N

(µp − appll)y
2
l xp −

∑
j, k, l ∈ N,

k ̸= l

apjklxjykyl −
∑

j, l ∈ N,

j ̸= p

apjllxjy
2
l

≤
∑
l∈N

(µp − appll)y
2
l xp −

∑
j, k, l ∈ N,

k ̸= l

apjklxpykyl −
∑

j, l ∈ N,

j ̸= p

apjllxpy
2
l

=
∑
l∈N

(µp − appll −
∑

j ∈ N,

j ̸= p

apjll)y
2
l xp −

∑
j, k, l ∈ N,

k ̸= l

apjklxpykyl

≤ max
l∈N

(µp − appll −
∑

j ∈ N,

j ̸= p

apjll)xp −
1

2

∑
j, k, l ∈ N,

k ̸= l

apjklxp. (3.4)

It follows from (3.4) and the definition of ωp that

(µp − τM (A))xp ≤ (ωp(A)− 1

2
rp(A))xp,

which implies

τM (A) ≥ µp − ωp(A) +
1

2
rp(A) = µp −Gp(A). (3.5)

On the other hand, setting yt = max
l∈N

{yl}, from the t-th equation of τM (A)y = Ax2y,

we have

((a11ttx
2
1 + · · ·+ annttx

2
n)− τM (A))yt = −

∑
i, j, k ∈ N,

i ̸= j

aijktxixjyk −
∑

i, k ∈ N,

k ̸= t

aiiktx
2
i yk.

(3.6)
Setting κt = max

i∈N
{aiitt}, by (3.6) and aijkt ≤ 0 for all l ̸= t, i, j, k ∈ N , we obtain

(κt − τM (A))yt =
∑
i∈N

(κt − aiitt)x
2
i yt −

∑
i, j, k ∈ N,

i ̸= j

aijktxixjyk −
∑

i, k ∈ N,

k ̸= t

aiiktx
2
i yk
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≤
∑
i∈N

(κt − aiitt)x
2
i yt −

∑
i, k ∈ N,

k ̸= t

aiiktytx
2
i −

∑
i, j, k ∈ N,

i ̸= j

aijktxixjyt

=
∑
i∈N

(κt − aiitt −
∑

k ∈ N,

k ̸= t

aiikt)x
2
i yt −

∑
i, j, k ∈ N,

i ̸= j

aijktxixjyt

≤ max
i∈N

(κt − aiitt −
∑

k ∈ N,

k ̸= t

aiikt)yt −
1

2

∑
i, j, k ∈ N,

i ̸= j

aijktyt. (3.7)

It follows from (3.7) and definition of mt that

(κt − τM (A))yt ≤ (mt(A)− 1

2
ct(A))yt,

which shows
τM (A) ≥ κt −mt(A) +

1

2
ct(A) = κt −Mt(A). (3.8)

By (3.5) and (3.8), we obtain the desired results.
Next, we show that the bound in Theorem 3.2 is tighter than that of Theorem

3.1 of [10].

Lemma 3.2. Let A = (aijkl) ∈ E4,n be an irreducible elasticity M -tensor. Then

τM (A) ≥ max{min
i∈N

{αi −Ri(A),min
l∈N

{βl − Cl(A)}},

where

αi = min
l∈N

aiill, βl = min
i∈N

aiill, γi = max
l∈N

{
∑

j∈N,j ̸=i

|aijll|}, δl = max
i∈N

{
∑

k∈N,k ̸=l

|aiikl|},

ri(A) =
∑

j,k,l∈N,k ̸=l

|aijkl|, cl(A) =
∑

i,j,k∈N,i ̸=j

|aijkl,

Ri(A) = γi + ri(A), Cl(A) = δl + cl(A).

Corollary 3.1. Let A = (aijkl) ∈ E4,n be an elasticity M -tensor. Then

max{min
i∈N

{µi−Gi(A)},min
l∈N

{κl−Ml(A)}}≥max{min
i∈N

{αi−Ri(A)},min
l∈N

{βl−Cl(A)}}.

Proof. Since A an elasticity M -tensor, we obtain aijkl ≤ 0 except for i = j and
k = l and

αi −Ri(A) = αi − γi(A)− ri(A) = αi −max
l∈N

{
∑

j ∈ N,

j ̸= i

|aijll|} −
∑

j, k, l ∈ N,

k ̸= l

|aijkl|

= αi −max
l∈N

{−
∑

j ∈ N,

j ̸= i

aijll}+
∑

j, k, l ∈ N,

k ̸= l

aijkl.

It follows from Theorem 3.2 that

µi−Gi(A)=µi−ωi(A) +
1

2
ri(A)=µi−max

l∈N
(µi − aiill −

∑
j ∈ N,

j ̸= i

aijll) +
1

2

∑
j, k, l ∈ N,

k ̸= l

aijkl.
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Since µi − aiill ≥ 0 and
∑

j∈N,j ̸=i

aijll ≤ 0, we can verify

max
l∈N

(µi − aiill −
∑

j ∈ N,

j ̸= i

aijll) ≤ max
l∈N

(µi − aiill) + max
l∈N

{−
∑

j ∈ N,

j ̸= i

aijll}.

From µi = max
l∈N

{aiill} and αi = min
l∈N

{aiill}, we obtain max
l∈N

(µi − aiill) = µi − αi.

Thus,
max
l∈N

(µi − aiill −
∑

j ∈ N,

j ̸= i

aijll) ≤ µi − αi +max
l∈N

{−
∑

j ∈ N,

j ̸= i

aijll},

which implies

µi −max
l∈N

(µi − aiill −
∑

j ∈ N,

j ̸= i

aijll) ≥ αi −max
l∈N

{−
∑

j ∈ N,

j ̸= i

aijll}. (3.9)

From aijkl ≤ 0 for all j, k, l ∈ N, k ̸= l, it holds that

1

2

∑
j, k, l ∈ N,

k ̸= l

aijkl ≥
∑

j, k, l ∈ N,

k ̸= l

aijkl. (3.10)

Summing inequalities (3.9) and (3.10), we deduce

µi−Gi(A) = µi−ωi(A)+
1

2
ri(A) ≥ αi−γi(A)−ri(A) = αi−Ri(A),∀i ∈ N. (3.11)

Following the similar arguments to the proof of (3.11), we deduce

κl −Ml(A)≥βl − Cl(A),∀ l ∈ N.

Thus,

max{min
i∈N

{µi−Gi(A)},min
l∈N

{κl−Ml(A)}}≥max{min
i∈N

{αi−Ri(A)},min
l∈N

{βl−Cl(A)}}.

Choosing xp as a component of x with the largest modulus and xq as a arbi-
trary component of left M -eigenvector x, we shall obtain sharp lower bound of the
minimum M -eigenvalue.

Theorem 3.3. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be the
minimum M -eigenvalue. Then

τM (A) ≥ max{min
i∈N

max
v∈N,v ̸=i

ϕ1(A),min
l∈N

max
u∈N,u ̸=l

ϕ2(A)},

where
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ϕ1(A) = { 1
2 [µv + µi − ωi(A) + 1

2 (ri(A)− rvi (A))−∆
1
2
i,v(A)]},

ϕ2(A) = { 1
2 [κu + κl −ml(A) + 1

2 (cl(A)− cul (A))− θ
1
2

l,u(A)]},

∆i,v(A) = (µv − µi + ωi(A)− 1
2 (ri(A)− rvi (A)))2 − 2rvi (A)Gv(A),

θl,u(A) = (κu − κl +ml(A)− 1
2 (cl(A)− cul (A)))2 − 2cul (A)Mu(A),

rvi (A) =
∑

k, l ∈ N,

k ̸= l; j = v

aivkl, cul (A) =
∑

i, j ∈ N,

i ̸= j; k = u

aijul.

Proof. Let τM (A) be the minimum M -eigenvalue of A. It follows from Lemma
2.4 that there exist nonnegative left and right M -eigenvectors (x, y) corresponding
to τM (A). Set xp = max

i∈N
{xi}. By the p-th equation of τM (A)x = Axy2, we have

((app11y
2
1 + · · ·+ appnny

2
n)− τM (A))xp = −

∑
j, k, l ∈ N,

k ̸= l

apjklxjykyl −
∑

j, l ∈ N,

j ̸= p

apjllxjy
2
l .

(3.12)
Setting µp = max

l∈N
{appll}, from (3.12), we obtain

(µp − τM (A))xp

=
∑
l ∈ N,

j = p

(µp − appll)y
2
l xp −

∑
j, l ∈ N,

j ̸= p

apjllxjy
2
l −

∑
j, k, l ∈ N,

k ̸= l

apjklxjykyl

≤
∑
l ∈ N,

j = p

(µp − appll)y
2
l xp −

∑
j, l ∈ N,

j ̸= p

apjllxpy
2
l

−
∑

k, l ∈ N,

k ̸= l; j = q

apqklxqykyl −
∑

j, k, l ∈ N,

k ̸= l; j ̸= q

apjklxpykyl

=
∑
l∈N

(µp−appll−
∑

j ∈ N,

j ̸= p

apjll)y
2
l xp−

∑
k, l ∈ N,

k ̸= l; j = q

apqklxqykyl−
∑

j, k, l ∈ N,

k ̸= l; j ̸= q

apjklxpykyl

≤ max
l∈N

(µp − appll −
∑

j ∈ N,

j ̸= p

apjll)xp −
1

2

∑
k, l ∈ N,

k ̸= l; j = q

apqklxq −
1

2

∑
j, k, l ∈ N,

k ̸= l; j ̸= q

apjklxp,

(3.13)

which shows

(µp − τM (A)− ωp(A) +
1

2
(rp(A)− rqp(A)))xp ≤ −1

2
rqp(A)xq. (3.14)

If xq = 0, we can verify that τM (A) ≥ µp − ωp + 1
2 (rp(A) − rqp(A)) ≥ ϕ1(A).

Otherwise, for any q ∈ N, q ̸= p, xq > 0. Recalling the q-th equation of τM (A)x =
Axy2 and µq = max

l∈N
{aqqll}, we deduce

(µq − τM (A))xq
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=
∑
l ∈ N,

j = q

(µq − aqqll)y
2
l xq −

∑
j, l ∈ N,

j ̸= q

aqjllxjy
2
l −

∑
j, k, l ∈ N,

k ̸= l

aqjklxjykyl

≤
∑
l ∈ N,

j = q

(µq − aqqll)xpy
2
l −

∑
j, l ∈ N,

j ̸= q

aqjllxpy
2
l −

∑
j, k, l ∈ N,

k ̸= l

aqjklxpykyl

=
∑
l∈N

(µq − aqqll −
∑

j ∈ N,

j ̸= q

aqjll)xpy
2
l −

∑
j, k, l ∈ N,

k ̸= l

aqjklxpykyl

≤max
l∈N

(µq − aqqll −
∑

j ∈ N,

j ̸= q

aqjll)xp −
1

2

∑
j, k, l ∈ N,

k ̸= l

aqjklxp, (3.15)

which implies

0 ≤ (µq − τM (A))xq ≤ (ωq(A)− 1

2
rq(A))xp = Gq(A)xp. (3.16)

Multiplying inequalities (3.14) with (3.16) yields

[µp − τM (A)− ωp(A) +
1

2
(rp(A)− rqp(A))](µq − τM (A)) ≤ −1

2
rqp(A)Gq(A).

Then, solving for τM (A), we obtain

τM (A) ≥ 1

2
[µq + µp − ωp(A) +

1

2
(rp(A)− rqp(A))−∆

1
2
p,q(A)]

where ∆p,q(A) = (µq −µp +ωp(A)− 1
2 (rp(A)− rqp(A)))2 − 2rqp(A)Gq(A). From the

arbitrariness of q, we have

τM (A) ≥ max
q∈N,q ̸=p

{1
2
[µq + µp − ωp(A) +

1

2
(rp(A)− rqp(A))−∆

1
2
p,q(A)]}.

Further,

τM (A) ≥ min
i∈N

max
v∈N,v ̸=i

{1
2
[µv + µi − ωi(A) +

1

2
(ri(A)− rvi (A))−∆

1
2
i,v(A)]}. (3.17)

On the other hand, setting yt = max
l∈N

{yl}, from the t-th equation of τM (A)y =

Ax2y, we deduce

((a11ttx
2
1 + · · ·+ annttx

2
n)− τM (A))yt = −

n∑
i, j, k = 1,

i ̸= j

aijktxixjyk −
n∑

i, k = 1,

k ̸= t

aiiktx
2
i yk.

(3.18)
Setting κt = max

i∈N
{aiitt}, by(3.18), we obtain

(κt − τM (A))yt

=
∑
i ∈ N,

k = t

(κt − aiitt)x
2
i yt −

∑
i, k ∈ N,

k ̸= t

aiiktx
2
i yk −

∑
i, j, k ∈ N,

i ̸= j

aijktxixjyk
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≤
∑
i ∈ N,

k = t

(κt − aiitt)x
2
i yt −

∑
i, k ∈ N,

k ̸= t

aiiktx
2
i yt

−
∑

i, j ∈ N,

i ̸= j; k = s

aijstxixjys −
∑

i, j, k ∈ N,

i ̸= j; k ̸= s

aijktxixjyt

=
∑
i∈N

(κt − aiitt −
∑

k ∈ N,

k ̸= t

aiikt)x
2
i yt −

∑
i, j ∈ N,

i ̸= j; k = s

aijstxixjys −
∑

i, j, k ∈ N,

i ̸= j; k ̸= s

aijktxixjyt

≤max
i∈N

(κt − aiitt −
∑

k ∈ N,

k ̸= t

aiikt)yt −
1

2

∑
i, j ∈ N,

i ̸= j; k = s

aijstys −
1

2

∑
i, j, k ∈ N,

i ̸= j; k ̸= s

aijktyt. (3.19)

Thus,

(κt − τM (A)−mt(A) +
1

2
(ct(A)− cst (A)))yt ≤ −1

2
cst (A)ys. (3.20)

Similarly, for any s ∈ N, s ̸= t, in the view of the s-th equation of τM (A)y = Ax2y
and κs = max

i∈N
{aiiss}, we have

(κs − τM (A))ys

=
∑
i ∈ N,

k = s

(κs − aiiss)x
2
i ys −

∑
i, k ∈ N,

k ̸= s

aiiksx
2
i yk −

∑
i, j, k ∈ N,

i ̸= j

aijksxixjyk

≤
∑
i ∈ N,

k = s

(κs − aiiss)x
2
i yt −

∑
i, k ∈ N,

k ̸= s

aiiksx
2
i yt −

∑
i, j, k ∈ N,

i ̸= j

aijksxixjyt

=
∑
i∈N

(κs − aiiss −
∑

k ∈ N,

k ̸= s

aiiks)x
2
i yt −

∑
i, j, k ∈ N,

i ̸= j

aijksxixjyt

≤max
i∈N

(κs − aiiss −
∑

k ∈ N,

k ̸= s

aiiks)yt −
1

2

∑
i, j, k ∈ N,

i ̸= j

aijksyt. (3.21)

Therefore,

0 ≤ (κs − τM (A))ys ≤ (ms(A)− 1

2
cs(A))yt = Ms(A)yt. (3.22)

Multiplying inequalities (3.20) with (3.22) yields

(κt − τM (A)−mt(A) +
1

2
(ct(A)− cst (A)))(κs − τM (A)) ≤ −1

2
cst (A)Ms(A).

Then, solving for τM (A), we obtain

τM (A) ≥ 1

2
[κs + κt −mt(A) +

1

2
(ct(A)− cst (A))− θ

1
2
t,s(A)]
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where θt,s(A) = (κs − κt +mt(A)− 1
2 (ct(A)− cst (A)))2 − 2cst (A)Ms(A). From the

arbitrariness of s, we have

τM (A) ≥ max
s∈N,s ̸=t

{1
2
[κs + κt −mt(A) +

1

2
(ct(A)− cst (A))− θ

1
2
t,s(A)]}.

Further,

τM (A) ≥ min
l∈N

max
u∈N,u ̸=l

{1
2
[κu + κl −ml(A) +

1

2
(cl(A)− cul (A))− θ

1
2

l,u(A)]}. (3.23)

Thus, the desired resluts hold from (3.17) with (3.23).
Next, we prove that the bound in Theorem 3.3 is always tighter than that of

Theorem 3.2.

Corollary 3.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. Then

max{min
i∈N

max
j∈N,j ̸=i

ϕ1(A),min
l∈N

max
u∈N,u ̸=l

ϕ2(A)}

≥max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}}.

Proof. We now break up the argument into two cases.
Case 1: For any i, j ∈ N, j ̸= i, if µi −Gi(A) ≤ µj −Gj(A), then

µj − µi +Gi(A) ≥ Gj(A) ≥ 0. (3.24)

It follows from (3.24), 2rji (A) ≤ 0 and Gi(A) = ωi(A)− 1
2ri(A) that

(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)

≤(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)(µj − µi +Gi(A))

=(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)(µj − µi + ωi(A)− 1

2
ri(A))

=(µj − µi + ωi(A)− 1

2
ri(A)− 1

2
rji (A))2.

Hence,

µj + µi − ωi(A) +
1

2
(ri(A)− rji (A))

−
√
(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)

≥µj + µi − ωi(A) +
1

2
(ri(A)− rji (A))− (µj − µi + ωi(A)− 1

2
ri(A)− 1

2
rji (A))

=2(µi − ωi(A) +
1

2
ri(A)) = 2(µi −Gi(A)),

that is,
1

2
{µj + µi − ωi(A) +

1

2
(ri(A)− rji (A))

−
√

(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)} ≥ µi −Gi(A).

(3.25)
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Case 2: For any i, j ∈ N, j ̸= i, if µi −Gi(A) ≥ µj −Gj(A), then

µi − ωi(A)− µj +Gj(A) ≥ −1

2
ri(A) ≥ 0. (3.26)

It follows from (3.26) that

(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)

≤(µj − µi + ωi(A) + µi − ωi(A)− µj +Gj(A) +
1

2
rji (A)))2 − 2rji (A)Gj(A)

=(Gj(A)− 1

2
rji (A))2.

Thus,

µj + µi − ωi(A) +
1

2
(ri(A)− rji (A))

−
√
(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)

≥µj + µi − ωi(A) +
1

2
ri(A)− 1

2
rji (A))−Gj(A) +

1

2
rji (A)

=µj −Gj(A) + µi −Gi(A) ≥ 2(µj −Gj(A)).

Further,

1

2
{µj + µi − ωi(A) +

1

2
(ri(A)− rji (A))

−
√
(µj − µi + ωi(A)− 1

2
(ri(A)− rji (A)))2 − 2rji (A)Gj(A)}

≥µj −Gj(A).

(3.27)

Using (3.25) and (3.27), we deduce

min
i∈N

max
j∈N,j ̸=i

{ϕ1(A)} ≥ min
i∈N

{µi −Gi(A)}. (3.28)

Following the similar arguments to the proof of (3.28), we obtain

min
l∈N

max
u∈N,u ̸=l

{ϕ2(A)} ≥ min
l∈N

{κl −Ml(A)}. (3.29)

Thus, the desired result follows (3.28) and (3.29).
We use Example 3.1 of [10] to show the superiority of our results.

Example 3.1. A = (aijkl) ∈ E4,2 be an elasticity M -tensor, whose entries are

aijkl =



a1111 = a1122 = 4.1, a2211 = a2222 = 5,

a1112 = a1121 = −1, a2212 = a2221 = −1,

a2111 = a1211 = −1, a1222 = a2122 = −1,

aijkl = 0, otherwise.
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By computations, we obtain that the minimum M -eigenvalue and corresponding
with left and right M -eigenvectors are (τM (A), x̄, ȳ) = (2.4534, (0.8398, 0.5430),
(0.7071, 0.7071)). The bounds via different estimations given in the literature are
shown in the following table:

References bounds

Lemma 2.4 and Theorem 3.1 of [10] 1.10 ≤ τM (A) ≤ 4.10

Lemma 2.4 and Theorem 3.2 of [10] 1.29 ≤ τM (A) ≤ 4.10

Theorems 3.1 and 3.2 2.10 ≤ τM (A) ≤ 2.55

Theorems 3.1 and 3.3 2.21 ≤ τM (A) ≤ 2.55

4. Identifying strong ellipticity condition and an elas-
ticity M-tensor

As we know, for an elasticity tensor, the strong ellipticity condition holds if and
only if it is M -positive, and that it is M -positive if and only if its minimum M -
eigenvalue is positive. Meanwhile, an elasticity Z-tensor is an elasticity M -tensor if
and only if the minimum M -eigenvalue is positive [6]. In this section, we establish
some sufficient conditions for identifying an elasticity M -tensor and strong ellipticity
condition based on the results in Theorems 3.2 and 3.3.

Theorem 4.1. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. If

max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}} > 0, (4.1)

then strong ellipticity condition of A is satisfied, and A is an elasticity M -tensor.

Proof. It follows from Theorem 3.2 and (4.1) that

τM (A) ≥ max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}} > 0,

which implies that strong ellipticity condition is satisfied. Further, A is an elasticity
M -tensor.

Theorem 4.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. If

max{min
i∈N

max
v∈N,v ̸=i

ϕ1(A),min
l∈N

max
u∈N,u ̸=l

ϕ2(A)} > 0,

then strong ellipticity condition of A is satisfied, and A is an elasticity M -tensor.

Proof. Following the similar arguments to the proof of Theorem 4.1, we obtain
the desired results.

The following example shows that the results given in Theorems 4.1 and 4.2 can
check whether an elasticity Z-tensor is an elasticity M -tensor and verify the strong
ellipticity condition of an elasticity Z-tensor.
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Example 4.1. Consider an elasticity Z-tensor A = (aijkl) ∈ E4,3 defined by the
conditions

aijkl =



a1111 = a2222 = a3333 = 5, a1122 = a1133 = a2233 = 6,

a2211 = a3311 = a3322 = 7, a2123 = a1223 = a2132 = a1232 = −0.2,

a1112 = a1121 = −1, a2212 = a2221 = −0.5, a1222 = a2122 = −2,

a3313 = a3331 = −0.5, a1333 = a3133 = −2, a1311 = a3111 = −1,

a2223 = a2232 = −0.5, a2322 = a3222 = −1, a2333 = a3233 = −2,

a1213 = a1231 = a2113 = a2131 = −0.2,

a3132 = a3123 = a1332 = a1323 = −0.2, aijkl = 0, otherwise.

By computations, we obtain that the the minimum M -eigenvalue and corre-
sponding with left and right M -eigenvectors are

(τM (A), x̄, ȳ) = (2.5000, (0.7071, 0, 0.7071), (0.7071, 0.7071, 0)).

Hence, A is an elasticity M -tensor and strong ellipticity condition holds. The
bounds given in the different literatures are shown in the following table:

References bounds

Lemma 2.4 and Theorem 3.1 of [10] −0.80 ≤ τM (A) ≤ 5.00

Lemma 2.4 and Theorem 3.2 of [10] −0.66 ≤ τM (A) ≤ 5.00

Theorems 3.1 and 3.2 0.30 ≤ τM (A) ≤ 3.40

Theorems 3.1 and 3.3 0.39 ≤ τM (A) ≤ 3.40

5. Conclusions
In this paper, we characterized the eigenvector associated with the minimum M -
eigenvalue of elasticity Z-tensors. Further, we established new bounds on the min-
imum M -eigenvalue of elasticity Z-tensors without irreducible conditions, which
extended bound estimations on the minimum M -eigenvalue from elasticity M -
tensors to elasticity Z-tensors. Finally, our approach to estimate the minimum
M -eigenvalue was based on maximum diagonal entries, which is different from that
of the literature [10].
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