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DETERIORATED HSS-LIKE METHODS FOR
THE WEIGHTED TOEPLITZ LEAST SQUARES

PROBLEM FROM IMAGE RESTORATION∗

Min-Li Zeng1,2,†

Abstract In this paper, we construct a deteriorated HSS-like (DHSS-like)
iteration method for a class of large and sparse block two-by-two linear sys-
tems from image restoration. The detailed spectral properties and the quasi-
optimal iteration parameters are investigated in detail. Because the DHSS-
like iteration method naturally leads to a DHSS-like preconditioner, then we
can use the circulant matrix to replace the Toeplitz matrix in the DHSS-like
preconditioner approximately to obtain a circulant matrix-based DHSS-like
(CDHSS-like) preconditioner. It is pointed out that the workload of the new
preconditioned method is about O(n logn). Theoretically analysis shows that
the eigenvalues of the CDHSS-like preconditioned matrix are clustered around
1. Implementations in linear systems from the image restoration problems are
made to verify the correctness of the theoretical results and the efficiency of
both the CDHSS-like iteration method and the CDHSS-like preconditioned
method.
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1. Introduction
Consider the Tikhonov minimization problems of the following form:

min
x∈Rn

∥Bx− b̃∥2,

where

B =

ΞK
√
νI

 and b̃ =

Ξf

0

 ,

where K ∈ Rm×n(m ≥ n) is a full-rank Toeplitz matrix, Ξ ∈ Rm×m is a carefully
selected regularization matrix and usually is a symmetric positive definite (SPD)
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matrix (as a weighting matrix) and ν > 0 is called the regularization parameter
(generally small, i.e., 0 < ν < 1). I ∈ Rn×n is the identity matrix and f ∈ Rm is a
given vector.

Denote by y = ΞTΞ(f −Kx), then according to [23], the above Tikhonov mini-
mization problems can be expressed as an augmented linear system of the following
form

Au :=

 W K

−KT νI

y

x

 =

f

0

 := b, (1.1)

where W = (ΞTΞ)−1 ∈ Rm×m is an SPD matrix and A is nonsingular.
As is shown in [19] that the displacement rank is very large because of the

spatially variant property of weighted Toeplitz matrix ΞK. Hence, it is of great
task to develop fast iterative methods for solving the weighted Toeplitz regularized
least squares system (1.1).

It can be easy found that the coefficient matrix of the linear system (1.1) pos-
sesses a special generalized saddle point matrix of block two-by-two structure. Re-
cent years, lots of efficient methods are developed by researchers in existing refer-
ences. Some of these methods are constructed based on the classical successive over-
relaxation method (SOR) method [26], e.g., the preconditioned GSOR (PGSOR)
method [14], the accelerated GSOR (AGSOR) method [13], the generalized SOR
method [6], the parameterized inexact Uzawa method [2], the preconditioned AG-
SOR (PAGSOR) method [16], the new relaxed splitting preconditioned method [21],
and so on. Besides, by making use of the Hermitian and skew-Hermitian (HS)
splitting of the coefficient matrix A, Bai and the co-authors proposed a precon-
ditioned Hermitian and skew-Hermitian splitting (HSS) iteration method [3] for
solving the block two-by-two linear system (1.3) from distributed control problems.
For the block two-by-two linear systems of skew-Hamiltonian coefficient matrices,
Bai, Chen and Wang [4] introduced an additive block diagonal preconditioning tech-
nique. Most recent iterative methods based on the HS splitting of the coefficient
matrix can be found in [16].

Many researchers try to use the existing methods for generalized saddle point
problem to solve the linear system (1.1). One of the most classical methods is the
HSS iteration method [7]. Based on the HS splitting [5] W K

−KT νI

 =

W 0

0 νI

+

 0 K

−KT 0

 := H + S, (1.2)

the HSS iteration method for solving the linear system (1.1) from the image restora-
tion problem can be written as,{

(αI +H)u(k+ 1
2 ) = (αI − S)u(k) + b,

(αI + S)u(k+1) = (αI −H)u(k+ 1
2 ) + b,

for k = 0, 1, 2, · · · , where u(0) is an arbitrary initial guess, I is the identity matrix
with the proper dimension (here and in the sequence, we will omit the subscript)
and α > 0 is a given parameter. The HSS iteration method naturally induces the
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HSS preconditioner as

P1 =
1

2α
(H + αI)(S + αI) =

1

2α

αI +W 0

0 (α+ ν)I

 αI K

−KT αI

 . (1.3)

In [7], the authors gave detailed theoretically analysis for the case α = ν. However,
it was also mentioned that taking α = ν does not lead to a very good performance.
To obtain a better performance, based on the preconditioning idea in [25], Ng and
Pan further construct the modified HSS (MHSS) preconditioner in [24] as

P2 =
1

2
Σ−1(Σ +H)(Σ + S), (1.4)

where

Σ =

αI 0

0 νI


with α > 0 being a given constant. From their numerical results we see that the
MHSS iteration method is efficient for some examples when the parameters are
chosen appropriately. However, we can further improve the efficiency for other
examples. Moreover, they are also some efficient methods for the case m = n. For
example, based on the HSS iteration method, Aghazadeh constructed a generalized
HSS iteration method [1]. Cui constructed a modified special HSS iteration method
[11, 12]. Liao and Zhang proposed a new variant of HSS iteration method [22].
Besides, Zak and Toutounian proposed a shifted nested splitting iteration method
[28]. Those methods have improved the efficiency of the HSS iteration method for
solving linear systems of the form (1.1).

Although most of the existing methods can be used to solve the Toeplitz-like
linear systems, but they are convergent slowly . Besides, for those Toeplitz-like lin-
ear systems, the circulant matrix approximation of the Toeplitz matrix cannot be
diagonalized by the fast Fourier transforms (FFTs). Therefore, exploiting more effi-
cient methods and preconditioners are very important for solving the linear system
(1.1) from image restoration.

In this work, we focus on the case of m = n. Following the idea of alternative
direction iteration, we will design a deteriorated HSS-like iteration method based
on the HSS method for the saddle point problem in [2]. The eigenvalues and the
corresponding eigenvectors will be proposed. The quasi-optimal parameter will be
analyzed theoretically. Furthermore, we will construct a circulant-based DHSS-like
(CDHSS-like) preconditioner to accelerate the Krylov subspace method by using
a circulant matrix to approximate the Toeplitz matrix. Moreover, the conclusion
about the CDHSS-like preconditioner superiority to the HSS preconditioner and the
MHSS preconditioner will be verified through the numerical experiments.

The organization of the paper is as follows. In Section 2, we construct an HSS-
like iteration method and then propose a deteriorated HSS-like preconditioner for
the large and sparse block structured linear system (1.1). We also investigate the
spectral properties and derive the choice of the quasi-optimal iterative parameter for
the DHSS-like preconditioner. After replacing the Toeplitz matrix K by a circulant
matrix approximately, we obtain a CDHSS-like preconditioner in Section 3. We also
analyze the clustering properties of the CDHSS-like preconditioned matrix. Section
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4 devotes to the numerical implementations both from the one-dimensional example
of linear system and the image restoration problem to illustrate the efficiency of the
CDHSS-like preconditioned method. Finally in Section 5, a brief concluding remark
will be drawn to end this work.

2. The DHSS-like preconditioner
To begin with, we will construct an HSS-like iteration method for the linear equa-
tions (1.1). Based on the HS splitting (1.2), we rewrite the linear system (1.1)
as

(αJ +H)u = (αJ − S)u+ b

and
(αJ + S)u = (αJ −H)u+ b,

where J is a given matrix and α > 0 is a given parameter. Using the above identities
and the special structure of the matrices H and S, we can construct the HSS-like
iteration method as the following algorithm.

Algorithm 2.1. (The HSS-like iteration method)
Given an initial guess u(0), for k = 0, 1, 2, . . ., until {u(k)} converges, compute{

(αJ +H)u(k+ 1
2 ) = (αJ − S)u(k) + b,

(αJ + S)u(k+1) = (αJ −H)u(k+ 1
2 ) + b,

where α > 0 is a given positive constant and

J =

0 I

I 0

 ,

with I being an identity matrix with the proper dimension.

After a few simple algebra computations, we can rewrite the HSS-like iteration
method as a fixed-point iterative method as

u(k+1) = u(k) + P−1
3 (b−Au(k)), k = 0, 1, 2, . . . ,

where

P3 =
1

2α
(αJ +H)J(αJ + S) =

1

2α

αI W

νI αI

 0 αI +K

αI −KT 0

 .

Inspired by the relaxed preconditioning idea proposed in [8,9,29], we modify the
preconditioner P3 as the following deteriorated HSS-like (DHSS-like) preconditioner:

P =
1

α

αI W

νI −KT

 0 αI +K

αI 0

 =

 W αI +K

−KT νI + ν
αK

 . (2.1)
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Note that the DHSS-like preconditioner can be constructed from the splitting
of the coefficient matrix A

A = P −R =

 W αI +K

−KT νI + ν
αK

−

0 αI

0 ν
αK

 .

Hence, when we use the preconditioned Krylov subspace method with the precondi-
tioner P , we need to solve a generalized residual equation Pz = r at each iterative
step, with z = (zT1 , z

T
2 )

T and r = (rT1 , r
T
2 )

T being the current and generalized
residual vectors, respectively. By simple computations, we obtain

z = P−1r =

 W αI +K

−KT νI + ν
αK

−1 r1

r2


= α

 0 1
αI

(αI +K)−1 0

αI W

νI −KT

−1 r1

r2


= α

 0 1
αI

(αI +K)−1 0

I − 1
αW

0 I

 1
αI 0

0 −( ναW +KT )−1

 I 0

− ν
αI I

r1

r2

 .

According to the above results, we can describe the DHSS-like preconditioned
method in the following practical procedure.

Algorithm 2.2. (The DHSS-like iteration method)
The implementing process of the DHSS-like preconditioner:

Given a residual vector r = (rT1 , r
T
2 )

T ∈ R2n. Compute z according to the following
steps:
Step 1. solve (νI + αKTW−1)s̃ = νr1 − αr2 to obtain s̃.
Step 2. solve (αI +K)z2 = r1 − s̃ to obtain z2.
Step 3. set z1 = W−1s̃ to obtain the generalized residual vector z = (zT1 , z

T
2 )

T .

Remark 2.1. We see that the main workload of Algorithm 2.2 is to solve two linear
subsystems at Step 1 and Step 2. Because the Toeplitz matrix K and the positive
diagonal matrix W may be very ill-conditioned [24], then we can use the Krylov
subspace method, e.g., the GMRES method [26], with a proper preconditioner to
solve the corresponding linear system. More implementation details will be shown
in the next section.

In the following of this section, we will investigate the spectral properties of
the preconditioned matrix P−1A. Firstly, we give the results about the eigenvalues
distribution of the matrix P−1A.

Theorem 2.1. Assume that the coefficient matrix A ∈ R2n×2n of the linear system
(1.1) is nonsingular. ν > 0 is the regularization parameter, generally small enough.
W ∈ Rn×n is a positive diagonal matrix and K ∈ Rn×n is a full-rank Toeplitz
matrix. Let α be a real positive constant such that αI + K and νW + αKT are
both nonsingular matrices. Then for the preconditioned matrix P−1A, the following
results hold.
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(1) P−1A has an eigenvalue 1 with multiplicity at least n. The corresponding
eigenvectors are ul

0

 , (l = 1, 2, . . . , n),

where ul(l = 1, 2, . . . , n) are arbitrary linearly independent vectors.
(2) The remaining nonunit eigenvalues λ of P−1A are the eigenvalues of Θ2, i.e.,
Θ2vl = λvl. The corresponding eigenvectors are 1

1−λΘ1vl

vl

 , (l = 1, 2, . . . , n).

Here vl ̸= 0 is the eigenvector of the matrix Θ2 corresponding to the eigenvalue λ
with Θ1 = ν(νW + αKT )−1(αI −K) and Θ2 = (αI +K)−1(K +WΘ1).

Proof. After simple computations, we have

P−1A = P−1(P −R) = I − P−1R

= I − α

 0 1
αI

(αI +K)−1 0

I − 1
αW

0 I

 1
αI 0

0 −( ναW +KT )−1

× ...

×

 I 0

− ν
αI I

 W K

−KT νI


=

I −ν(νW + αKT )−1(αI −K)

0 I − α(αI +K)−1 + ν(αI +K)−1W (νW + αKT )−1(αI −K)


=

I −Θ1

0 Θ2

 .

The above last equation can be induced from

(αI +K)−1(K +WΘ1)

=I − α(αI +K)−1 + ν(αI +K)−1W (νW + αKT )−1(αI −K)

=Θ2.

Let λ ∈ sp(P−1A), i.e., λ be an eigenvalue of the preconditioned matrix P−1A andu

v

 be the corresponding eigenvector. Then we have

P−1A

u

v

 =

I −Θ1

0 Θ2

u

v

 = λ

u

v

 ,
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i.e., {
u−Θ1v = λu,

Θ2v = λv.

If λ = 1, from the first equation we have v = 0. Hence, the eigenvectors corre-

sponding to the eigenvalue 1 are

ul

0

 with {ul|l = 1, 2, . . . , n} being any linear

independent vectors of dimension n.
If λ ̸= 1, from the first equation, we have

u =
1

1− λ
Θ1v,

where (λ, v) is an eigenvalue pair of the matrix Θ2. Hence, the eigenvectors corre-
sponding to these eigenvalues can be described as 1

1−λΘ1vl

vl

 , (l = 1, 2, . . . , n),

with (λ, vl) being the eigenvalue pair of the matrix Θ2.

Theorem 2.2. Let the DHSS-like preconditioner P be defined as in (2.1). Then
the degree of the minimal polynomial of the preconditioned matrix P−1A is at most
n+ 1.

Proof. Suppose that µl (l = 1, 2, . . . , n) are the eigenvalues of the matrix Θ2,
then according to the proof of Theorem 2.1, we know the characteristic polynomial
of the matrix P−1A can be expressed as

ΦP−1A(λ) = det(P−1A− λI) = (λ− 1)n
n∏

l=1

(λ− µl).

Let
Υ(λ) = (λ− 1)

n∏
l=1

(λ− µl),

then we have

Υ(P−1A) = (P−1A− I)

n∏
l=1

(P−1A− µlI)

=

0 −Θ1

∏n
l=1(Θ2 − µlI)

0 (Θ2 − I)
∏n

l=1(Θ2 − µlI)

 .

Using the Hamilton-Cayley theorem, we have
∏n

l=1(Θ2 − µlI) = 0. Hence, the
degree of the minimal polynomial of the preconditioned matrix P−1A is at most
n+ 1.

Theorem 2.3. The quasi-optimal parameter for the DHSS-like preconditioner is
αopt =

√
ν

4
√
n
· 4
√

tr(KTK).
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Proof. Using the same strategy in [15], we determine the quasi-optimal parameter
α by minimizing the following functional:

f(α) = ∥P −A∥F = ∥R∥F = tr(RTR) = nα2 +
ν2

α2
tr(KTK).

Letting the first derivative of f(α) be equal to 0 will lead to

f ′(α) = 2nα− 2ν2

α3
tr(KTK) = 0.

Therefore, the quasi-optimal parameter is

α = αopt =

√
ν

4
√
n
· 4

√
tr(KTK).

3. The circulant matrix based DHSS-like precondo-
tioner

From Section 2, we see that when we use the DHSS-like preconditioner, we have
to solve two linear subsystems with coefficient matrices being αI + K and νI +
αKTW−1. Due to the ill-conditioned property of the matrix K, we will use the
circulant matrix C (e.g., see [27]) to replace K approximately. Besides, because W
is a diagonal matrix, then a scaled matrix ωI will be used instead, where ω is the
average value of the elements in the matrix W , i.e.,

ω =
1

n

n∑
i=1

wi,

where W = diag(w1, w2, . . . , wn). Hence we can obtain the CDHSS-like precondi-
tioner PC with

P−1
C = α

 0 1
αI

(αI + C)−1 0

I − 1
αW

0 I

 1
αI 0

0 −( ναωI + CT )−1

 I 0

− ν
αI I

 .

Or equivalently,

PC =

 W αI + C

ν
α (W − ωI)− CT νI + ν

αC

 . (3.1)

Therefore, the implementation details of the CDHSS-like preconditioned method
can be formulated in the following algorithm.

Algorithm 3.1. (The CDHSS-like preconditioned method)
The implementing process of the CDHSS-like preconditioner:

Given a residual vector r = (rT1 , r
T
2 )

T ∈ R2n. Compute z according to the following
steps:
Step 1. solve (νωI + αCT )W−1s̃ = νr1 − αr2 to obtain s̃.
Step 2. solve (αI + C)z2 = r1 − s̃ to obtain z2.
Step 3. set z1 = W−1s̃ to obtain the generalized residual vector z = (zT1 , z

T
2 )

T .
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It can be seen from the implementing steps of the CDHSS-like preconditioned
method that the main workloads of Step 1 and Step 2 are carrying out the FFTs.
The task of Step 3 is to calculate the product of a diagonal matrix and a vector.
Hence, the total computation workloads are about O(n log n).

Obviously, the convergence property of the CDHSS-like preconditioned Krylov
subspace iteration method is dependent on the approximation degree of the matrix
PC to the original coefficient matrix A, i.e., the eigenvalues clustering of the matrix
P−1
C A. Because the matrix P−1

C A can be rewritten as P−1
C PP−1A, then to obtain

the properties of the matrix P−1
C A needs one to discuss the accuracy about P

approximated by PC and the clustering condition about the eigenvalues of P−1A.
What follows will be some lemmas about the properties of the Toeplitz matrix

K and its Strang’s approximate circulant matrix C [27].

Lemma 3.1 ( [10]). If the generating function of K is in the Wiener class, then
for any r0 > 0, there exist N0 > 0 and K0 > 0, such that for all n > N0 (n is the
dimension of the Toeplitz matrix K), it holds

K − C = E0 + F0,

where the matrix E0 is of low rank, satisfying rank(E0) < r0, and the matrix F0 is
of small norm, satisfying ∥F0∥ ≤ K0.

Lemma 3.2 ( [18]). If the generating function of K is in the Wiener class, then the
circulant matrix C and its inverse matrix are bounded, i.e., there exists a constant
X > 0, such that ∥C∥ ≤ X (or ∥C−1∥ ≤ X).

Using the above two lemmas, we will describe the eigenvalues distribution of the
CDHSS-like preconditioned matrix P−1

C A in the following theorem.

Theorem 3.1. Suppose that the generating function of the Toeplitz matrix K from
the image restoration is in the Wiener class. Let the matrix P and ω be defined
previously and the conditions of Theorem 2.1 be satisfied. Assume that there exists
a positive constant w̄, such that, for any 1 ≤ i ≤ n, it holds |wi −ω| ≤ w̄. Then the
following results hold.

(1) Given a positive parameter α, then for any rC > 0, there exist NC > 0 and
KC > 0, such that for all n > NC , it holds

P − PC = EC + FC ,

where the matrices EC and FC satisfy rank(EC) ≤ rC and ∥FC∥ ≤ KC .
(2) Given a positive parameter α, then for any r > 0, there exist N > 0 and

M > 0, such that for all n > N , it holds

P−1
C A = P−1A+ E + F,

where the matrices E and F satisfy rank(E) ≤ r and ∥F∥ ≤ M .

Proof. (1) According to Lemma 3.1, we have

P − PC =

 0 K − C

ν
α (W − ωI)− (K − C)T ν

α (K − C)


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=

 0 E0

−ET
0

ν
αE0

+

 0 F0

ν
α (W − ωI)− FT

0
ν
αF0


= EC + FC .

It can be easily verified that, there exists NC = N0, such that when n > NC , it
holds

rank(EC) = rank(E0) + rank(ET
0 ) ≤ 2r0 := rC .

Hence, for any given parameter α, we have

∥FC∥ ≤ ∥F0∥+ ∥FT
0 ∥+ ν

α
∥F0∥+

ν

α
(∥W − ωI∥)

≤ (2 +
ν

α
)K0 +

ν

α
(∥w̄I∥)

= (2 +
ν

α
)K0 +

νw̄

α
:= KC .

(2) We rewrite P−1
C A as

P−1
C A = P−1A+ P−1

C (P − PC)P
−1A

= P−1A+ P−1
C (EC + FC)P

−1A
= P−1A+ E + F,

where {
E = P−1

C ECP
−1A,

F = P−1
C FCP

−1A.

Obviously, we have
rank(E) ≤ rank(EC) ≤ rC = r.

If K is in the Wiener class, then αI +K and αI +KT are also in the Wiener class.
Then according to Lemma 3.2, αI + C and ν

αωI + CT are bounded, i.e., ∃X, such
that ∥(αI + C)−1∥ ≤ X and ∥( ναωI + CT )−1∥ ≤ X. Therefore, it follows,

∥P−1
C ∥ =

∥∥∥α
 0 1

αI

(αI + C)−1 0

I − 1
αW

0 I

 1
αI 0

0 −( ναωI + CT )−1

 I 0

− ν
αI I

∥∥∥
=

∥∥∥
 0 1

αI

(αI + C)−1 0

I − 1
αW

0 I

 1
αI 0

0 −( ναωI + CT )−1

 αI 0

−νI αI

∥∥∥
≤ (

1

α
+X)(

ωmax

α
+ 1)(

1

α
+X)(α+ ν)

= (
1

α
+X)2(

ωmax

α
+ 1)(α+ ν),

where
ωmax = max

1≤i≤n
{wi|W = diag(w1, w2, . . . , wn)}.

If the conditions of Theorem 2.1 are satisfied, let Λ = maxλ∈sp(P−1A){|λ|}, then we
have

∥F∥ ≤ ∥P−1
C ∥ · ∥FC∥ · ∥P−1A∥ ≤ (

1

α
+X)2(

ωmax

α
+ 1)(α+ ν) ·KC · Λ := M.
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Hence, it follows the result that, for any r > 0, there exist N = NC > 0 and M > 0,
such that for all n > N , it holds

P−1
C A = P−1A+ E + F,

where E and F are matrices satisfying rank(E) ≤ r and ∥F∥ ≤ M .

Remark 3.1. Theorem 3.1 indicates that the CDHSS-like preconditioned matrix
P−1
C A is a good approximation to the DHSS-like preconditioned matrix P−1A in

terms of both rank and norm. Hence, if the eigenvalues of P−1A are tightly clus-
tered and its eigenvectors are well conditioned, then the Krylov subspace iteration
methods, when incorporated with the CDHSS-like preconditioner, are expected to
converge to the exact solution of the linear system (1.1) accurately and stably. In
fact, from the results obtained in Section 2, we see that the eigenvalues of P−1A
are tightly clustered and the corresponding eigenvectors are well conditioned.

4. Numerical results
In this section, we are going to test the feasibility and the efficiency of the CDHSS-
like preconditioned method for solving the linear system (1.1). We use the CDHSS-
like preconditioner to improve the convergence property of the generalized minimum
residual (GMRES) method [26]. Comparisons between the conjugate gradient (CG)
method and the modified HSS (MHSS) preconditioner [24] are given from the point
of view of the number of iteration counts (denoted as “IT”) and CPU time (denoted
as “CPU”). Our experiments are carried out in MATLAB R2017a on Intel(R)
Core(TM) CPU 3.4Ghz and 8.00 GB of RAM, with machine precision 10−16.

In our implementations, the initial guess u(0) = (y(0), x(0))T is chosen to be zero
vector and the stopping criteria for all the methods are

∥f −Wy(k) −Kx(k)∥2 + ∥ −KT y(k) + νx(k)∥2
∥f∥2

≤ 10−6,

where u(k) = (y(k), x(k))T is the current approximation. The maximum iteration
count 1000 is set in all the experiments.

Example 4.1 ( [7]). Consider the one-dimensional example of linear system (1.1)
with K being a square Toeplitz matrix defined by

(i) Case 1: K = (tij) ∈ Rn×n with tij =
1√

|i−j|+1
;

(ii) Case 2: K = (tij) ∈ Rn×n with tij =
1√
2πσ

e−
|i−j|2

2σ2 .

In the tests, Ξ is set to be a positive diagonal random matrix generated by MATLAB
and its diagonal entries are scaled so that the condition number of the diagonal
matrix is around 103. The regularization parameter ν is set to be 0.001.

The theoretical optimal parameters (marked by ‘∗’) and the experimental op-
timal parameters (marked by ‘⋆’) of the CDHSS-like methods are listed in Table
1. By using the parameters in Table 1, we obtain the IT and CPU correspond-
ingly, for the tested methods, i.e., the CG method, the unpreconditioned GMRES
method, the MHSS preconditioned GMRES method (denoted as ‘MHSSPre’), the
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CDHSS-like iteration method (denoted as ‘CDHSS-like’) and the CDHSS-like pre-
conditioned GMRES method (denoted as ‘CDHSS-likePre’). All the results are
reported in Table 2 for both Case 1 and Case 2.

From Table 2, we find that when the mesh grid increases, the iteration counts of
the CG method and the unpreconditioned GMRES method grow rapidly. However,
for both the MHSS preconditioned method and the CDHSS-like methods, the itera-
tion counts keep steady. But the CDHSS-like preconditioned GMRES method uses
the least iteration counts. Besides, from the results, we also find that the CDHSS-
like preconditioned method outperforms other methods with respect to both IT and
CPU. Therefore, we can draw a conclusion that, for the linear systems of the form
(1.1), the CDHSS-like preconditioned method would be a good choice for solving
this class of block two-by-two linear systems.

To further illustrate the efficiency of the CDHSS-like methods, we plot the eigen-
values distribution for the normal matrix (i.e., KTΞTΞK + νI), the original coeffi-
cient matrix (i.e., the coefficient matrix of (1.1)), the MHSS preconditioned matrix
(i.e., P−1

2 A) and the CDHSS-like preconditioned matrix (i.e., P−1
C A) in Fig. 1 –

Fig. 4 for n = 1024. From these figures, we see that the original coefficient ma-
trices for both case 1 and case 2 are ill-conditioned. However, by using the MHSS
preconditioner and the CDHSS-like preconditioner, the coefficient matrices become
better conditioned (see, e.g., Fig. 3 and Fig. 4). Comparing Fig. 3 with Fig. 4,
we find that the eigenvalues of the CDHSS-like preconditioned matrices are more
clustered than the eigenvalues of the MHSS preconditioned matrices. Hence, the
CDHSS-like preconditioned matrix is much better conditioned.

Table 1. The optimal parameters of Example 4.1.

h : 210 211 212 213 214

Method
(Case 1)
MHSS 32.6 47.7 69.3 100 144
CDHSS-like∗ 0.05449 0.05634 0.05807 0.05968 0.0612
CDHSS-like⋆ [0.02,0.22] [0.03,0.21] [0.02,0.22] [0.02,0.22] [0.02,0.22]
(Case 2)
MHSS 0.0898 0.0898 0.0898 0.0898 0.0898
CDHSS-like∗ 0.020712 0.020716 0.020718 0.020719 0.02072
CDHSS-like⋆ [0.012,0.026] [0.018,0.022] [0.018,0.022] [0.018,0.022] [0.018,0.022]

To further illustrate the efficiency of the CDHSS-like iteration method, we will
consider an image restoration problem with Gaussian noise in the next example.

Example 4.2. Consider the image restoration problem

f = Kx+Gη,

where f and x represent the observed image and the original image, respectively.
Here K is the blurring matrix generated by the discrete point spread function

k(x, y) = exp(−x2 + y2

2
)
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Table 2. The numerical results of Example 4.1.
h Method: CG GMRES MHSSPre CDHSS-like CDHSS-likePre

(Case 1)
210 IT 64 132 8 6 6

CPU 0.018 0.148 0.01 0.006 0.006
211 IT 40 172 8 6 6

CPU 0.026 0.753 0.014 0.009 0.009
212 IT 51 213 8 6 6

CPU 0.047 1.612 0.018 0.014 0.014
213 IT 70 269 8 6 6

CPU 0.109 4.062 0.044 0.036 0.036
214 IT 83 317 9 6 6

CPU 0.245 8.48 0.093 0.082 0.082
(Case 2)

210 IT 262 488 24 13 11
CPU 0.066 1.118 0.025 0.013 0.01

211 IT 338 641 25 13 11
CPU 0.132 13.068 0.042 0.021 0.016

212 IT 476 732 25 13 11
CPU 0.46 24.455 0.084 0.042 0.038

213 IT 375 640 25 13 11
CPU 0.647 35.922 0.175 0.086 0.076

214 IT 633 649 25 13 11
CPU 1.989 40.437 0.255 0.127 0.102
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Figure 1. Eigenvalues distribution for the normal equation (Case 1: left; Case 2: right).

and η is set to be the Gaussian white noise. We use the Gaussian filter G to generate
the colored noise Gη. Then the image restoration problem can be reformulated into
the weighted Toeplitz regularized least squares problem [17,20]

min
x

∥Kx− f∥2(GTG)−1 + ν∥x∥22.

Or equivalently, it follows the linear system (1.1), where W = GTG.

This example is a modification from the second example in [24]. We test two
images: House and Lena. The noise η is set to be the Gaussian white noise with
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Figure 2. Eigenvalues distribution for the original coefficient matrix (Case 1: left; Case 2: right).
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Figure 3. Eigenvalues distribution for the MHSS preconditioned matrix (Case 1: left; Case 2: right).
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Figure 4. Eigenvalues distribution for the CDHSS-like preconditioned matrix (Case 1: left; Case 2:
right).

signal-to-noise ratios (SNR) of 20dB, 30dB and 40 dB, respectively. The regu-
larization parameters used in this example are {1.1 × 10−4, 3 × 10−5, 1.2 × 10−5}
(House) and {3× 10−4, 5.5× 10−5, 1.1× 10−6} (Lena), for SNR being 20dB, 30dB
and 40 dB, respectively. The Gaussian filter G is artificial by a positive diagonal
random matrix generated by MATLAB and its diagonal entries are scaled. We use
the quasi-optimal parameters according to the theoretical analysis previously. The
results of IT, CPU and relative error (RES) are reported in Table 3, in which the
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RES of the restored images is used to measure image quality, defined as

RES =
∥x(k) − x∗∥2

∥x∗∥2
,

where x∗ is the original image and x(k) is the restored image. In this example, we
compare the CDHSS-like preconditioner with the HSS preconditioner P1 and the
MHSS preconditioner P2. The theoretical optimal parameters α according to [7,24]
and Theorem 2.3 are used. The corresponding experimental results are shown in
Table 3.

From Table 3, we find that the relative errors of the three preconditioned meth-
ods are almost the same. However, the CDHSS-like preconditioned method needs
only a few steps to achieve the high quality restored image. Furthermore, to show
the quality of the restored images, we plot the original images in Fig. 5. The noisy
images and restored images with respect to different images and different SNR are
shown in Fig. 6–Fig. 11. From Fig. 6–Fig. 11, we see that the CDHSS-like precondi-
tioner shows good performance and the corresponding images are of high quality.

Therefore, we can draw a conclusion that the CDHSS-like preconditioner would
be a good choice for solving the linear system of the form (1.1).

Table 3. The numerical results of Example 4.2.
SNR 20 dB 30 dB 40 dB

Pre. IT CPU RES IT CPU RES IT CPU RES
House HSS 58 12.48 0.243 57 12.41 0.243 59 12.51 0.242

MHSS 17 4.77 0.242 17 4.77 0.242 17 4.76 0.242
CDHSS-like 8 0.027 0.242 8 0.027 0.242 8 0.027 0.241

Lena HSS 56 12.37 0.304 57 12.41 0.298 58 12.48 0.296
MHSS 20 5.15 0.295 21 5.56 0.297 21 5.56 0.295
CDHSS-like 8 0.027 0.291 8 0.027 0.295 8 0.027 0.293

House Lena

Figure 5. Original images.

5. Conclusions
In this work, we construct an HSS-like iteration method and a DHSS-like precon-
ditioner for weighted Toeplitz least squares computation from image restoration.
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Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 6. The noisy image and the restored images for SNR=20.

Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 7. The noisy image and the restored images for SNR=30.
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Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 8. The noisy image and the restored images for SNR=40.

Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 9. The noisy image and the restored images for SNR=20.
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Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 10. The noisy image and the restored images for SNR=30.

Noisy Image HSS Pre.

MHSS Pre. CDHSS Pre.

Figure 11. The noisy image and the restored images for SNR=40.
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The spectral properties and the quasi-optimal parameters of the DHSS-like precon-
ditioned matrix are investigated in detail. As the implementing of the DHSS-like
preconditioned method needs one to solve two linear subsystems, which are ill-
conditioned. Hence, the circulant matrix approximate is used. We then naturally
obtain a circulant matrix-based DHSS-like preconditioner. Theoretically analysis
shows that the eigenvalues of the CDHSS-like preconditioned matrix are clustered
around 1. Implementations for the image restoration problems are made to ver-
ify the correctness of the theoretical results and the efficiency of the CDHSS-like
iteration method and the CDHSS-like preconditioner.
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