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LINEAR 2-ARBORICITY OF PLANAR
GRAPHS WITH MAXIMUM DEGREE NINE∗
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Abstract The linear 2-arboricity la2(G) of a graph G is the least integer k
such that G can be partitioned into k edge-disjoint forests, whose component
trees are paths of length at most 2. In this paper, we show that every planar
graph G with maximum degree ∆ = 9 has la2(G) ≤ 8, which extends a known
result that every planar graph G with ∆ ≥ 10 has la2(G) ≤ ∆− 1.
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1. Introduction
All graphs considered in this paper are finite and simple. A graph G is planar if
it can be embedded in the plane such that any two edges intersect only at their
ends. Given a planar graph G, we use V (G), E(G),∆(G), and δ(G) to denote its
vertex set, edge set, maximum degree, and minimum degree in G, respectively. If
no confusion arises, we abbreviate ∆(G) to ∆.

An edge-partition of a graph G is a decomposition of G into subgraphs G1, G2, . . . ,
Gm such that E(G) = E(G1) ∪ E(G2) ∪ · · · ∪ E(Gm) and E(Gi) ∩ E(Gj) = ∅ for
i ̸= j. A linear k-forest is a graph whose components are paths of length at most
k. The linear k-arboricity of G, denoted by lak(G), is the least integer m such that
G can be edge-partitioned into m linear k-forests.

It is obvious that lak(G) ≥lak+1(G) for any k ≥ 1. Furthermore, la1(G) is the
edge chromatic number χ′(G) of G; la∞(G) corresponds to the linear arboricity
la(G) of G.

In 1982, Habib and Peroche [6] introduced the concept of linear k-arboricity and
put forward to the following conjecture:

Conjecture 1.1.

lak(G) ≤


⌈

n∆+1
2⌊ kn

k+1 ⌋

⌉
if ∆ ̸= n− 1,⌈

n∆
2⌊ kn

k+1 ⌋

⌉
if ∆ = n− 1.
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The linear k-arboricity of graphs has been extensively investigated in past decades,
see Aldred and Wormald [1], Bermond et al. [2], Chang et al. [3], Chen and
Huang [4], Jackson and Wormald [7], and Thomassen [12].

When k = 2, Conjecture 1.1 can be expressed as follows:

Conjecture 1.2.

la2(G) ≤


⌈
n∆+1
2⌊ 2n

3 ⌋

⌉
if ∆ ̸= n− 1,⌈

n∆
2⌊ 2n

3 ⌋

⌉
if ∆ = n− 1.

Suppose that G is a planar graph. Let g(G) denote its girth, i.e., the length of
a shortest cycle in G. In 2004, Lih, Tong and Wang [8] proved that (i) la2(G) ≤⌈
∆+1
2

⌉
+ 12; (ii) la2(G) ≤

⌈
∆+1
2

⌉
+ 6 if g(G) ≥ 4; (iii) la2(G) ≤

⌈
∆+1
2

⌉
+ 2 if

g(G) ≥ 5; and (iv) la2(G) ≤
⌈
∆+1
2

⌉
+ 1 if g(G) ≥ 7. In 2009. Ma, Wu and Hu [11]

proved that la2(G) ≤
⌈
∆+1
2

⌉
+ 6 if G contains no 5-cycles or 6-cycles. When G

is outerplanar, Lih, Tong and Wang [9] showed that la2(G) ≤
⌈
∆+1
2

⌉
+ 1 and this

upper bound is tight. A big breakthrough about the linear 2-arboricity of planar
graphs is that la2(G) ≤

⌈
∆+1
2

⌉
+ 6 for any planar graph G, see [15] and [16].

A graph G is called toroidal if it can be embedded in the torus such that any two
edges intersect only at their ends. Wang et al. [14] showed that if G is a toroidal
graph, then la2(G) ≤

⌈
∆+1
2

⌉
+ 7. A graph is called 1-planar if it can be drawn in

the plane so that each edge is crossed by at most one other edge. Recently, Liu et
al. [10] proved that every 1-planar graph G satisfies la2(G) ≤

⌈
∆+1
2

⌉
+ 14.

To obtain a better upper bound of linear 2-arboricity of planar graphs, Wang et
al. [16] proved a key and interesting result: every planar graph G with ∆ ≥ 10 has
la2(G) ≤ ∆− 1. The purpose of this paper is to extend this result by showing the
following:

Theorem 1.1. If G is a planar graph with ∆ ≥ 9, then la2(G) ≤ ∆− 1.

Corollary 1.1. Every planar graph G with ∆ = 9 has la2(G) ≤ 8.

2. Preliminary
Now we give some basic notions that needed in the sequel. A plane graph is a
particular drawing in the Euclidean plane of a planar graph. For a plane graph
G, let F (G) denote the face set of G. For a face f ∈ F (G), let b(f) denote the
boundary walk of f and write f = [v1v2 · · · vk] if v1, v2, · · · , vk are the vertices of b(f)
in clockwise order, where repeated occurrences of a vertex are allowed. The degree
of a face is the number of edge-steps in its boundary walk. Note that each cut-edge
is counted twice. Let dG(x) denote the degree of x in G for x ∈ V (G) ∪ F (G). If a
vertex v is degree k (at most k, at least k, respectively), then it is called a k-vertex
(k−-vertex, k+-vertex, respectively). Similarly, we can define k-face, k−-face and
k+-face. For a vertex v ∈ V (G), let NG(v) denote the set of neighbors of v in G.
Since G is assumed to be simple, we derive that dG(v) = |NG(v)|. For an element
x ∈ V (G) ∪ F (G) and an integer i ≥ 1, let ni(x) (mi(x), respectively) denote the
number of i-vertices (i-faces, respectively) adjacent or incident to x. For a vertex
v ∈ V (G), let t(v) denote the number of 3-faces that are incident to v.
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To show Theorem 1.1, we consider the linear edge-coloring of a graph G, i.e.,
a mapping ϕ from E(G) to the color set C such that every color class induces a
subgraph whose components are paths of length at most 2. We call such coloring
linear-k-coloring of G if C contains k colors. Clearly, a graph G has linear 2-
arboricity at most k if and only if G is linear-k-colorable.

A function L is called an list assignment for the graph G if each edge e of G is
assigned by a list L(e) of possible colors. If G has a linear edge-coloring ϕ such that
ϕ(e) ∈ L(e) for all edges e, then we say that ϕ is an L-linear edge-coloring of G.

Let Sm denote a star consisting of m edges e1, e2, . . . , em, where m ≥ 2. The
following Lemma 2.1 appeared in [15].

Lemma 2.1 (Wang, [15]). Let Sm be a star defined as above and L be a list
assignment for the edges in Sm satisfying the following conditions, then Sm admits
an L-linear edge-coloring.

(1) m = 2, and |L(ei)| ≥ 1 for i = 1, 2;
(2) m = 3, and |L(e3)| ≥ 2 and |L(ei)| ≥ 1 for i = 1, 2;
(3) m = 4, and |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1 for i = 1, 2;
(4) m = 5, and |L(e5)| ≥ 3, |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1 for i = 1, 2;
(5) m = 6, and |L(ei)| ≥ 3 for i = 5, 6, |L(ei)| ≥ 2 for i = 3, 4, and |L(ei)| ≥ 1

for i = 1, 2.

Lemma 2.2 (Bermond et al., [2]). For any graph G, la2(G) ≤ ∆.

In addition, the following relation is an easy observation:

Lemma 2.3. If a graph G can be edge-partitioned into two subgraphs G1 and G2,
then la2(G) ≤ la2(G1) + la2(G2).

3. Proof of Theorem 1.1
In fact, it suffices to show the following theorem:

Theorem 3.1. If G is a planar graph with ∆ ≤ 9, then la2(G) ≤ 8.

Proof. If ∆ ≤ 8, then the result holds by Lemma 2.2. So suppose that ∆ =
9. Assume to the contrary that the result is not true. Let G be a minimum
counterexample such that σ(G) = |V (G)| + |E(G)| is the least possible. So G is
connected and δ(G) ≥ 1. For any subgraph G′ of G with σ(G′) < σ(G), H has a
linear-8-coloring ϕ using the color set C = {1, 2, . . . , 8}.

For a vertex v ∈ V (G′), we use C(v) to denote the set of colors used in edges
incident to v in G′. For an edge xy ∈ E(G) \ E(G′), let C(xy) denote the set of
colors used in the edges incident to x or y in G′. That is, C(xy) = C(x) ∪ C(y).
For a vertex v ∈ V (G′), we use S(v) to denote the sequence of colors assigned to
the edges incident to v in G′. For example, S(v) = (1, 1, 2, 3, 4, 5) means that the
color 1 appears twice, and each of the colors 2, 3, 4, 5 appears exactly once on the
edges incident to v.

Lemma 3.1. G contains no an edge xy such that dG(x) + dG(y) ≤ 9.

Proof. Suppose that G contains such an edge xy. Let G′ = G − xy. Then H
has a linear-8-coloring using the color set C. Since |C(xy)| ≤ |C(x)| + |C(y)| ≤
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dG′(x) + dG′(y) = dG(x) − 1 + dG(y) − 1 ≤ 9 − 2 = 7 < 8 = |C|, there is a color
a ∈ C \C(xy), which can be properly assigned to the edge xy. Thus, ϕ is extended
to a linear-8-coloring of G, contradicting the minimality of G.

Lemma 3.2. Let v ∈ V (G) be a k-vertex with 5 ≤ k ≤ 9 and v1, v2, . . . , vk be the
neighbors of v with dG(v1) ≤ dG(v2) ≤ · · · ≤ dG(vk). Then the following hold.

(1) n10−k(v) ≤ 1.
(2) If n10−k(v) = 1, then n11−k(v) ≤ 1; If n11−k(v) = 1, then n12−k(v) ≤ 1.
(3) n10−k(v)+n11−k(v) ≤ 3; And if n10−k(v)+n11−k(v) = 3, then n12−k(v) = 0.
(4) If k = 9, then n1(v) + n2(v) + n3(v) ≤ 5; And if n1(v) + n2(v) ≥ 3, then

n3(v) = 0.

Proof. By Lemma 3.1, dG(vi) ≥ 10− k for all 1 ≤ i ≤ k.
(1) Assume to the contrary that n10−k(v) ≥ 2, say dG(v1) = dG(v2) = 10−k. Let

G′ = G−{vv1, vv2}. By the minimality of G, G′ has a linear-8-coloring ϕ using the
color set C. Since |C \C(vvi)| ≥ 8−(dG′(v)+dG′(vi)) = 8−(k−2)−(10−k−1) = 1
for i = 1, 2, by Lemma 2.1(1), ϕ can be extended to a linear-8- coloring of G, a
contradiction.

(2) First suppose that n10−k(v) = 1 and n11−k(v) ≥ 2, say dG(v1) = 10 − k
and dG(v2) = dG(v3) = 11− k. Let G′ = G− {vv1, vv2, vv3}, which has a linear-8-
coloring ϕ. Since |C\C(vv1)| ≥ 8−(dG′(v)+dG′(v1)) = 8−(k−3)−(10−k−1) = 2,
and |C \C(vvi)| ≥ 8− (dG′(v)+dG′(vi)) = 8− (k−3)− (11−k−1) = 1 for i = 2, 3,
we can extend ϕ to a linear-8-coloring of G by Lemma 2.1(2), a contradiction.

Next suppose that n10−k(v) = n11−k(v) = 1, and n12−k(v) ≥ 2, say dG(v1) =
10 − k, dG(v2) = 11 − k, and dG(v3) = dG(v4) = 12 − k. Let G′ = G −
{vv1, vv2, vv3, vv4}, which has a linear-8-coloring ϕ. Because |C \ C(vv1)| ≥ 8 −
(dG′(v) + dG′(v1)) = 3, |C \ C(vv2)| ≥ 2, and |C \ C(vvi)| ≥ 1 for i = 3, 4, Lemma
2.1(2) asserts ϕ can be extended to G, a contradiction.

(3) Suppose that n10−k(v)+n11−k(v) ≥ 3 and n10−k(v)+n11−k(v)+n12−k(v) ≥
4, say 10− k ≤ dG(vi) ≤ 11− k for i = 1, 2, 3, and 10− k ≤ dG(v4) ≤ 12− k. Let
G′ = G−{vv1, vv2, vv3, vv4}, which has a linear- 8-coloring ϕ. Since |C \C(vvi)| ≥
8−(dG′(v)+dG′(vi)) = 8−(k−4)−(11−k−1) = 2 for i = 1, 2, 3, and |C\C(vv4)| ≥
8 − (dG′(v) + dG′(v4)) = 8 − (k − 4) − (12 − k − 1) = 1, ϕ can be extended to a
linear-8-coloring of G by Lemma 2.1(3), a contradiction.

(4) Suppose that n1(v) + n2(v) + n3(v) ≥ 6, say 1 ≤ dG(vi) ≤ 3 for i =
1, 2, 3, 4, 5, 6. Let G′ = G − {vv1, vv2, vv3, vv4, vv5, vv6}, which has a linear- 8-
coloring ϕ. Since |C \ C(vvi)| ≥ 8 − (dG′(v) + dG′(vi)) = 8 − 3 − 2 = 3 for
i = 1, 2, 3, 4, 5, 6, by Lemma 2.1(5), we can extend ϕ to a linear-8-coloring of G, a
contradiction.

Moreover, if n1(v) + n2(v) ≤ 3 and n3(v) ≥ 1, say dG(vi) ≤ 2 for i = 1, 2, 3 and
dG(v4) ≤ 3, then we can also get a linear-8-coloring of G, which is a contradiction.
Otherwise, let G′ = G− {vv1, vv2, vv3, vv4}, which has a linear-8-coloring ϕ. Since
|C \ C(vvi)| ≥ 2 for i = 1, 2, 3, and |C \ C(vv4)| ≥ 1, ϕ can be extended to G by
Lemma 2.1(3).

Let H be a largest component of the graph which is obtained by removing all
1-vertices and 2-vertices of G. Then H is a connected plane graph with ∆(H) ≤ 9.
For an edge uv ∈ E(H), we call it a (dH(u), dH(v))-edge. For example, if dH(u) = 5
and dH(v) = 5, then uv is a (5, 5)-edge.
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Lemma 3.3. δ(H) ≥ 3 .

Proof. For each vertex v ∈ V (H), we have v ∈ V (G) with dG(v) ≥ 3 and dH(v) =
dG(v) − n1(v) − n2(v). If dG(v) ≤ 7, then n1(v) = n2(v) = 0 by Lemma 3.1, and
hence dH(v) = dG(v) ≥ 3. If dG(v) = 8, then n1(v) = 0 by Lemma 3.1 and
n2(v) ≤ 1 by Lemma 3.2(1). Thus, dH(v) = dG(v)− n1(v)− n2(v) ≥ 8− 1 = 7. If
dG(v) = 9, then n1(v) + n2(v) ≤ 3 by Lemma 3.2(3), henceforth dH(v) = dG(v) −
n1(v)− n2(v) ≥ 9− 3 = 6.

Lemma 3.4. If dH(v) ≤ 5, then dH(v) = dG(v).

Proof. Suppose that dG(v) > dH(v). Since dH(v) = dG(v) − n1(v) − n2(v), we
derive that n1(v) + n2(v) > 0. If n1(v) > 0, then Lemmas 3.1 and 3.2 imply that
dG(v) = 9, n1(v) = 1 and n2(v) ≤ 1. Hence dH(v) = dG(v) − n1(v) − n2(v) ≥
9 − 1 − 1 = 7, a contradiction. Otherwise, suppose that n1(v) = 0 and n2(v) > 0.
By Lemma 3.1, 8 ≤ dG(v) ≤ 9. If dG(v) = 8, then n2(v) ≤ 1 by Lemma 3.2(1),
and hence dH(v) = dG(v)− n2(v) ≥ 8− 1 = 7, a contradiction. If dG(v) = 9, then
n2(v) ≤ 3 by Lemma 3.2(3). Thus, dH(v) = dG(v) − n2(v) ≥ 9 − 3 = 6, also a
contradiction.

The following useful Remark follows easily from Lemmas 3.1 and 3.2:

Remark 3.1. Let v ∈ V (H). The following statements hold.

(a) If dH(v) = 6, then dG(v) = 6; or dG(v) = 9 with n2(v) = 3.
(b) If dH(v) = 7, then dG(v) = 7; or dG(v) = 8 with n2(v) = 1; or dG(v) = 9 with

n1(v) + n2(v) = 2.
(c) If dH(v) = 8, then dG(v) = 8; or dG(v) = 9 with n1(v) = 1 or n2(v) = 1.

For a vertex v ∈ V (H) and an integer i ≥ 3, let n′
i(v) denote the number of

i-vertices adjacent to v in H, and m′
i(v) denote the number of i-faces incident to v

in H. By Lemma 3.4, n′
i(v) = ni(v) for 3 ≤ i ≤ 5.

Lemma 3.5. If v ∈ V (H) with dH(v) = 6, then n′
3(v) = 0.

Proof. By Remark 3.1(a), if dG(v) = 6, then n1(v) = n2(v) = n3(v) = 0 by
Lemma 3.1, and hence n′

3(v) = 0. If dG(v) = 9 and n2(v) = 3, then by Lemma
3.2(4), n3(v) = 0. This shows that n′

3(v) = 0.

Lemma 3.6. If v ∈ V (H) with dH(v) = 7, then the following statements hold.

(a) n′
3(v) ≤ 1.

(b) If n′
3(v) = 1, then n′

4(v) ≤ 1.
(c) If n′

3(v) = 1 and n′
4(v) = 1, then n′

5(v) ≤ 1.

Proof. Let v1, v2, . . . , vk be the neighbors of v with dG(v1) ≤ dG(v2) ≤ · · · ≤
dG(vk). If dG(v) = 7, then by Lemma 3.2, (a), (b) and (c) can be established.
If dG(v) = 8 and n2(v) = 1, then by Lemma 3.2(2), (a) and (b) hold obviously.
To show (c), assume that n′

5(v) ≥ 2, say dG(v1) = 2, dG(v2) = 3, dG(v3) = 4
and dG(vi) = 5 for i = 4, 5. Let G′ = G − {vv1, vv2, vv3, vv4, vv5}, which has a
linear-8-coloring ϕ. It is easy to check that |L(vv1)| ≥ 8 − 3 − (dG(v1) − 1) = 4,
|L(vv2)| ≥ 8 − 3 − (dG(v2) − 1) = 3, |L(vv3)| ≥ 8 − 3 − (dG(v3) − 1) = 2 and
|L(vvi)| ≥ 8 − 3 − (dG(vi) − 1) = 1 for i = 4, 5. By Lemma 2.1(4), ϕ can be
extended to G, a contradiction.
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So assume that dG(v) = 9 and n1(v) + n2(v) = 2.
To show (a), suppose that n′

3(v) ≥ 2, say dG(vi) ≤ 2 for i = 1, 2 and dG(vj) = 3
for j = 3, 4. Let G′ = G−{vv1, vv2, vv3, vv4}, which has a linear-8-coloring ϕ. Since
|L(vvi)| ≥ 8−5−(dG(vi)−1) = 2 for i = 1, 2, and |L(vvj)| ≥ 8−5−(dG(vj)−1) = 1
for j = 3, 4, ϕ can be extended to a linear-8-coloring of G by Lemma 2.1(3), a
contradiction.

To show (b), suppose that n′
4(v) ≥ 2, say dG(vi) ≤ 2 for i = 1, 2, dG(v3) = 3

and dG(vj) = 4 for j = 4, 5. Let G′ = G − {vv1, vv2, vv3, vv4, vv5}. Similar to the
proof of (a), it yields that |L(vvi)| ≥ 3 for i = 1, 2, |L(vv3)| ≥ 2 and |L(vvj)| ≥ 1
for j = 4, 5. By Lemma 3.1(4), ϕ can be extended to G, a contradiction.

To show (c), suppose that n′
5(v) ≥ 2, say dG(vi) ≤ 2 for i = 1, 2, dG(v3) = 3,

dG(v4) = 4 and dG(vj) = 5 for j = 5, 6. Let G′ = G− {vv1, vv2, vv3, vv4, vv5, vv6},
which has a linear-8-coloring ϕ. Since |L(vvi)| ≥ 4 for i = 1, 2, |L(vv3)| ≥ 3,
|L(vv4)| ≥ 2 and |L(vvj)| ≥ 1 for j = 5, 6, by Lemma 3.1(5), we can get a contra-
diction.

Lemma 3.7. If v ∈ V (H) with dH(v) = 8, then n′
3(v) ≤ 3.

Proof. Let v1, v2, . . . , vk be the neighbors of v with dG(v1) ≤ dG(v2) ≤ · · · ≤
dG(vk). If dG(v) = 8, then n′

3(v) ≤ 3 by Lemma 3.2(3). Otherwise, dG(v) = 9 and
n1(v) + n2(v) = 1. Suppose that n′

3(v) ≥ 4, say dG(v1) ≤ 2 and dG(vi) = 3 for i =
2, 3, 4, 5. By the minimality of G, G−{vv1, vv2, vv3, vv4, vv5} has a linear-8-coloring
ϕ. Since |L(vv1)| ≥ 8− 4− (dG(v1)− 1) = 3 and |L(vvi)| ≥ 8− 4− (dG(vi)− 1) = 2
for i = 2, 3, 4, 5, ϕ can be extended to a linear-8-coloring of G by Lemma 2.1(4).

Lemma 3.8. If uv is a (4, 6)-edge of H, then uv is not incident to any 3-face.

Proof. Suppose that uv is incident to a 3-face f = [uvw], say dH(u) = 6 and
dH(v) = 4. By Lemma 3.4, dG(v) = dH(v) = 4. By Remark 3.1, dG(u) = 6 or
dG(u) = 9 with n2(u) = 3. This implies that dG(ui) = 2, and u and xi are the
neighbors of ui for i = 1, 2, 3. Let G′ = G − uv, which has a linear- 8-coloring ϕ.
We first remove the colors of uu1, uu2 and uu3.

Claim 1. If uv can be colored with some color α which appears only once in both
S(v) and S(u), then uu1, uu2, uu3 can be colored properly.

Proof. Note that |L(uui)| ≥ 1 for i = 1, 2, 3. If there is an edge uixi such that
ϕ(uixi) ̸= α for i = 1, 2, 3, then coloring this edge with α would led to other two
edges satisfying |L(uui)| ≥ 1. By Lemma 2.1(1), they can be colored properly.
Otherwise, ϕ(uixi) = α for i = 1, 2, 3. Then |L(uui)| ≥ 2 for i = 1, 2, 3. By Lemma
2.1(2), uu1, uu2, uu3 can be colored properly. This proves Claim 1.

By Claim 1, suppose that uv cannot be colored, so C = C(u) ∪ C(v). W.l.o.g,
assume that C(v) = {1, 2, 3} with ϕ(vw) = 1, and C(u) = {4, 5, 6, 7, 8} with
ϕ(uw) = 8. We claim that {4, 5, 6, 7} ⊆ C(w), otherwise, we can recolor vw
and color uv with the color 1. Similarly, {2, 3} ⊆ C(w). Since 1, 8 ∈ C(w) and
dG(w) ≤ 9, then there is at least one color c ∈ {1, 8} which only appears once in
S(w). Thus, we can first color uv with c, then color uu1, uu2, and uu3 in this order.
If c = 8, then |L(uui)| ≥ 2 for i = 1, 2, 3. By Lemma 2.1(2), uu1, uu2 and uu3 can
be colored. Otherwise, c = 1, then we have S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8). Recolor
uw with 1 and uv with 8, so that 8 appears only once in S(v) and S(u). By Claim
1, uu1, uu2 and uu3 can be colored and ϕ is extended to G, a contradiction.

Lemma 3.9. If uv is a (5, 5)-edge of H, then uv is not incident to any 3-face.
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Proof. Suppose that uv is incident to a 3-face f = [uvw]. So dH(u) = dH(v) = 5.
By Lemma 3.4, dG(u) = dG(v) = 5. Let G′ = G− uv, which has a linear-8-coloring
ϕ. If uv can be colored properly, we are done. Otherwise, we may assume that
C(v) = {1, 2, 3, 4} with ϕ(vw) = 1, and C(u) = {5, 6, 7, 8} with ϕ(uw) = 8. If there
is a color b ∈ {5, 6, 7} \C(w), then we can recolor vw with the color b and color uv
with the color 1. Otherwise, {5, 6, 7} ⊆ C(w). Similarly, we have {2, 3, 4} ⊆ C(w).
Since 1 ∈ C(w), 8 ∈ C(w), and dG(w) ≤ 9, then there is at least one color c ∈ {1, 8}
appearing only once in S(w). Consequently, we can color uv with the color c, a
contradiction.

Lemma 3.10. If uv is a (3, 7)-edge of H, then uv is incident to at most one 3-face.

Proof. Suppose that uv is incident to two 3-faces f1 = [uvw] and f2 = [uvx]. Let
dH(u) = 7 and dH(v) = 3. By Lemma 3.4, dG(v) = dH(v) = 3. By Remark 3.1,
dG(u) = 7; or dG(u) = 8 with n2(u) = 1; or dG(u) = 9 with n1(u) + n2(u) = 2. It
suffices to discuss the case dG(u) = 9 with n1(u) + n2(u) = 2, since other cases can
be verified similarly.

Assume that dG(u1) ≤ 2, dG(u2) = 2, and u and yi are the neighbors of ui for
i = 1, 2. Let G′ = G − uv, which has a linear-8-coloring ϕ. Remove the colors of
uu1 and uu2.

Claim 2. If uv can be colored with some color α which appears only once in both
S(v) and S(u), then uu1, uu2 can be colored properly.

Proof. If |C(u)| ≤ 6, then it is obvious that |L(uui)| ≥ 1 for i = 1, 2. By
Lemma 2.1(1), uu1 and uu2 can be colored properly. Otherwise, |C(u)| = 7, say
C(u) = {2, 3, 4, 5, 6, 7, 8}. If ϕ(uiyi) ̸= 1, without loss of generality, say i = 1, then
we can color uu1 with 1 and uu2 with a color in {1, α} \ {ϕ(u2y2}. Otherwise,
ϕ(u1y1) = 1 and ϕ(u2y2) = 1.

If 1 /∈ C(v), then we recolor uv with 1, and then color uu1 and uu2 with α.
Otherwise, 1 ∈ C(v), say ϕ(vw) = 1, and ϕ(uw) = 2. If ϕ(vx) ̸= 2, then we recolor
vw with 2 and uw with 1, and color uu1 and uu2 with 2. Otherwise, ϕ(vx) = 2.
It follows that vw can not be recolored, since we can recolor uv with 1 and color
uu1, uu2 with α. Hence S(w) = {1, 1, 2, 3, 4, 5, 6, 7, 8}, we may color uu1 with 2 and
uu2 with α. This proves Claim 2.

If there is a color β ∈ C \ (C(u) ∪ C(v)), then we can color uv with some color
β that appears only once in S(v) and S(u). By Claim 2, ϕ can be extended to G, a
contradiction. Otherwise, C = C(u) ∪ C(v), say C(v) = {1, 2} with ϕ(vw) = 1 and
ϕ(vx) = 2, and C(u) = {3, 4, 5, 6, 7, 8} with ϕ(uw) = 8 and ϕ(ux) = 3. If vw can
be recolored, then we can color uv with 1 and uu1, uu2 can be colored by Claim
2. Otherwise, we may assume that {1, 2, 3, 4, 5, 6, 7, 8} ⊆ C(w). Since dG(w) ≤ 9,
there exists a color c ∈ {1, 8} appearing only once in S(w). If c = 1, then we recolor
uw with 1 and color uv with 8. Otherwise, we recolor vw with 8 and color uv with
1. By Claim 2, uu1, uu2 can be colored properly.

In Figure 1, we use black point to denote a vertex that has no edges incident to
it other than those shown in graph, while point to denote a vertex that may have
edges connected to other vertices that are not in the graph, and triangle to denote
a 3-face.

Given a vertex v ∈ V (H), let v0, v1, . . . , vk−1 denote the neighbors of v in
clockwise order where k = dG(v). Let f0, f1, . . . , fk−1 be the faces of G which
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Figure 1. The configurations in Lemmas 3.11–3.16.

are incident to v and vvi, vvi+1 ∈ b(fi) for i = 0, 1, . . . , k − 1, where indices are
taken modulo k.

Lemma 3.11. If v ∈ V (H) with dH(v) = 7, n′
4(v) = 2 and all the faces incident

to v are 3-faces, then other vertices incident to v are 6+-vertices.

Proof. By Lemmas 3.1 and 3.9, if vi is a 5−-vertex, then vi−1 and vi+1 are 6+-
vertices. Suppose that v1, v3 are 4-vertices, and dH(v5) ≤ 5. By Lemma 3.4,
dG(vi) = dH(vi) = 4 for i = 1, 3 and dG(v5) = dH(v5) ≤ 5.

By Remark 3.1, dG(v) = 7, or dG(v) = 8 with n2(v) = 1, or dG(v) = 9 with
n1(v) + n2(v) = 2. In the following, it suffices to discuss the case dG(v) = 9 with
n1(v) + n2(v) = 2, since other cases can be similarly proved.

Assume that dG(ui) ≤ 2, v and yi are the neighbors of ui for i = 1, 2, as depicted
in Fig. 1(a). Let G′ = G − vv1, which has a linear-8-coloring ϕ by the minimality
of G. First remove the colors of vv3, vv5, vu1 and vu2. Then color the edges vv1,
vv3, vv5, vu1 and vu2 as follows.
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Claim 3. Let ϕ(vv1) = α, ϕ(vv3) = β, and ϕ(vv5) = γ. If α, β, γ only appears once
in S(v) and S(v1), S(v) and S(v3), S(v) and S(v5), respectively; or there is a color
which appears twice in S(v), then vu1 and vu2 can be colored properly.

Proof. If α, β, γ only appears once in S(v) and S(v1), S(v) and S(v3), S(v) and
S(v5), respectively, then vu1 can be colored with a color in {α, β, γ} \ {ϕ(u1y1)}
and vu2 can be colored with a color in {α, β, γ} \ {ϕ(u2y2), ϕ(vu1)}. Meanwhile, if
there is a color appearing twice in S(v), then |L(vui)| ≥ 1 for i = 1, 2. By Lemma
2.1(1), vu1 and vu2 can be colored properly.

Now we consider the following two cases.
Case 1. |L(vv5)| ≥ 1.
First, if there exists i ∈ {1, 3} such that |L(vvi)| ≥ 2, say |L(vv1)| ≥ 2, let

{a, b} ∈ L(vv1), c ∈ L(vv3) and d ∈ L(vv5), then color vv3 with c, vv5 with d and
vv1 with a color in {a, b} \ {c}. Thus, vu1 and vu2 can be colored by Claim 3.

Next suppose that |L(vvi)| = 1 for i = 1, 3. Let a ∈ L(vv1), b ∈ L(vv3) and
c ∈ L(vv5). If a, b, c are not same, w.l.o.g., assume that a ̸= b, then color vv1
with a, vv3 with b and vv5 with c. Thus, vu1 and vu2 can be colored by Claim 3.
Otherwise, a = b = c. Let C(v) = {1, 2, 3, 4} with ϕ(vv0) = 1 and C(v1) = {5, 6, 7}
with ϕ(v0v1) = 7, i.e., a = b = c = 8. We claim that v0v1 and vv0 cannot be
recolored. Otherwise we can color vv1 with 1 or 7 and then vu1 and vu2 can be
colored by Claim 3. Therefore, we derive that S(v0) = (1, 1, 2, 3, 4, 5, 6, 7, 7). In this
case, we recolor v0v1 with 8, color vv1 with 7, color vv3 and vv5 with 8, and then
vu1 and vu2 can be colored by Claim 3.

Case 2. |L(vv5)| = 0.
Assume that C(v) = {1, 2, 3, 4} with ϕ(vv4) = 3, C(v5) = {5, 6, 7, 8}. Let

8 ∈ L(vv1) and a ∈ L(vv3), i.e., a ∈ {5, 6, 7, 8}.
Since ϕ(v4v5) ̸= ϕ(v5v6), we can suppose ϕ(v4v5) = 7. First color vv1 with 8

and vv3 with the color a, then we color vv5, vu1 and vu2. Claim that vv4 and v4v5
cannot be recolored, otherwise, color vv5 with 3 or 7, and then vu1 and vu2 can be
colored by Claim 3. Therefore, we hold that S(v4) = (1, 2, 3, 3, 4, 5, 6, 7, µ).

• a = 8. We derive that µ = 7, otherwise recolor vv4 with 7 and color vv5 with
3. If 3 ∈ C(v3), then there is a color e ∈ {5, 6, 7}\C(v3) and hence recolor vv3 with
e, vv4 with 8 and color vv5 with 3. Otherwise, 3 /∈ C(v3). Recolor vv3 with 3, vv4
with 8 and color vv5 with 3, and then vu1 and vu2 can be colored by Claim 3.

• a ̸= 8. Claim that µ = 8 for otherwise recolor vv4 with 8 and color vv5 with
3, and then vu1 and vu2 can be colored by Claim 3. Now we only color vv5, vu1

and vu2 can be colored by Claim 3. If a ̸= 7, then recolor vv4 with 7 and color vv5
with 3. Otherwise, a = 7. Recolor vv3 with 3, vv4 with 7 and color vv5 with 3.

Lemma 3.12. Let dH(v) = 8, and all the faces incident to v be 3-faces. If n′
3(v) =

1, n′
4(v) = 1 and n′

5(v) = 1; or n′
3(v) = 1 and n′

4(v) = 2, then the other vertices
incident to v are 6+-vertices.

Proof. By Lemmas 3.1 and 3.9, if vi is a 5−-vertex, then vi−1 and vi+1 are 6+-
vertices. Suppose that v1, v3 and v5 are 3-vertex, 4-vertex and 5−-vertex, respec-
tively. Assume to the contrary that v is adjacent to a 5−-vertex except v1, v3, v5.
Assume that dH(v7) ≤ 5. By Lemma 3.4, dG(vi) = dH(vi) for i = 1, 3, 5, 7. By
Remark 3.1, dG(v) = 8, or dG(v) = 9 with n1(v) + n2(v) = 1. In the following, it
suffices to discuss the case dG(v) = 9 with n1(v) + n2(v) = 1, since other case can
be similarly proved.
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Assume that dG(u1) ≤ 2, v and y1 are the neighbors of u1, as depicted in
Fig. 1(b). Let G′ = G − vv1, which has a linear-8-coloring ϕ by the minimality of
G. First, we remove the colors of vv3, vv5, vv7, vu1.
Claim 4. Let ϕ(vvi) = α and ϕ(vvj) = β for i ̸= j. If the coloring ϕ satisfies one
of the following conditions, then vu1 can be colored properly:

(i) α and β appear only once in S(v) and S(vi), S(v) and S(vj), respectively,
(ii) α appears only once in S(v) and S(vi) and there is another color appears

twice in S(v).
Proof. If the condition (i) holds, then we color vu1 with a color in {α, β} \
{ϕ(u1y1)}. Assume that the condition (ii) holds. If ϕ(u1y1) ̸=α, then we color vu1

with α. Otherwise, ϕ(u1y1)=α, and vu1 can be colored properly since |L(vu1)|≥1.

By Lemma 2.1(3), if |L(vv1)| ≥ 2, |L(vv3)| ≥ 2, |L(vv5)| ≥ 1 and |L(vv7)| ≥ 1,
then vv1, vv3, vv5, vv7, vu1 can be colored properly. To complete the proof, we have
to consider two cases.

Case 1. |L(vv5)| ≥ 1 and |L(vv7)| ≥ 1.
Due to the above proof, |L(vv3)| = 1. Assume that C(v) = {1, 2, 3, 4} with

ϕ(vv0) = 1, ϕ(vv2) = 2, ϕ(vv4) = 3 and ϕ(vv6) = 4, C(v3) = {5, 6, 7}, {a, b} ⊆
L(vv1), 8 ∈ L(vv3), c ∈ L(vv5) and d ∈ L(vv7). Obviously, a, b, c, d ∈ {5, 6, 7, 8}.

If c = d = 8, then color vv5 and vv7 with 8 and vv1 with a color in {a, b} \ {8}.
Next, we color vv3 and vu1. Without loss of generality, we may suppose that a = 7.
Obviously, we can assume that ϕ(v3v4) ̸= 7. Suppose that ϕ(v3v4) = 6. We claim
that v3v4 and vv4 cannot be recolored, for otherwise we color vv3 with 3 or 6. It
follows that S(v4) = (1, 2, 3, 3, 4, 5, 6, 7, 8), and hence we can color vv3 with 6 and
vu1 can be colored properly by Claim 4.

Otherwise, we color vv3 with 8, vv5 with c, vv7 with d and vv1 with a color in
{a, b} which does not appear twice in S(v). Hence vu1 can be colored by Claim 4.

Case 2. |L(vv5)| = 0 or |L(vv7)| = 0.
Suppose that |L(vv7)| = 0. Furthermore, C(v) = {1, 2, 3, 4} with ϕ(vv0) = 1,

ϕ(vv2) = 2, ϕ(vv4) = 3, ϕ(vv6) = 4, C(v7) = {5, 6, 7, 8}, {a, b} ⊆ L(vv1) and
8 ∈ L(vv3). Obviously, a, b ∈ {5, 6, 7, 8}.

• |L(vv5)| = 0. Then C(v5) = {5, 6, 7, 8}. Assume that ϕ(v4v5) ̸= 8, say
ϕ(v4v5) = 7. We first color vv3 with 8, and color vv1 with a color in {a, b} \ {7},
say, ϕ(vv1) = a. Then we color vv5, vv7 and vu1. We claim that vv4 and v4v5
cannot be recolored, for otherwise we can color vv5 and vv7 with 3 or color vv7
with 3 and vv5 with 5, and then vu1 can be colored by Claim 4. Thus, we derive
that S(v4) = (1, 2, 3, 4, 5, 6, 7, 7, 8), and 8 ∈ C(v4), for otherwise we can recolor vv4
with 8, vv1 with a color in {a, b} \ {8} and color vv5 and vv7 with 3. Suppose that
ϕ(v5v6) = e, where e ∈ {5, 6, 8}. We first recolor vv1 with {a, b} \ {8}. As observed
above, we have that S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8). Therefore, recolor v5v6 with 4,
vv6 with e, color vv5 with 3 and vv7 with 4. Finally, vu1 can be colored properly
by Claim 4.

• |L(vv5)| ≥ 1. Suppose that c ∈ L(vv5). Obviously, c ∈ {5, 6, 7, 8}. We first
color vv3 with 8, vv5 with c and vv1 with a color in {a, b} \ {8}. Assume that
ϕ(v6v7) ̸= 8, say ϕ(v6v7) = 7. Since vv6 and v6v7 cannot be recolored, we conclude
that S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8).

Suppose that c = 8. If a ̸= 7, then vv6 and vv7 are recolored with 7 and 4,
respectively. Suppose that a = 7. We claim that {5, 6} ⊆ C(v1), for otherwise we
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recolor vv1 so that this case can be reduced to the previous case of a ̸= 7. Thus,
C(v1) = {5, 6, 7}. We recolor vv1 with 4, vv6 with 7 and color vv7 with 4. Finally,
we color the edge vu1 by Claim 4.

Suppose that c ̸= 8. If c ̸= 7, then recolor vv6, vv1 and vv7 with 7, 4 and
4, respectively. So we assume that c = 7. Then ϕ(v7v0) ̸= 7, say ϕ(v6v7) = d.
Obviously, d ∈ {5, 6, 8}. We derive that S(v0) = (1, 1, 2, 3, 4, 5, 6, 7, 8), as described
above. Recolor vv0 with d, vv1 with a color in {a, b} \ {d}, vv7 with 1 if d ∈ {5, 6};
otherwise, d = 8. If 1 /∈ C(v3), then recolor vv3 with 1, vv0 with 8 and vv7 with 1.
Hence we may assume that 1 ∈ C(v3). Recolor vv3 with g, vv0 with 8 and vv7 with
1 as there exists a color g ∈ {5, 6, 7} \ C(v3).

Lemma 3.13. H does not contain a vertex v ∈ V (H) with dH(v) = 8, dH(vi) = 3
and dH(vj) = 3 with t(vvi) = 2 and t(vvj) ≥ 1, where t(e) denotes the number of
3-faces that incident to e.

Proof. Assume to the contrary that H contains such a vertex v. Let dH(v1) = 3
with t(vv1) = 2 and dH(v3) = 3 with t(vv3) ≥ 1. W.l.o.g., we may suppose that
[vv3v4] is a 3-face. Let us consider the case of dG(v) = 9 with n1(v) + n2(v) = 1.

Recall that dG(u1) ≤ 2, v and y1 are the neighbors of u1, shown in Fig. 1(c).
Let G′ = G − vv1, which has a linear-8-coloring ϕ. Erasing the colors of vv3 and
vu1, we color vv1, vv3, vu1 in the following ways. If |L(vv1)| ≥ 2, |L(vv3)| ≥ 1 and
|L(vu1)| ≥ 1, then by Lemma 2.1(2), they can be colored properly. Otherwise, we
need to deal with the following two cases.

Case 1. |L(vv1)| ≥ 1 and |L(vv3)| ≥ 1.
If |L(vu1)| ≥ 2, then vv1, vv2 and vv3 can be colored by Lemma 2.1(2). Oth-

erwise, |L(vu1)| = 1, say C(v) = {1, 2, 3, 4, 5, 6} with ϕ(vv0) = 1, ϕ(vv2) = 2 and
ϕ(vv4) = 3, ϕ(u1y1) = 7, a ∈ L(vv1) and b ∈ L(vv3). Obviously, a, b ∈ {7, 8}. We
first color vv1 with a and vv3 with b, then color vu1. If a ̸= b or a = b = 7, then we
color vu1 with 8.

Next, we assume that a = b = 8. If 7 /∈ C(v1), then we recolor vv1 with 7
and color vu1 with 8. Otherwise, 7 ∈ C(v1), w.l.o.g., suppose that ϕ(v0v1) = 7.
If ϕ(v1v2) ̸= 1, then recolor vv0 with 7 and v0v1 with 1, then color vu1 with
1. Otherwise, ϕ(v1v2) = 1. It is easy to see that S(v2) = (1, 1, 2, 2, 3, 4, 5, 6, 7).
Recolor vv2 with 8, vv1 with 2 and color vu1 with 2.

Case 2. |L(vv1)| = 0 or |L(vv3)| = 0.
W.l.o.g., we suppose that |L(vv3)| = 0. Let C(v) = {1, 2, 3, 4, 5, 6} with ϕ(vv0) =

1, ϕ(vv2) = 2, ϕ(vv4) = 3, and C(v3) = {7, 8}.
• |L(vv1)| ≥ 1, say 8 ∈ L(vv1). We first color vv1 with 8, then color the edges

vv3 and vu1. Let ϕ(v3v4) = a, that is, a ∈ {7, 8}. If a = 7, then it follows that
S(v4) = (1, 2, 3, 3, 4, 5, 6, 7, 7) because vv4 and v3v4 can not be recolored. Recolor
vv4 with 8, color vv3 with 3 and vu1 with a color in {3, 7} \ {ϕ(u1y1)}.

If a = 8, then S(v4) = (1, 2, 3, 3, 4, 5, 6, 7, 8). We claim that 3 ∈ C(v1), for
otherwise we recolor vv4 with 8, v3v4 with 3 and vv1 with 3, and color vv3 with
8 and vu1 with a color in {3, 7} \ {ϕ(u1y1)}. Thus, C(v1) = {3, 7, 8}. We may
assume ϕ(v0v1) = 7. We claim that v0v1 cannot be recolored. If not, we recolor
vv1 with 7 and then vv3 and vu1 can be colored as the former case of a = 7. Thus,
it imply that {2, 4, 5, 6} ⊆ C(v0) and 1 appears twice in S(v0). Thus, we have
S(v0) = (1, 1, 2, 4, 5, 6, 7, 7, 8). Recolor vv0 and v3v4 with 3, vv4 with 8, and color
vv1 and vv3 with 1, vu1 with a color in {7, 8}\{ϕ(u1y1)}.
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• |L(vv1)| = 0. Let ϕ(v0v1) = 7 and ϕ(v1v2) = 8. We first consider S(v2) if
ϕ(u1y1) = 8; and S(v0) otherwise. By symmetry, assume that ϕ(u1y1) ̸= 8. We
have S(v0) = (1, 2, 3, 4, 5, 6, 7, 7, 8) for v0v1 and vv0 cannot be recolored. Similarly,
we can obtain that S(v2) = (1, 2, 3, 4, 5, 6, 7, 8, 8). Therefore, we color vv1 with 1,
vv3 with 2 and vu1 with 8.

Lemma 3.14. Let v ∈ V (H) with dH(v) = 9. If all the faces incident to v are
3-faces, then n′

3(v) ≤ 2.

Proof. Suppose that n′
3(v) ≥ 3, say, v1, v3, v5 are 3-vertices. For i = 1, 3, 5,

dG(vi) = dH(vi) by Lemma 3.4, depicted in Fig. 1(d). Let G′ = G− vv1, which has
a linear-8-coloring ϕ. First remove the colors of vv3 and vv5. Then color the edges
vv1, vv3 and vv5. If |L(vv1)| ≥ 2, |L(vv3)| ≥ 1 and |L(vv5)| ≥ 1, then the coloring
is available by Lemma 2.1(2). Otherwise, there are three cases to be be considered.

Case 1. |L(vv1)| = 1, |L(vv3)| ≥ 1 and |L(vv5)| ≥ 1.
Suppose that 8 ∈ L(vv1), a ∈ L(vv3) and b ∈ L(vv5). If a ̸= 8 or b ̸= 8, then we

color vv1 with 8, vv3 with a and vv5 with b. Otherwise, a = b = 8. If there is a color
in C, say 1, appears twice in S(v), then assume that S(v) = {1, 1, 2, 3, 4, 5} with
ϕ(vv6) = 4, C(vi) = {6, 7} for i = 1, 3, 5. Suppose that ϕ(v4v5) = 6 and ϕ(v5v6) = 7.
Coloring vv1, vv3 with 8, we color vv5. It follows that S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 7).
In this case, recolor v5v6 with 8 and color vv5 with 7.

Otherwise, C(v) = {1, 2, 3, 4, 5, 6} with ϕ(vv0) = 1, ϕ(vv2) = 2, ϕ(vv4) = 3 and
ϕ(vv6) = 4. Obviously, 7 ∈ C(vi) for i = 1, 3, 5. We first color vv1 and vv3 with
8, then color vv5, w.l.o.g. say ϕ(v4v5) = 7. So, S(v4) = (1, 2, 3, 4, 5, 6, 7, 7, 8) and
S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8) if ϕ(v5v6) = 3. Suppose 3 /∈ C(v1), then recolor vv1
with 3 and color vv5 with 8. It follows that S(v1) = {3, 7, 8}. Hence recolor v5v6
with 4, vv6 with 3, vv1 with 4, and color vv5 with 8.

Suppose ϕ(v5v6) ̸= 3. If 3 /∈ C(v1), then recolor vv4 with 7, v4v5 with 3, vv1
with 3 and color vv5 with 8. Otherwise, we have S(v1) = {3, 7, 8}. It turns out
that S(v3) = {3, 7, 8} similarly. Assume that ϕ(v0v1) = 3 and ϕ(v1v2) = 7. Then
S(v2) = (1, 2, 2, 4, 5, 6, 7, 7, 8). Recolor v4v5 with 3, vv4 with 7, vv2 with 3, vv1 with
2, and color vv5 with 8.

Case 2. |L(vv1)| ≥ 1, and |L(vv3)| = 0 or |L(vv5)| = 0.
Suppose that |L(vv5)| = 0. We may assume that C(v) = {1, 2, 3, 4, 5, 6} with

ϕ(vv0) = 1, ϕ(vv2) = 2, ϕ(vv4) = 3, ϕ(vv6) = 4 and 8 ∈ L(vv1), C(v5) = {7, 8}.
Assume that ϕ(v4v5) = 7 and ϕ(v5v6) = 8. If 8 /∈ C(v3), then we color vv1 and
vv3 with 8, and then similar to the above argument, we can verify that S(v4) =
(1, 2, 3, 3, 4, 5, 6, 7, 7) and S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8). Thus, we can recolor v4v5
with 8 and color vv5 with 7. Otherwise, 8 ∈ C(v3). If 7 ∈ C(v3), then derive
that S(v4) = (1, 2, 3, 4, 5, 6, 7, 7, 8) and S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8). We recolor
vv6 with 8, v5v6 with 4, and color vv5 with 3 and vv3 with 4. If 7 /∈ C(v3), then
S(v4) = (1, 2, 3, 3, 4, 5, 6, 7, 8) and S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8). If 3 /∈ C(v3), then
recolor vv4 with 7 and color vv3 and vv5 with 3. Otherwise, recolor vv6 with 8, v5v6
with 4, and color vv5 with 7 and vv3 with 4.

Case 3. |L(vv1)| = 0, |L(vv3)| = 0 and |L(vv5)| = 0.
Suppose that ϕ(v0v1) = 7. It follows that S(v0) = (1, 2, 3, 4, 5, 6, 7, 7, 8). We

claim that {2, 3, 4, 5, 6} ⊆ C(v0), for otherwise we recolor v0v1, and recolor vv0
with 7, color vv1 and vv3 with 1. Now we color vv5, w.l.o.g., let ϕ(v4v5) = 8. We
obtain that S(v4) = (1, 2, 3, 3, 4, 5, 6, 8, 8). Thus, recolor v4v5, vv4, vv3 and vv5
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with 3, 8, 3 and 1, respectively. Furthermore, we conclude that 8 ∈ S(v0), since,
otherwise, we can color vv0 with 8, v0v1 with 1, a vv1 with 7, vv3 and vv5 with 1.
Finally, 7 appears twice in S(v0), if not, we may recolor vv0 with 7, v0v1 with 1,
and color vv1 with 7, vv3 and vv5 with 1.

Suppose that ϕ(v5v6) = 7. It is easy to see that S(v6) = (1, 2, 3, 4, 5, 6, 7, 7, 8).
Therefore, we can recolor vv0 with 7, v0v1 with 1, and color vv1 with 4, vv3 and
vv5 with 1.

Lemma 3.15. H does not contain a vertex v such that dH(v) = 9, n′
3(v) = 4 and

every 3-vertex vi satisfies t(vvi) ≥ 1.

Proof. Suppose that dH(vi) = 3 for i = 1, 3, 5, 7. Furthermore, let [vv0v1], [vv2v3],
[vv4v5] and [vv6v7] be 3-faces. By Lemma 3.4, dG(vi) = dH(vi) for i = 1, 3, 5, 7,
depicted in Fig. 1(e). Let G′ = G − vv1, which has a linear-8-coloring ϕ. First
remove the colors of vv3, vv5 and vv7. If |L(vv1)| ≥ 2, |L(vv3)| ≥ 2, |L(vv5)| ≥ 1
and |L(vv7)| ≥ 1, then by Lemma 2.1(3), vv1, vv3, vv5, vv7 can be colored properly.
Otherwise, we assume that |L(vv3)| = 1, |L(vv5)| = 1 and |L(vv7)| = 1. Suppose
that C(v) = {1, 2, 3, 4, 5} with ϕ(vv0) = 1, ϕ(vv2) = 2, ϕ(vv4) = 3 and ϕ(vv6) = 4,
a ∈ L(vv3), b ∈ L(vv5) and c ∈ L(vv7). It is easy to observe that a, b, c ∈ {6, 7, 8}
are available. Now we consider the following two cases.

• |L(vv1)| = 1. Suppose that C(v1) = {6, 7} and 8 ∈ L(vv1). If no three colors
in {a, b, c, 8} are the same, then we can color vv1 with 8, vv3 with a, vv5 with b and
vv7 with c. Otherwise, assume that a = b = 8. Thus, C(vi) = {6, 7} for i = 1, 3, 5.

If c ̸= 8, say c = 7, then C(v7) = {6, 8}. We color vv1 and vv3 with 8, vv7
with 7, and then color vv5. Assume that ϕ(v4v5) = α, since C(v5) = {6, 7}, we
can recolor v4v5 with 3, vv4 with α, vv3 with 3 and color vv5 with 8. Assume that
c = 8, then C(v7) = {6, 7}. We first color vv1 and vv3 with 8, and then color vv5
and vv7. W.l.o.g., we may suppose that ϕ(v0v1) = 7. Since v0v1 and vv0 cannot
be recolored, we deduce that S(v6) = (1, 2, 3, 4, 5, 6, 7, 7, 8). Therefore, recolor v6v7
with 4, vv6 with 7 and vv1 with 4, and color vv7 with 8 and vv5 with 4.

• |L(vv1)| ≥ 2. The foregoing discussion implies that L(vv1) ⊆ {6, 7, 8}. Sup-
pose that a = 8, which implies that C(v3) = {6, 7}. If 8, b, c are mutually distinct,
then color vv3 with 8, vv5 with b and vv7 with c. Moreover, vv1 can be colored
properly by |L(vv1)| ≥ 2. Otherwise, b = c = 8, then C(vi) = {6, 7} for i = 3, 5, 7.
We first color vv3, vv5 with 8, then color vv1 with some color β ∈ L(vv1)\{8}. Since
L(vv1) ⊆ {6, 7, 8}, we may choose β ∈ {6, 7}. Finally, we color vv7, say ϕ(v6v7) = 7.
We conclude that S(v6) = (1, 2, 3, 4, 4, 5, 6, 7, 8). Thus, we may recolor v6v7 with 4,
vv6 with 7, vv5 with 4, and color vv7 with 8.

Lemma 3.16. If f1 = [uvw] is a (5, 6, 7−)-face in H, then the other face f2 incident
to the (5, 6)-edge is not a 3-face.

Proof. By contradiction. Let f2 be a 3-face. Set dH(u) = 5, dH(v) = 6, dH(w) ≤
7, and f2 = [uvx]. Note that it suffices to consider the case that dG(v) = 9 with
n2(v) = 3 and dG(w) = 9 with n1(w) + n2(w) = 2. Suppose that dG(vi) = 2,
v and yi are the neighbors of vi for i = 1, 2, 3, dG(wj) ≤ 2 with w and zj being
the neighbors of wj for j = 1, 2 (see Fig. 1(f)). Let G′ = G − uv, which has a
linear-8-coloring ϕ. Remove the colors of vv1, vv2 and vv3.

Claim 5. Let ϕ(uv) = α which only appears once in S(v) and S(u). Then the edges
vv1, vv2, and vv3 can be colored properly.
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Proof. It can readily be checked that |L(vvi)| ≥ 1 for i = 1, 2, 3. If there exists an
edge viyi with ϕ(viyi) ̸= α for i = 1, 2, 3, say ϕ(v1y1) ̸= α, then color the edge vv1
with α. Hence vv2 and vv3 can be colored properly, by Lemma 2.1(1). Otherwise,
ϕ(viyi) = α, and then we have |L(vvi)| ≥ 2 for i = 1, 2, 3. Therefore, again by
Lemma 2.1(2), vv1, vv2 and vv3 can be colored properly.

If C \(C(u)∪C(v)) ̸= ∅, then ϕ can be extend to G by Claim 5, a contradiction.
It follows that C = C(u) ∪ C(v), without loss of generality, we may suppose that
ϕ(uw) = 1. Next, we color the edges uv, vv1, vv2 and vv3.

Case 1. ϕ(vw) = 1.
Assume that C(u) = {1, 2, 3, 4} with ϕ(ux) = 4, C(v) = {1, 5, 6, 7, 8} with

ϕ(vx) = 8. Because ux and vx cannot be recolored, S(x) = (2, 3, 4, 4, 5, 6, 7, 8, 8).
Furthermore, because uw and vw cannot be recolored, S(w) = (1, 1, 2, 3, 4, 5, 6, 7, 8).
Hence, we may assume that ϕ(ww1) ∈ {2, 3, 4} (the case of ϕ(ww1) ∈ {5, 6, 7, 8} is
proved similarly). Assume, without loss of generality, ϕ(ww1) = 2. We first color
the edge uv. Recolor vw with 2, xv with 1 and color uv with 8 if ϕ(w1z1) ̸= 2;
otherwise, ϕ(w1z1) = 2. Then recolor ww1 with 1, vw with 2, xv with 1 and color
uv with 8. Therefore, again by Claim 4, vv1, vv2 and vv3 can be colored.

Case 2. ϕ(vw) ̸= 1

Without loss of generality, we may assume that ϕ(vw) = 8.
Case 2.1. Each of the colors 1 and 8 only appears once in S(u) and S(v), and

1 /∈ C(v) and 8 /∈ C(u).
Suppose that the color 2 appears twice in S(u) or S(v), or 2 ∈ C(u)∩C(v), then

it implies that each of the other colors appears once in S(u) and S(v). Because uw
and vw cannot be recolored, S(w) = (1, 1, 3, 4, 5, 6, 7, 8, 8).

• ϕ(ww1) ∈ {3, 4, 5, 6, 7}. Without loss of generality, assume that ϕ(ww1) = 3.
We first color the edge uv, then recolor ww1 with the color 2, vw or uw with 3, uv
with 8 or 1 if ϕ(w1z1) ̸= 2; otherwise, ϕ(w1z1) = 2. Then recolor vw or uw with 3,
and color uv with 8 or 1. Finally, by Claim 5, we may color the edges vv1, vv2 and
vv3. The case of ϕ(ww2) ∈ {3, 4, 5, 6, 7} can be disposed of similarly

• ϕ(ww1) ∈ {1, 8}. Without loss of generality, we may assume that ϕ(ww1) = 1
and ϕ(ww2) = 8. First, color the edge uv, then recolor ww1 with the color 2, vw
with 1 and color uv with 8 if ϕ(w1z1) ̸= 2; otherwise, ϕ(w1z1) = 2. ϕ(w2z2) = 2
can be shown by the same approach. Thus, we can recolor ww1 with 8, vw with 1
and color uv with 8, and color the edges vv1, vv2 and vv3 by Claim 5. The case of
ϕ(ww2) ∈ {1, 8} is proved similarly.

Case 2.2. The color 1 appears twice in S(u) or 1 ∈ C(v).
• If 1 ∈ C(v), say ϕ(vx) = 1, then without loss of generality, we assume that

C(u) = {1, 2, 3, 4} with ϕ(ux) = 4, C(v) = {1, 5, 6, 7, 8} with ϕ(vw) = 8. Now claim
that vx cannot be recolored. Suppose not, it can be reduced to the case of Case 2.1.
Because vx and ux cannot be recolored, S(x) = (1, 2, 3, 4, 4, 5, 6, 7, 8). Based on this
evidence, we immediately deduce that S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8). In conclusion,
ϕ(ww1) or ϕ(ww2) is contained in {2, 3, 4, 5, 6, 7}. Without loss of generality, we
may assume that ϕ(ww1) = 2. If ϕ(w1z1) ̸= 2, then recolor vw with 2 and color uv
with 8; otherwise, ϕ(w1z1) = 2. Then recolor ww1 with 1, wv with 2 and color uv
with 8. Finally, we color the edges vv1, vv2 and vv3 by the Claim 5.

Suppose now that ϕ(vx) ̸= 1. Without loss of generality, assume that ϕ(vx) = 7.
We can confirm that S(x) = (2, 3, 4, 4, 5, 6, 7, 7, 8) and S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8)
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similar to the foregoing discussion. Therefore, we can color uv, vv1, vv2 and vv3
similarly.

• The color 1 appears twice in S(u). Without loss of generality, we may assume
that S(u) = (1, 1, 2, 3) and S(v) = (4, 5, 6, 7, 8) with ϕ(vx) = 7. We obtain that
S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8). Hence we have ϕ(ww1) ∈ (2, 3, 4, 5, 6, 7). If ϕ(ww1) ∈
{2, 3}, w.l.o.g., say ϕ(ww1) = 2. First, we color the edge uv, then recolor vw with 2
and color uv with 8 if ϕ(w1z1) ̸= 2; otherwise ϕ(w1z1) = 2. Then recolor ww1 with
8, vw with 2 and color uv with 8. By Claim 5, the edges vv1, vv2 and vv3 can be
colored. Otherwise, ϕ(ww1) ∈ {5, 6, 7}, which can be solved by the same approach.

Case 2.3. The color 8 appears twice in S(v) or 8 ∈ C(u).
The proof of this situation is similar to the proof of Case 2.2.
To obtain a contradiction, we use the discharging method. By Euler’s Formula,

|V (H)| − |E(H)|+ |F (H)| = 2 and the following fundamental identities∑
v∈V (H)

dH(v) =
∑

f∈F (H)

dH(f) = 2|E(H)|,

we have ∑
v∈V (H)

(dH(v)− 4) +
∑

f∈F (H)

(dH(f)− 4) = −8. (3.1)

Let ω denote a weight function defined by ω(x) = dH(x) − 4 for each x ∈
V (H) ∪ F (H). We are going to redistribute the weight between vertices and faces
in H so that the resultant weight ω′(x) ≥ 0 for every x ∈ V (H) ∪ F (H), while
keeping the sum of all weights fixed. Therefore

0 ≤
∑

x∈V (H)∪F (H)

ω′(x) =
∑

x∈V (H)∪F (H)

ω(x) = −8 < 0, (3.2)

a contradiction.
The following are the discharging rules. For a face f = [v1v2v3], we use (dH(v1),

dH(v2), dH(v3)) → (α1, α2, α3) to denote the amount of weight αi transferred from
vi to f for i = 1, 2, 3.
(R1) Every 7+-vertex sends 1

3 to each adjacent 3-vertex.
(R2) Let f = [v1v2v3] be a 3-face of H with dH(v1) ≤ dH(v2) ≤ dH(v3). Then
(R2.1) (3, 7+, 7+) → (0, 1

2 ,
1
2 ).

(R2.2) (4, 7+, 7+) → (0, 1
2 ,

1
2 ).

(R2.3) (5, 6, 7−) → ( 15 ,
2
5 ,

2
5 ); (5, 6, 8+) → ( 15 ,

1
3 ,

7
15 ); (5, 7+, 7+) → ( 15 ,

2
5 ,

2
5 ).

(R2.4) (6+, 6+, 6+) → ( 13 ,
1
3 ,

1
3 ).

Let ω′ denote the final weight function after (R1) and (R2) are carried out in
H.

Let f ∈ F (H). If dH(f) ≥ 4, then ω′(f) = ω(f) = dH(f) − 4 = 0. Assume
that dH(f) = 3, say, f = [xyz] satisfies dH(x) ≤ dH(y) ≤ dH(z). If dH(x) = 3,
then by Lemmas 3.1, 3.4 and 3.5, we derive that dH(y), dH(z) ≥ 7. It follows that
ω′(f) = −1 + 2 × 1

2 = 0 by (R2.1). If dH(x) = 4, by Lemmas 3.1, 3.4 and 3.8,
dH(y), dH(z) ≥ 7. By (R2.2), ω′(f) = −1 + 2 × 1

2 = 0. By (R2.4), if dH(x) ≥ 6,
then ω′(f) = −1 + 3× 1

3 = 0. Assume that dH(x) = 5. Applying Lemmas 3.1, 3.4
and 3.9, we obtain that dH(y), dH(z) ≥ 6. So, it is easy to check that ω′(f) = 0 by
(R2.3).
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Let v ∈ V (H). Then dH(v) ≥ 3 by Lemma 3.3. We have to consider some
possibilities, depending on the size dH(v).

(1) If dH(v) = 3, then v is adjacent to three 7+-vertices in H by Lemmas 3.1,
3.4 and 3.5. Hence, ω′(v) ≥ −1 + 3× 1

3 = 0 by (R1).
(2) If dH(v) = 4, then ω′(v) = ω(v) = dH(v)− 4 = 0.
(3) If dH(v) = 5, then v sends at most 1

5 to each incident face by (R2.3). Thus,
ω′(v) ≥ 1− 5× 1

5 = 0.
(4) Assume that dH(v) = 6. By Lemma 3.16, if v is adjacent to a 5-vertex, say

v1, then at least one of f0 and f1 is not a 3-face. Thus, v is incident to at most four
(5, 6, 7−)-faces. If v is incident to three or four (5, 6, 7−)-faces, then v is incident to
at least two 4+-faces. Thus, ω′(v) ≥ 2 − 4 × 2

5 > 0. Otherwise, v is incident to at
most one (5, 6, 7−)-face, so that ω′(v) ≥ 2− 5× 2

5 = 0 or ω′(v) ≥ 2− 6× 1
3 = 0 by

(R2.3) and (R2.4).
(5) Assume that dH(v) = 7. By Lemma 3.6(a), we see that n′

3(v) ≤ 1. If
n′
3(v) = 1, say dH(v1) = 3, then n′

4(v) ≤ 1 by Lemma 3.6(b). If n′
4(v) = 1, then

n′
5(v) ≤ 1 by Lemma 3.6(c). Moreover, if f0 is a 3-face, then f1 is a 4+-face by

Lemma 3.10. Thus, ω′(v) ≥ 3− 3× 1
2 − 2× 2

5 −
1
3 −

1
3 = 1

30 > 0 by (R2.1)-(R2.4).
Otherwise, n′

4(v) = 0, then ω′(v) ≥ 3− 1
2 − 5× 2

5 − 1
3 = 1

6 > 0. We may therefore
assume that n′

3(v) = 0.
By (R2.1)-(R2.4), the following Observation can be easily confirmed.

Observation. Every 5-vertex, 6-vertex and 7+-vertex sends at most 1
5 , 2

5 and 1
2 to

an incident 3-face, respectively.

Recall that t(v) denotes the number of 3-faces incident to v. If t(v) ≤ 6, then
ω′(v) ≥ 3 − 6 × 1

2 = 0. So suppose that t(v) = 7. By Lemma 3.12, n′
4(v) ≤ 2.

Moreover, n′
5(v) = 0 if n′

4(v) = 2, then ω′(v) ≥ 3 − 4 × 1
2 − 3 × 1

3 = 0 by (R2.4).
If n′

4(v) = 1, then ω′(v) ≥ 3− 2× 1
2 − 4× 2

5 − 1
3 = 1

15 > 0 by (R2.3) and (R2.4).
If n′

4(v) = 0, then ω′(v) ≥ 3− 6× 2
5 − 1

3 = 4
15 > 0 by (R2.3) and (R2.4).

(6) Assume that dH(v) = 8. By Lemma 3.7, n′
3(v) ≤ 3. If n′

3(v) = 0, then
ω′(v) ≥ 4− 8× 1

2 = 0 by Observation. Otherwise, 1 ≤ n′
3(v) ≤ 3.

• n′
3(v) = 1. If t(v) ≤ 7, then ω′(v) ≥ 4 − 7 × 1

2 − 1
3 = 1

6 > 0 by Ob-
servation and (R1). Otherwise, t(v) = 8. Lemmas 3.1, 3.4, 3.5 and 3.8 yield that
dH(vi−1), dH(vi+1) ≥ 7 if vi is a 4−-vertex in H. By Lemma 3.9 and 3.12, n′

4(v) ≤ 2
and n′

5(v) ≤ 3. If n′
4(v) = 2, then n′

5(v) = 0 by Lemma 3.12. By Observation, (R1)
and (R2.4), we deduce that ω′(v) ≥ 4 − 6 × 1

2 − 2 × 1
3 − 1

3 = 0. By Lemma 3.12,
n′
5(v) ≤ 1 if n′

4(v) = 1. Hence, Observation, (R1), (R2.3) and (R2.4) imply that
ω′(v) ≥ 4 − 4 × 1

2 − 2 × 7
15 − 2 × 1

3 − 1
3 = 1

15 > 0. Otherwise, n′
4(v) = 0, then

n′
5(v) ≤ 3, we have ω′(v) ≥ 4− 2× 1

2 − 4× 7
15 − 2× 2

5 − 1
3 = 0.

• n′
3(v) = 2. We may assume that dH(vi) = 3 and dH(vj) = 3, where i ̸= j.

If t(v) ≤ 6, then ω′(v) ≥ 4 − 6 × 1
2 − 2 × 1

3 = 1
3 > 0 by (R1) and Observation.

Otherwise, assume that t(v) ≥ 7. It is easy to check that each of the edges vvi and
vvj is incident to at least one 3-face. If vvi or vvj is incident to two 3-faces, then by
Lemma 3.13, H does not contain the configuration. Thus, each of the edges vvi and
vvj is incident to one 3-face, which yields that t(v) = 7. Therefore, by Observation,
(R1) and (R2.4), ω′(v) ≥ 4− 6× 1

2 − 1
3 − 2× 1

3 = 0.
• n′

3(v) = 3. Let dH(vi) = dH(vj) = dH(vk) = 3, where i ̸= j ̸= k. If t(v) ≥ 7,
then there exists a 3-vertex, say vi, such that vvi incident to two 3-faces. Moreover,
each of the edges vvj and vvk is incident to at least one 3-face. This contradicts
with Lemma 3.13. Hence, t(v) ≤ 6, then ω′(v) ≥ 4 − 6 × 1

2 − 3 × 1
3 = 0 by (R1)
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and Observation.
(7) Assume that dH(v) = 9. By Lemma 3.2(4), n′

3(v) ≤ 5. If n′
3(v) ≤ 2, then by

Observation and (R1), ω′(v) ≥ 5−8× 1
2 −

1
3 −2× 1

3 = 0. If n′
3(v) = 3, then Lemma

3.14 asserts that t(v) ≤ 8, and hence ω′(v) ≥ 5− 8× 1
2 − 3× 1

3 = 0 by Observation
and (R1). If n′

3(v) = 4, then we may assume that dH(vi) = dH(vj) = dH(vk) =
dH(vl) = 3. If t(v) ≤ 7, then ω′(v) ≥ 5−7× 1

2−4× 1
3 > 0 by Observation and (R1).

Otherwise, each of the edges vvi, vvj , vvk, vvl is incident to at least one 3-face. By
Lemma 3.15, such configuration is not available in H. Finally, we suppose that
n′
3(v) = 5. If t(v) ≤ 6, then ω′(v) ≥ 5−6× 1

2 −5× 1
3 > 0 by Observation and (R1).

Otherwise, v is adjacent to at least four 3-vertices, and every (3, 9)-edge is incident
with at least one 3-face. By Lemma 3.15, such configuration does not exist in H.

Proof of Theorem 1.1. If ∆(G) = 9, then Theorem 3.1 asserts that la2(G) ≤
8 = ∆ − 1. So assume that ∆(G) ≥ 10. By [13], G is a ∆(G)-edge-coloring ϕ.
Let Ei denote the set of edges colored with the color i for i = 1, 2, . . . ,∆(G). Set
H = E1 ∪ E2 ∪ · · · ∪ E9 and H ′ = E10 ∪ E11 ∪ · · · ∪ E∆(G). Then H and H ′ are
planar graphs with ∆(H) = 9 and ∆(H ′) = ∆(G)−9, respectively. By Lemmas 2.2
and 2.3 and Theorem 3.1, we deduce that la2(G)≤la2(H)+la2(H ′)≤ 8+∆(G)−9 ≤
∆(G)− 1.
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