LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITH MAXIMUM DEGREE NINE*

Xiaoxue Hu¹, Jiangxu Kong² and Yiqiao Wang^{\dagger ,3}

Abstract The linear 2-arboricity $la_2(G)$ of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. In this paper, we show that every planar graph G with maximum degree $\Delta = 9$ has $la_2(G) \leq 8$, which extends a known result that every planar graph G with $\Delta \geq 10$ has $la_2(G) \leq \Delta - 1$.

Keywords Plane graph, linear 2-arboricity, maximum degree.

MSC(2010) 05C15.

1. Introduction

All graphs considered in this paper are finite and simple. A graph G is *planar* if it can be embedded in the plane such that any two edges intersect only at their ends. Given a planar graph G, we use $V(G), E(G), \Delta(G)$, and $\delta(G)$ to denote its vertex set, edge set, maximum degree, and minimum degree in G, respectively. If no confusion arises, we abbreviate $\Delta(G)$ to Δ .

An edge-partition of a graph G is a decomposition of G into subgraphs G_1, G_2, \ldots , G_m such that $E(G) = E(G_1) \cup E(G_2) \cup \cdots \cup E(G_m)$ and $E(G_i) \cap E(G_j) = \emptyset$ for $i \neq j$. A linear k-forest is a graph whose components are paths of length at most k. The linear k-arboricity of G, denoted by $la_k(G)$, is the least integer m such that G can be edge-partitioned into m linear k-forests.

It is obvious that $\operatorname{la}_k(G) \ge \operatorname{la}_{k+1}(G)$ for any $k \ge 1$. Furthermore, $\operatorname{la}_1(G)$ is the edge chromatic number $\chi'(G)$ of G; $\operatorname{la}_{\infty}(G)$ corresponds to the linear arboricity $\operatorname{la}(G)$ of G.

In 1982, Habib and Peroche [6] introduced the concept of linear k-arboricity and put forward to the following conjecture:

Conjecture 1.1.

$$\mathrm{la}_k(G) \leq \begin{cases} \left\lceil \frac{n\Delta+1}{2\lfloor \frac{kn}{k+1} \rfloor} \right\rceil \text{ if } \Delta \neq n-1, \\ \left\lceil \frac{n\Delta}{2\lfloor \frac{kn}{k+1} \rfloor} \right\rceil \text{ if } \Delta = n-1. \end{cases}$$

[†]The corresponding author. Email: yqwang@bucn.edu.cn(Y. Wang)

¹School of Science, Zhejiang University of Science & Technology, 310023 Hangzhou, China

²School of Science, China Jiliang University, 310018 Hangzhou, China

 $^{^3 \}mathrm{School}$ of Management, Beijing University of Chinese Medicine, 100029 Beijing, China

^{*}The authors were supported by National Science Foundation of China (11801512, 11901525, 11701541, 12071048).

The linear k-arboricity of graphs has been extensively investigated in past decades, see Aldred and Wormald [1], Bermond et al. [2], Chang et al. [3], Chen and Huang [4], Jackson and Wormald [7], and Thomassen [12].

When k = 2, Conjecture 1.1 can be expressed as follows:

Conjecture 1.2.

$$la_2(G) \leq \begin{cases} \left\lceil \frac{n\Delta+1}{2\left\lfloor \frac{2n}{3} \right\rfloor} \right\rceil \text{ if } \Delta \neq n-1, \\ \left\lceil \frac{n\Delta}{2\left\lfloor \frac{2n}{3} \right\rfloor} \right\rceil \text{ if } \Delta = n-1. \end{cases}$$

Suppose that G is a planar graph. Let g(G) denote its girth, i.e., the length of a shortest cycle in G. In 2004, Lih, Tong and Wang [8] proved that (i) $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 12$; (ii) $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 6$ if $g(G) \geq 4$; (iii) $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 2$ if $g(G) \geq 5$; and (iv) $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 1$ if $g(G) \geq 7$. In 2009. Ma, Wu and Hu [11] proved that $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 6$ if G contains no 5-cycles or 6-cycles. When G is outerplanar, Lih, Tong and Wang [9] showed that $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 1$ and this upper bound is tight. A big breakthrough about the linear 2-arboricity of planar graphs is that $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 6$ for any planar graph G, see [15] and [16].

A graph G is called *toroidal* if it can be embedded in the torus such that any two edges intersect only at their ends. Wang et al. [14] showed that if G is a toroidal graph, then $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 7$. A graph is called *1-planar* if it can be drawn in the plane so that each edge is crossed by at most one other edge. Recently, Liu et al. [10] proved that every 1-planar graph G satisfies $la_2(G) \leq \left\lceil \frac{\Delta+1}{2} \right\rceil + 14$.

To obtain a better upper bound of linear 2-arboricity of planar graphs, Wang et al. [16] proved a key and interesting result: every planar graph G with $\Delta \ge 10$ has $la_2(G) \le \Delta - 1$. The purpose of this paper is to extend this result by showing the following:

Theorem 1.1. If G is a planar graph with $\Delta \ge 9$, then $la_2(G) \le \Delta - 1$.

Corollary 1.1. Every planar graph G with $\Delta = 9$ has $la_2(G) \leq 8$.

2. Preliminary

Now we give some basic notions that needed in the sequel. A plane graph is a particular drawing in the Euclidean plane of a planar graph. For a plane graph G, let F(G) denote the face set of G. For a face $f \in F(G)$, let b(f) denote the boundary walk of f and write $f = [v_1v_2\cdots v_k]$ if v_1, v_2, \cdots, v_k are the vertices of b(f) in clockwise order, where repeated occurrences of a vertex are allowed. The *degree* of a face is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. Let $d_G(x)$ denote the degree of x in G for $x \in V(G) \cup F(G)$. If a vertex v is degree k (at most k, at least k, respectively), then it is called a k-vertex $(k^-$ -vertex, k^+ -vertex, respectively). Similarly, we can define k-face, k^- -face and k^+ -face. For a vertex $v \in V(G)$, let $N_G(v)$ denote the set of neighbors of v in G. Since G is assumed to be simple, we derive that $d_G(v) = |N_G(v)|$. For an element $x \in V(G) \cup F(G)$ and an integer $i \geq 1$, let $n_i(x)$ $(m_i(x),$ respectively) denote the number of *i*-vertices (*i*-faces, respectively) adjacent or incident to x. For a vertex $v \in V(G)$, let t(v) denote the number of 3-faces that are incident to v.

To show Theorem 1.1, we consider the linear edge-coloring of a graph G, i.e., a mapping ϕ from E(G) to the color set C such that every color class induces a subgraph whose components are paths of length at most 2. We call such coloring *linear-k-coloring* of G if C contains k colors. Clearly, a graph G has linear 2arboricity at most k if and only if G is linear-k-colorable.

A function L is called an *list assignment* for the graph G if each edge e of G is assigned by a list L(e) of possible colors. If G has a linear edge-coloring ϕ such that $\phi(e) \in L(e)$ for all edges e, then we say that ϕ is an L-linear edge-coloring of G.

Let S_m denote a star consisting of m edges e_1, e_2, \ldots, e_m , where $m \ge 2$. The following Lemma 2.1 appeared in [15].

Lemma 2.1 (Wang, [15]). Let S_m be a star defined as above and L be a list assignment for the edges in S_m satisfying the following conditions, then S_m admits an L-linear edge-coloring.

- (1) m = 2, and $|L(e_i)| \ge 1$ for i = 1, 2;
- (2) m = 3, and $|L(e_3)| \ge 2$ and $|L(e_i)| \ge 1$ for i = 1, 2;
- (3) m = 4, and $|L(e_i)| \ge 2$ for i = 3, 4, and $|L(e_i)| \ge 1$ for i = 1, 2;
- (4) m = 5, and $|L(e_5)| \ge 3$, $|L(e_i)| \ge 2$ for i = 3, 4, and $|L(e_i)| \ge 1$ for i = 1, 2;
- (5) m = 6, and $|L(e_i)| \ge 3$ for i = 5, 6, $|L(e_i)| \ge 2$ for i = 3, 4, and $|L(e_i)| \ge 1$ for i = 1, 2.

Lemma 2.2 (Bermond et al., [2]). For any graph G, $la_2(G) \leq \Delta$.

In addition, the following relation is an easy observation:

Lemma 2.3. If a graph G can be edge-partitioned into two subgraphs G_1 and G_2 , then $la_2(G) \leq la_2(G_1) + la_2(G_2)$.

3. Proof of Theorem 1.1

In fact, it suffices to show the following theorem:

Theorem 3.1. If G is a planar graph with $\Delta \leq 9$, then $la_2(G) \leq 8$.

Proof. If $\Delta \leq 8$, then the result holds by Lemma 2.2. So suppose that $\Delta = 9$. Assume to the contrary that the result is not true. Let G be a minimum counterexample such that $\sigma(G) = |V(G)| + |E(G)|$ is the least possible. So G is connected and $\delta(G) \geq 1$. For any subgraph G' of G with $\sigma(G') < \sigma(G)$, H has a linear-8-coloring ϕ using the color set $C = \{1, 2, \ldots, 8\}$.

For a vertex $v \in V(G')$, we use C(v) to denote the set of colors used in edges incident to v in G'. For an edge $xy \in E(G) \setminus E(G')$, let C(xy) denote the set of colors used in the edges incident to x or y in G'. That is, $C(xy) = C(x) \cup C(y)$. For a vertex $v \in V(G')$, we use S(v) to denote the sequence of colors assigned to the edges incident to v in G'. For example, S(v) = (1, 1, 2, 3, 4, 5) means that the color 1 appears twice, and each of the colors 2, 3, 4, 5 appears exactly once on the edges incident to v.

Lemma 3.1. G contains no an edge xy such that $d_G(x) + d_G(y) \le 9$.

Proof. Suppose that G contains such an edge xy. Let G' = G - xy. Then H has a linear-8-coloring using the color set C. Since $|C(xy)| \leq |C(x)| + |C(y)| \leq$

 $d_{G'}(x) + d_{G'}(y) = d_G(x) - 1 + d_G(y) - 1 \le 9 - 2 = 7 < 8 = |C|$, there is a color $a \in C \setminus C(xy)$, which can be properly assigned to the edge xy. Thus, ϕ is extended to a linear-8-coloring of G, contradicting the minimality of G.

Lemma 3.2. Let $v \in V(G)$ be a k-vertex with $5 \le k \le 9$ and v_1, v_2, \ldots, v_k be the neighbors of v with $d_G(v_1) \le d_G(v_2) \le \cdots \le d_G(v_k)$. Then the following hold.

- (1) $n_{10-k}(v) \le 1$.
- (2) If $n_{10-k}(v) = 1$, then $n_{11-k}(v) \le 1$; If $n_{11-k}(v) = 1$, then $n_{12-k}(v) \le 1$.
- (3) $n_{10-k}(v) + n_{11-k}(v) \le 3$; And if $n_{10-k}(v) + n_{11-k}(v) = 3$, then $n_{12-k}(v) = 0$.
- (4) If k = 9, then $n_1(v) + n_2(v) + n_3(v) \le 5$; And if $n_1(v) + n_2(v) \ge 3$, then $n_3(v) = 0$.

Proof. By Lemma 3.1, $d_G(v_i) \ge 10 - k$ for all $1 \le i \le k$.

(1) Assume to the contrary that $n_{10-k}(v) \ge 2$, say $d_G(v_1) = d_G(v_2) = 10-k$. Let $G' = G - \{vv_1, vv_2\}$. By the minimality of G, G' has a linear-8-coloring ϕ using the color set C. Since $|C \setminus C(vv_i)| \ge 8 - (d_{G'}(v) + d_{G'}(v_i)) = 8 - (k-2) - (10-k-1) = 1$ for i = 1, 2, by Lemma 2.1(1), ϕ can be extended to a linear-8- coloring of G, a contradiction.

(2) First suppose that $n_{10-k}(v) = 1$ and $n_{11-k}(v) \ge 2$, say $d_G(v_1) = 10 - k$ and $d_G(v_2) = d_G(v_3) = 11 - k$. Let $G' = G - \{vv_1, vv_2, vv_3\}$, which has a linear-8coloring ϕ . Since $|C \setminus C(vv_1)| \ge 8 - (d_{G'}(v) + d_{G'}(v_1)) = 8 - (k-3) - (10 - k - 1) = 2$, and $|C \setminus C(vv_i)| \ge 8 - (d_{G'}(v) + d_{G'}(v_i)) = 8 - (k-3) - (11 - k - 1) = 1$ for i = 2, 3, we can extend ϕ to a linear-8-coloring of G by Lemma 2.1(2), a contradiction.

Next suppose that $n_{10-k}(v) = n_{11-k}(v) = 1$, and $n_{12-k}(v) \ge 2$, say $d_G(v_1) = 10 - k$, $d_G(v_2) = 11 - k$, and $d_G(v_3) = d_G(v_4) = 12 - k$. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4\}$, which has a linear-8-coloring ϕ . Because $|C \setminus C(vv_1)| \ge 8 - (d_{G'}(v) + d_{G'}(v_1)) = 3$, $|C \setminus C(vv_2)| \ge 2$, and $|C \setminus C(vv_i)| \ge 1$ for i = 3, 4, Lemma 2.1(2) asserts ϕ can be extended to G, a contradiction.

(3) Suppose that $n_{10-k}(v) + n_{11-k}(v) \ge 3$ and $n_{10-k}(v) + n_{11-k}(v) + n_{12-k}(v) \ge 4$, say $10 - k \le d_G(v_i) \le 11 - k$ for i = 1, 2, 3, and $10 - k \le d_G(v_4) \le 12 - k$. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4\}$, which has a linear- 8-coloring ϕ . Since $|C \setminus C(vv_i)| \ge 8 - (d_{G'}(v) + d_{G'}(v_i)) = 8 - (k - 4) - (11 - k - 1) = 2$ for i = 1, 2, 3, and $|C \setminus C(vv_4)| \ge 8 - (d_{G'}(v) + d_{G'}(v_4)) = 8 - (k - 4) - (12 - k - 1) = 1$, ϕ can be extended to a linear-8-coloring of G by Lemma 2.1(3), a contradiction.

(4) Suppose that $n_1(v) + n_2(v) + n_3(v) \ge 6$, say $1 \le d_G(v_i) \le 3$ for i = 1, 2, 3, 4, 5, 6. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4, vv_5, vv_6\}$, which has a linear-8-coloring ϕ . Since $|C \setminus C(vv_i)| \ge 8 - (d_{G'}(v) + d_{G'}(v_i)) = 8 - 3 - 2 = 3$ for i = 1, 2, 3, 4, 5, 6, by Lemma 2.1(5), we can extend ϕ to a linear-8-coloring of G, a contradiction.

Moreover, if $n_1(v) + n_2(v) \leq 3$ and $n_3(v) \geq 1$, say $d_G(v_i) \leq 2$ for i = 1, 2, 3 and $d_G(v_4) \leq 3$, then we can also get a linear-8-coloring of G, which is a contradiction. Otherwise, let $G' = G - \{vv_1, vv_2, vv_3, vv_4\}$, which has a linear-8-coloring ϕ . Since $|C \setminus C(vv_i)| \geq 2$ for i = 1, 2, 3, and $|C \setminus C(vv_4)| \geq 1$, ϕ can be extended to G by Lemma 2.1(3).

Let *H* be a largest component of the graph which is obtained by removing all 1-vertices and 2-vertices of *G*. Then *H* is a connected plane graph with $\Delta(H) \leq 9$. For an edge $uv \in E(H)$, we call it a $(d_H(u), d_H(v))$ -edge. For example, if $d_H(u) = 5$ and $d_H(v) = 5$, then uv is a (5, 5)-edge.

Lemma 3.3. $\delta(H) \ge 3$.

Proof. For each vertex $v \in V(H)$, we have $v \in V(G)$ with $d_G(v) \ge 3$ and $d_H(v) = d_G(v) - n_1(v) - n_2(v)$. If $d_G(v) \le 7$, then $n_1(v) = n_2(v) = 0$ by Lemma 3.1, and hence $d_H(v) = d_G(v) \ge 3$. If $d_G(v) = 8$, then $n_1(v) = 0$ by Lemma 3.1 and $n_2(v) \le 1$ by Lemma 3.2(1). Thus, $d_H(v) = d_G(v) - n_1(v) - n_2(v) \ge 8 - 1 = 7$. If $d_G(v) = 9$, then $n_1(v) + n_2(v) \le 3$ by Lemma 3.2(3), henceforth $d_H(v) = d_G(v) - n_1(v) - n_2(v) \ge 9 - 3 = 6$.

Lemma 3.4. If $d_H(v) \le 5$, then $d_H(v) = d_G(v)$.

Proof. Suppose that $d_G(v) > d_H(v)$. Since $d_H(v) = d_G(v) - n_1(v) - n_2(v)$, we derive that $n_1(v) + n_2(v) > 0$. If $n_1(v) > 0$, then Lemmas 3.1 and 3.2 imply that $d_G(v) = 9$, $n_1(v) = 1$ and $n_2(v) \le 1$. Hence $d_H(v) = d_G(v) - n_1(v) - n_2(v) \ge 9 - 1 - 1 = 7$, a contradiction. Otherwise, suppose that $n_1(v) = 0$ and $n_2(v) > 0$. By Lemma 3.1, $8 \le d_G(v) \le 9$. If $d_G(v) = 8$, then $n_2(v) \le 1$ by Lemma 3.2(1), and hence $d_H(v) = d_G(v) - n_2(v) \ge 8 - 1 = 7$, a contradiction. If $d_G(v) = 9$, then $n_2(v) \le 3$ by Lemma 3.2(3). Thus, $d_H(v) = d_G(v) - n_2(v) \ge 9 - 3 = 6$, also a contradiction.

The following useful Remark follows easily from Lemmas 3.1 and 3.2:

Remark 3.1. Let $v \in V(H)$. The following statements hold.

- (a) If $d_H(v) = 6$, then $d_G(v) = 6$; or $d_G(v) = 9$ with $n_2(v) = 3$.
- (b) If $d_H(v) = 7$, then $d_G(v) = 7$; or $d_G(v) = 8$ with $n_2(v) = 1$; or $d_G(v) = 9$ with $n_1(v) + n_2(v) = 2$.
- (c) If $d_H(v) = 8$, then $d_G(v) = 8$; or $d_G(v) = 9$ with $n_1(v) = 1$ or $n_2(v) = 1$.

For a vertex $v \in V(H)$ and an integer $i \geq 3$, let $n'_i(v)$ denote the number of *i*-vertices adjacent to v in H, and $m'_i(v)$ denote the number of *i*-faces incident to v in H. By Lemma 3.4, $n'_i(v) = n_i(v)$ for $3 \leq i \leq 5$.

Lemma 3.5. If $v \in V(H)$ with $d_H(v) = 6$, then $n'_3(v) = 0$.

Proof. By Remark 3.1(a), if $d_G(v) = 6$, then $n_1(v) = n_2(v) = n_3(v) = 0$ by Lemma 3.1, and hence $n'_3(v) = 0$. If $d_G(v) = 9$ and $n_2(v) = 3$, then by Lemma 3.2(4), $n_3(v) = 0$. This shows that $n'_3(v) = 0$.

Lemma 3.6. If $v \in V(H)$ with $d_H(v) = 7$, then the following statements hold.

- (a) $n'_3(v) \le 1$.
- (b) If $n'_3(v) = 1$, then $n'_4(v) \le 1$.
- (c) If $n'_3(v) = 1$ and $n'_4(v) = 1$, then $n'_5(v) \le 1$.

Proof. Let v_1, v_2, \ldots, v_k be the neighbors of v with $d_G(v_1) \leq d_G(v_2) \leq \cdots \leq d_G(v_k)$. If $d_G(v) = 7$, then by Lemma 3.2, (a), (b) and (c) can be established. If $d_G(v) = 8$ and $n_2(v) = 1$, then by Lemma 3.2(2), (a) and (b) hold obviously. To show (c), assume that $n'_5(v) \geq 2$, say $d_G(v_1) = 2$, $d_G(v_2) = 3$, $d_G(v_3) = 4$ and $d_G(v_i) = 5$ for i = 4, 5. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4, vv_5\}$, which has a linear-8-coloring ϕ . It is easy to check that $|L(vv_1)| \geq 8 - 3 - (d_G(v_1) - 1) = 4$, $|L(vv_2)| \geq 8 - 3 - (d_G(v_2) - 1) = 3$, $|L(vv_3)| \geq 8 - 3 - (d_G(v_3) - 1) = 2$ and $|L(vv_i)| \geq 8 - 3 - (d_G(v_i) - 1) = 1$ for i = 4, 5. By Lemma 2.1(4), ϕ can be extended to G, a contradiction. So assume that $d_G(v) = 9$ and $n_1(v) + n_2(v) = 2$.

To show (a), suppose that $n'_3(v) \ge 2$, say $d_G(v_i) \le 2$ for i = 1, 2 and $d_G(v_j) = 3$ for j = 3, 4. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4\}$, which has a linear-8-coloring ϕ . Since $|L(vv_i)| \ge 8-5-(d_G(v_i)-1)=2$ for i = 1, 2, and $|L(vv_j)| \ge 8-5-(d_G(v_j)-1)=1$ for j = 3, 4, ϕ can be extended to a linear-8-coloring of G by Lemma 2.1(3), a contradiction.

To show (b), suppose that $n'_4(v) \ge 2$, say $d_G(v_i) \le 2$ for $i = 1, 2, d_G(v_3) = 3$ and $d_G(v_j) = 4$ for j = 4, 5. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4, vv_5\}$. Similar to the proof of (a), it yields that $|L(vv_i)| \ge 3$ for $i = 1, 2, |L(vv_3)| \ge 2$ and $|L(vv_j)| \ge 1$ for j = 4, 5. By Lemma 3.1(4), ϕ can be extended to G, a contradiction.

To show (c), suppose that $n'_5(v) \ge 2$, say $d_G(v_i) \le 2$ for $i = 1, 2, d_G(v_3) = 3$, $d_G(v_4) = 4$ and $d_G(v_j) = 5$ for j = 5, 6. Let $G' = G - \{vv_1, vv_2, vv_3, vv_4, vv_5, vv_6\}$, which has a linear-8-coloring ϕ . Since $|L(vv_i)| \ge 4$ for $i = 1, 2, |L(vv_3)| \ge 3$, $|L(vv_4)| \ge 2$ and $|L(vv_j)| \ge 1$ for j = 5, 6, by Lemma 3.1(5), we can get a contradiction.

Lemma 3.7. If $v \in V(H)$ with $d_H(v) = 8$, then $n'_3(v) \le 3$.

Proof. Let v_1, v_2, \ldots, v_k be the neighbors of v with $d_G(v_1) \leq d_G(v_2) \leq \cdots \leq d_G(v_k)$. If $d_G(v) = 8$, then $n'_3(v) \leq 3$ by Lemma 3.2(3). Otherwise, $d_G(v) = 9$ and $n_1(v) + n_2(v) = 1$. Suppose that $n'_3(v) \geq 4$, say $d_G(v_1) \leq 2$ and $d_G(v_i) = 3$ for i = 2, 3, 4, 5. By the minimality of $G, G - \{vv_1, vv_2, vv_3, vv_4, vv_5\}$ has a linear-8-coloring ϕ . Since $|L(vv_1)| \geq 8 - 4 - (d_G(v_1) - 1) = 3$ and $|L(vv_i)| \geq 8 - 4 - (d_G(v_i) - 1) = 2$ for $i = 2, 3, 4, 5, \phi$ can be extended to a linear-8-coloring of G by Lemma 2.1(4). \Box

Lemma 3.8. If uv is a (4, 6)-edge of H, then uv is not incident to any 3-face.

Proof. Suppose that uv is incident to a 3-face f = [uvw], say $d_H(u) = 6$ and $d_H(v) = 4$. By Lemma 3.4, $d_G(v) = d_H(v) = 4$. By Remark 3.1, $d_G(u) = 6$ or $d_G(u) = 9$ with $n_2(u) = 3$. This implies that $d_G(u_i) = 2$, and u and x_i are the neighbors of u_i for i = 1, 2, 3. Let G' = G - uv, which has a linear- 8-coloring ϕ . We first remove the colors of uu_1, uu_2 and uu_3 .

Claim 1. If uv can be colored with some color α which appears only once in both S(v) and S(u), then uu_1, uu_2, uu_3 can be colored properly.

Proof. Note that $|L(uu_i)| \ge 1$ for i = 1, 2, 3. If there is an edge $u_i x_i$ such that $\phi(u_i x_i) \ne \alpha$ for i = 1, 2, 3, then coloring this edge with α would led to other two edges satisfying $|L(uu_i)| \ge 1$. By Lemma 2.1(1), they can be colored properly. Otherwise, $\phi(u_i x_i) = \alpha$ for i = 1, 2, 3. Then $|L(uu_i)| \ge 2$ for i = 1, 2, 3. By Lemma 2.1(2), uu_1, uu_2, uu_3 can be colored properly. This proves Claim 1.

By Claim 1, suppose that uv cannot be colored, so $C = C(u) \cup C(v)$. W.l.o.g, assume that $C(v) = \{1, 2, 3\}$ with $\phi(vw) = 1$, and $C(u) = \{4, 5, 6, 7, 8\}$ with $\phi(uw) = 8$. We claim that $\{4, 5, 6, 7\} \subseteq C(w)$, otherwise, we can recolor vwand color uv with the color 1. Similarly, $\{2, 3\} \subseteq C(w)$. Since $1, 8 \in C(w)$ and $d_G(w) \leq 9$, then there is at least one color $c \in \{1, 8\}$ which only appears once in S(w). Thus, we can first color uv with c, then color uu_1, uu_2 , and uu_3 in this order. If c = 8, then $|L(uu_i)| \geq 2$ for i = 1, 2, 3. By Lemma 2.1(2), uu_1, uu_2 and uu_3 can be colored. Otherwise, c = 1, then we have S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8). Recolor uw with 1 and uv with 8, so that 8 appears only once in S(v) and S(u). By Claim 1, uu_1, uu_2 and uu_3 can be colored and ϕ is extended to G, a contradiction.

Lemma 3.9. If uv is a (5,5)-edge of H, then uv is not incident to any 3-face.

Proof. Suppose that uv is incident to a 3-face f = [uvw]. So $d_H(u) = d_H(v) = 5$. By Lemma 3.4, $d_G(u) = d_G(v) = 5$. Let G' = G - uv, which has a linear-8-coloring ϕ . If uv can be colored properly, we are done. Otherwise, we may assume that $C(v) = \{1, 2, 3, 4\}$ with $\phi(vw) = 1$, and $C(u) = \{5, 6, 7, 8\}$ with $\phi(uw) = 8$. If there is a color $b \in \{5, 6, 7\} \setminus C(w)$, then we can recolor vw with the color b and color uv with the color 1. Otherwise, $\{5, 6, 7\} \subseteq C(w)$. Similarly, we have $\{2, 3, 4\} \subseteq C(w)$. Since $1 \in C(w)$, $8 \in C(w)$, and $d_G(w) \leq 9$, then there is at least one color $c \in \{1, 8\}$ appearing only once in S(w). Consequently, we can color uv with the color c, a contradiction.

Lemma 3.10. If uv is a (3,7)-edge of H, then uv is incident to at most one 3-face.

Proof. Suppose that uv is incident to two 3-faces $f_1 = [uvw]$ and $f_2 = [uvx]$. Let $d_H(u) = 7$ and $d_H(v) = 3$. By Lemma 3.4, $d_G(v) = d_H(v) = 3$. By Remark 3.1, $d_G(u) = 7$; or $d_G(u) = 8$ with $n_2(u) = 1$; or $d_G(u) = 9$ with $n_1(u) + n_2(u) = 2$. It suffices to discuss the case $d_G(u) = 9$ with $n_1(u) + n_2(u) = 2$, since other cases can be verified similarly.

Assume that $d_G(u_1) \leq 2$, $d_G(u_2) = 2$, and u and y_i are the neighbors of u_i for i = 1, 2. Let G' = G - uv, which has a linear-8-coloring ϕ . Remove the colors of uu_1 and uu_2 .

Claim 2. If uv can be colored with some color α which appears only once in both S(v) and S(u), then uu_1, uu_2 can be colored properly.

Proof. If $|C(u)| \leq 6$, then it is obvious that $|L(uu_i)| \geq 1$ for i = 1, 2. By Lemma 2.1(1), uu_1 and uu_2 can be colored properly. Otherwise, |C(u)| = 7, say $C(u) = \{2, 3, 4, 5, 6, 7, 8\}$. If $\phi(u_i y_i) \neq 1$, without loss of generality, say i = 1, then we can color uu_1 with 1 and uu_2 with a color in $\{1, \alpha\} \setminus \{\phi(u_2 y_2)\}$. Otherwise, $\phi(u_1 y_1) = 1$ and $\phi(u_2 y_2) = 1$.

If $1 \notin C(v)$, then we recolor uv with 1, and then color uu_1 and uu_2 with α . Otherwise, $1 \in C(v)$, say $\phi(vw) = 1$, and $\phi(uw) = 2$. If $\phi(vx) \neq 2$, then we recolor vw with 2 and uw with 1, and color uu_1 and uu_2 with 2. Otherwise, $\phi(vx) = 2$. It follows that vw can not be recolored, since we can recolor uv with 1 and color uu_1, uu_2 with α . Hence $S(w) = \{1, 1, 2, 3, 4, 5, 6, 7, 8\}$, we may color uu_1 with 2 and uu_2 with α . This proves Claim 2.

If there is a color $\beta \in C \setminus (C(u) \cup C(v))$, then we can color uv with some color β that appears only once in S(v) and S(u). By Claim 2, ϕ can be extended to G, a contradiction. Otherwise, $C = C(u) \cup C(v)$, say $C(v) = \{1, 2\}$ with $\phi(vw) = 1$ and $\phi(vx) = 2$, and $C(u) = \{3, 4, 5, 6, 7, 8\}$ with $\phi(uw) = 8$ and $\phi(ux) = 3$. If vw can be recolored, then we can color uv with 1 and uu_1, uu_2 can be colored by Claim 2. Otherwise, we may assume that $\{1, 2, 3, 4, 5, 6, 7, 8\} \subseteq C(w)$. Since $d_G(w) \leq 9$, there exists a color $c \in \{1, 8\}$ appearing only once in S(w). If c = 1, then we recolor uw with 1 and color uv with 8. Otherwise, we recolor vw with 8 and color uv with 1. By Claim 2, uu_1, uu_2 can be colored properly.

In Figure 1, we use black point to denote a vertex that has no edges incident to it other than those shown in graph, while point to denote a vertex that may have edges connected to other vertices that are not in the graph, and triangle to denote a 3-face.

Given a vertex $v \in V(H)$, let $v_0, v_1, \ldots, v_{k-1}$ denote the neighbors of v in clockwise order where $k = d_G(v)$. Let $f_0, f_1, \ldots, f_{k-1}$ be the faces of G which

Figure 1. The configurations in Lemmas 3.11–3.16.

are incident to v and $vv_i, vv_{i+1} \in b(f_i)$ for i = 0, 1, ..., k - 1, where indices are taken modulo k.

Lemma 3.11. If $v \in V(H)$ with $d_H(v) = 7$, $n'_4(v) = 2$ and all the faces incident to v are 3-faces, then other vertices incident to v are 6^+ -vertices.

Proof. By Lemmas 3.1 and 3.9, if v_i is a 5⁻-vertex, then v_{i-1} and v_{i+1} are 6⁺-vertices. Suppose that v_1, v_3 are 4-vertices, and $d_H(v_5) \leq 5$. By Lemma 3.4, $d_G(v_i) = d_H(v_i) = 4$ for i = 1, 3 and $d_G(v_5) = d_H(v_5) \leq 5$.

By Remark 3.1, $d_G(v) = 7$, or $d_G(v) = 8$ with $n_2(v) = 1$, or $d_G(v) = 9$ with $n_1(v) + n_2(v) = 2$. In the following, it suffices to discuss the case $d_G(v) = 9$ with $n_1(v) + n_2(v) = 2$, since other cases can be similarly proved.

Assume that $d_G(u_i) \leq 2$, v and y_i are the neighbors of u_i for i = 1, 2, as depicted in Fig. 1(a). Let $G' = G - vv_1$, which has a linear-8-coloring ϕ by the minimality of G. First remove the colors of vv_3 , vv_5 , vu_1 and vu_2 . Then color the edges vv_1 , vv_3 , vv_5 , vu_1 and vu_2 as follows. **Claim 3.** Let $\phi(vv_1) = \alpha$, $\phi(vv_3) = \beta$, and $\phi(vv_5) = \gamma$. If α, β, γ only appears once in S(v) and $S(v_1)$, S(v) and $S(v_3)$, S(v) and $S(v_5)$, respectively; or there is a color which appears twice in S(v), then vu_1 and vu_2 can be colored properly.

Proof. If α, β, γ only appears once in S(v) and $S(v_1)$, S(v) and $S(v_3)$, S(v) and $S(v_5)$, respectively, then vu_1 can be colored with a color in $\{\alpha, \beta, \gamma\} \setminus \{\phi(u_1y_1)\}$ and vu_2 can be colored with a color in $\{\alpha, \beta, \gamma\} \setminus \{\phi(u_2y_2), \phi(vu_1)\}$. Meanwhile, if there is a color appearing twice in S(v), then $|L(vu_i)| \ge 1$ for i = 1, 2. By Lemma 2.1(1), vu_1 and vu_2 can be colored properly.

Now we consider the following two cases.

Case 1. $|L(vv_5)| \ge 1$.

First, if there exists $i \in \{1,3\}$ such that $|L(vv_i)| \ge 2$, say $|L(vv_1)| \ge 2$, let $\{a,b\} \in L(vv_1), c \in L(vv_3)$ and $d \in L(vv_5)$, then color vv_3 with c, vv_5 with d and vv_1 with a color in $\{a,b\} \setminus \{c\}$. Thus, vu_1 and vu_2 can be colored by Claim 3.

Next suppose that $|L(vv_i)| = 1$ for i = 1, 3. Let $a \in L(vv_1)$, $b \in L(vv_3)$ and $c \in L(vv_5)$. If a, b, c are not same, w.l.o.g., assume that $a \neq b$, then color vv_1 with a, vv_3 with b and vv_5 with c. Thus, vu_1 and vu_2 can be colored by Claim 3. Otherwise, a = b = c. Let $C(v) = \{1, 2, 3, 4\}$ with $\phi(vv_0) = 1$ and $C(v_1) = \{5, 6, 7\}$ with $\phi(v_0v_1) = 7$, i.e., a = b = c = 8. We claim that v_0v_1 and vu_2 can be colored by Claim 3. Therefore, we derive that $S(v_0) = (1, 1, 2, 3, 4, 5, 6, 7, 7)$. In this case, we recolor v_0v_1 with 8, color vv_1 with 7, color vv_3 and vv_5 with 8, and then vu_1 and vu_2 can be colored by Claim 3.

Case 2. $|L(vv_5)| = 0.$

Assume that $C(v) = \{1, 2, 3, 4\}$ with $\phi(vv_4) = 3$, $C(v_5) = \{5, 6, 7, 8\}$. Let $8 \in L(vv_1)$ and $a \in L(vv_3)$, i.e., $a \in \{5, 6, 7, 8\}$.

Since $\phi(v_4v_5) \neq \phi(v_5v_6)$, we can suppose $\phi(v_4v_5) = 7$. First color vv_1 with 8 and vv_3 with the color a, then we color vv_5 , vu_1 and vu_2 . Claim that vv_4 and v_4v_5 cannot be recolored, otherwise, color vv_5 with 3 or 7, and then vu_1 and vu_2 can be colored by Claim 3. Therefore, we hold that $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 7, \mu)$.

• a = 8. We derive that $\mu = 7$, otherwise recolor vv_4 with 7 and color vv_5 with 3. If $3 \in C(v_3)$, then there is a color $e \in \{5, 6, 7\} \setminus C(v_3)$ and hence recolor vv_3 with e, vv_4 with 8 and color vv_5 with 3. Otherwise, $3 \notin C(v_3)$. Recolor vv_3 with 3, vv_4 with 8 and color vv_5 with 3, and then vu_1 and vu_2 can be colored by Claim 3.

• $a \neq 8$. Claim that $\mu = 8$ for otherwise recolor vv_4 with 8 and color vv_5 with 3, and then vu_1 and vu_2 can be colored by Claim 3. Now we only color vv_5 , vu_1 and vu_2 can be colored by Claim 3. If $a \neq 7$, then recolor vv_4 with 7 and color vv_5 with 3. Otherwise, a = 7. Recolor vv_3 with 3, vv_4 with 7 and color vv_5 with 3. \Box

Lemma 3.12. Let $d_H(v) = 8$, and all the faces incident to v be 3-faces. If $n'_3(v) = 1$, $n'_4(v) = 1$ and $n'_5(v) = 1$; or $n'_3(v) = 1$ and $n'_4(v) = 2$, then the other vertices incident to v are 6^+ -vertices.

Proof. By Lemmas 3.1 and 3.9, if v_i is a 5⁻-vertex, then v_{i-1} and v_{i+1} are 6⁺-vertices. Suppose that v_1, v_3 and v_5 are 3-vertex, 4-vertex and 5⁻-vertex, respectively. Assume to the contrary that v is adjacent to a 5⁻-vertex except v_1, v_3, v_5 . Assume that $d_H(v_7) \leq 5$. By Lemma 3.4, $d_G(v_i) = d_H(v_i)$ for i = 1, 3, 5, 7. By Remark 3.1, $d_G(v) = 8$, or $d_G(v) = 9$ with $n_1(v) + n_2(v) = 1$. In the following, it suffices to discuss the case $d_G(v) = 9$ with $n_1(v) + n_2(v) = 1$, since other case can be similarly proved.

Assume that $d_G(u_1) \leq 2$, v and y_1 are the neighbors of u_1 , as depicted in Fig. 1(b). Let $G' = G - vv_1$, which has a linear-8-coloring ϕ by the minimality of G. First, we remove the colors of vv_3, vv_5, vv_7, vu_1 .

Claim 4. Let $\phi(vv_i) = \alpha$ and $\phi(vv_j) = \beta$ for $i \neq j$. If the coloring ϕ satisfies one of the following conditions, then vu_1 can be colored properly:

(i) α and β appear only once in S(v) and $S(v_i)$, S(v) and $S(v_i)$, respectively,

(ii) α appears only once in S(v) and $S(v_i)$ and there is another color appears twice in S(v).

Proof. If the condition (i) holds, then we color vu_1 with a color in $\{\alpha, \beta\} \setminus \{\phi(u_1y_1)\}$. Assume that the condition (ii) holds. If $\phi(u_1y_1) \neq \alpha$, then we color vu_1 with α . Otherwise, $\phi(u_1y_1) = \alpha$, and vu_1 can be colored properly since $|L(vu_1)| \geq 1$.

By Lemma 2.1(3), if $|L(vv_1)| \ge 2$, $|L(vv_3)| \ge 2$, $|L(vv_5)| \ge 1$ and $|L(vv_7)| \ge 1$, then $vv_1, vv_3, vv_5, vv_7, vu_1$ can be colored properly. To complete the proof, we have to consider two cases.

Case 1. $|L(vv_5)| \ge 1$ and $|L(vv_7)| \ge 1$.

Due to the above proof, $|L(vv_3)| = 1$. Assume that $C(v) = \{1, 2, 3, 4\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$ and $\phi(vv_6) = 4$, $C(v_3) = \{5, 6, 7\}$, $\{a, b\} \subseteq L(vv_1)$, $8 \in L(vv_3)$, $c \in L(vv_5)$ and $d \in L(vv_7)$. Obviously, $a, b, c, d \in \{5, 6, 7, 8\}$.

If c = d = 8, then color vv_5 and vv_7 with 8 and vv_1 with a color in $\{a, b\} \setminus \{8\}$. Next, we color vv_3 and vu_1 . Without loss of generality, we may suppose that a = 7. Obviously, we can assume that $\phi(v_3v_4) \neq 7$. Suppose that $\phi(v_3v_4) = 6$. We claim that v_3v_4 and vv_4 cannot be recolored, for otherwise we color vv_3 with 3 or 6. It follows that $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 7, 8)$, and hence we can color vv_3 with 6 and vu_1 can be colored properly by Claim 4.

Otherwise, we color vv_3 with 8, vv_5 with c, vv_7 with d and vv_1 with a color in $\{a, b\}$ which does not appear twice in S(v). Hence vu_1 can be colored by Claim 4.

Case 2. $|L(vv_5)| = 0$ or $|L(vv_7)| = 0$.

Suppose that $|L(vv_7)| = 0$. Furthermore, $C(v) = \{1, 2, 3, 4\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$, $\phi(vv_6) = 4$, $C(v_7) = \{5, 6, 7, 8\}$, $\{a, b\} \subseteq L(vv_1)$ and $8 \in L(vv_3)$. Obviously, $a, b \in \{5, 6, 7, 8\}$.

• $|L(vv_5)| = 0$. Then $C(v_5) = \{5, 6, 7, 8\}$. Assume that $\phi(v_4v_5) \neq 8$, say $\phi(v_4v_5) = 7$. We first color vv_3 with 8, and color vv_1 with a color in $\{a, b\} \setminus \{7\}$, say, $\phi(vv_1) = a$. Then we color vv_5 , vv_7 and vu_1 . We claim that vv_4 and v_4v_5 cannot be recolored, for otherwise we can color vv_5 and vv_7 with 3 or color vv_7 with 3 and vv_5 with 5, and then vu_1 can be colored by Claim 4. Thus, we derive that $S(v_4) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$, and $8 \in C(v_4)$, for otherwise we can recolor vv_4 with 8, vv_1 with a color in $\{a, b\} \setminus \{8\}$ and color vv_5 and vv_7 with 3. Suppose that $\phi(v_5v_6) = e$, where $e \in \{5, 6, 8\}$. We first recolor vv_1 with $\{a, b\} \setminus \{8\}$. As observed above, we have that $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$. Therefore, recolor v_5v_6 with 4, vv_6 with e, color vv_5 with 3 and vv_7 with 4. Finally, vu_1 can be colored properly by Claim 4.

• $|L(vv_5)| \ge 1$. Suppose that $c \in L(vv_5)$. Obviously, $c \in \{5, 6, 7, 8\}$. We first color vv_3 with 8, vv_5 with c and vv_1 with a color in $\{a, b\} \setminus \{8\}$. Assume that $\phi(v_6v_7) \ne 8$, say $\phi(v_6v_7) = 7$. Since vv_6 and v_6v_7 cannot be recolored, we conclude that $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$.

Suppose that c = 8. If $a \neq 7$, then vv_6 and vv_7 are recolored with 7 and 4, respectively. Suppose that a = 7. We claim that $\{5, 6\} \subseteq C(v_1)$, for otherwise we

recolor vv_1 so that this case can be reduced to the previous case of $a \neq 7$. Thus, $C(v_1) = \{5, 6, 7\}$. We recolor vv_1 with 4, vv_6 with 7 and color vv_7 with 4. Finally, we color the edge vu_1 by Claim 4.

Suppose that $c \neq 8$. If $c \neq 7$, then recolor vv_6 , vv_1 and vv_7 with 7, 4 and 4, respectively. So we assume that c = 7. Then $\phi(v_7v_0) \neq 7$, say $\phi(v_6v_7) = d$. Obviously, $d \in \{5, 6, 8\}$. We derive that $S(v_0) = (1, 1, 2, 3, 4, 5, 6, 7, 8)$, as described above. Recolor vv_0 with d, vv_1 with a color in $\{a, b\} \setminus \{d\}$, vv_7 with 1 if $d \in \{5, 6\}$; otherwise, d = 8. If $1 \notin C(v_3)$, then recolor vv_3 with 1, vv_0 with 8 and vv_7 with 1. Hence we may assume that $1 \in C(v_3)$. Recolor vv_3 with g, vv_0 with 8 and vv_7 with 1 as there exists a color $g \in \{5, 6, 7\} \setminus C(v_3)$.

Lemma 3.13. *H* does not contain a vertex $v \in V(H)$ with $d_H(v) = 8$, $d_H(v_i) = 3$ and $d_H(v_j) = 3$ with $t(vv_i) = 2$ and $t(vv_j) \ge 1$, where t(e) denotes the number of 3-faces that incident to *e*.

Proof. Assume to the contrary that H contains such a vertex v. Let $d_H(v_1) = 3$ with $t(vv_1) = 2$ and $d_H(v_3) = 3$ with $t(vv_3) \ge 1$. W.l.o.g., we may suppose that $[vv_3v_4]$ is a 3-face. Let us consider the case of $d_G(v) = 9$ with $n_1(v) + n_2(v) = 1$.

Recall that $d_G(u_1) \leq 2$, v and y_1 are the neighbors of u_1 , shown in Fig. 1(c). Let $G' = G - vv_1$, which has a linear-8-coloring ϕ . Erasing the colors of vv_3 and vu_1 , we color vv_1, vv_3, vu_1 in the following ways. If $|L(vv_1)| \geq 2$, $|L(vv_3)| \geq 1$ and $|L(vu_1)| \geq 1$, then by Lemma 2.1(2), they can be colored properly. Otherwise, we need to deal with the following two cases.

Case 1. $|L(vv_1)| \ge 1$ and $|L(vv_3)| \ge 1$.

If $|L(vu_1)| \geq 2$, then vv_1 , vv_2 and vv_3 can be colored by Lemma 2.1(2). Otherwise, $|L(vu_1)| = 1$, say $C(v) = \{1, 2, 3, 4, 5, 6\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$ and $\phi(vv_4) = 3$, $\phi(u_1y_1) = 7$, $a \in L(vv_1)$ and $b \in L(vv_3)$. Obviously, $a, b \in \{7, 8\}$. We first color vv_1 with a and vv_3 with b, then color vu_1 . If $a \neq b$ or a = b = 7, then we color vu_1 with 8.

Next, we assume that a = b = 8. If $7 \notin C(v_1)$, then we recolor vv_1 with 7 and color vu_1 with 8. Otherwise, $7 \in C(v_1)$, w.l.o.g., suppose that $\phi(v_0v_1) = 7$. If $\phi(v_1v_2) \neq 1$, then recolor vv_0 with 7 and v_0v_1 with 1, then color vu_1 with 1. Otherwise, $\phi(v_1v_2) = 1$. It is easy to see that $S(v_2) = (1, 1, 2, 2, 3, 4, 5, 6, 7)$. Recolor vv_2 with 8, vv_1 with 2 and color vu_1 with 2.

Case 2. $|L(vv_1)| = 0$ or $|L(vv_3)| = 0$.

W.l.o.g., we suppose that $|L(vv_3)| = 0$. Let $C(v) = \{1, 2, 3, 4, 5, 6\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$, and $C(v_3) = \{7, 8\}$.

• $|L(vv_1)| \ge 1$, say $8 \in L(vv_1)$. We first color vv_1 with 8, then color the edges vv_3 and vu_1 . Let $\phi(v_3v_4) = a$, that is, $a \in \{7,8\}$. If a = 7, then it follows that $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 7, 7)$ because vv_4 and v_3v_4 can not be recolored. Recolor vv_4 with 8, color vv_3 with 3 and vu_1 with a color in $\{3,7\} \setminus \{\phi(u_1y_1)\}$.

If a = 8, then $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 7, 8)$. We claim that $3 \in C(v_1)$, for otherwise we recolor vv_4 with 8, v_3v_4 with 3 and vv_1 with 3, and color vv_3 with 8 and vu_1 with a color in $\{3,7\} \setminus \{\phi(u_1y_1)\}$. Thus, $C(v_1) = \{3,7,8\}$. We may assume $\phi(v_0v_1) = 7$. We claim that v_0v_1 cannot be recolored. If not, we recolor vv_1 with 7 and then vv_3 and vu_1 can be colored as the former case of a = 7. Thus, it imply that $\{2,4,5,6\} \subseteq C(v_0)$ and 1 appears twice in $S(v_0)$. Thus, we have $S(v_0) = (1,1,2,4,5,6,7,7,8)$. Recolor vv_0 and v_3v_4 with 3, vv_4 with 8, and color vv_1 and vv_3 with 1, vu_1 with a color in $\{7,8\}\setminus\{\phi(u_1y_1)\}$. • $|L(vv_1)| = 0$. Let $\phi(v_0v_1) = 7$ and $\phi(v_1v_2) = 8$. We first consider $S(v_2)$ if $\phi(u_1y_1) = 8$; and $S(v_0)$ otherwise. By symmetry, assume that $\phi(u_1y_1) \neq 8$. We have $S(v_0) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$ for v_0v_1 and vv_0 cannot be recolored. Similarly, we can obtain that $S(v_2) = (1, 2, 3, 4, 5, 6, 7, 8, 8)$. Therefore, we color vv_1 with 1, vv_3 with 2 and vu_1 with 8.

Lemma 3.14. Let $v \in V(H)$ with $d_H(v) = 9$. If all the faces incident to v are 3-faces, then $n'_3(v) \leq 2$.

Proof. Suppose that $n'_3(v) \geq 3$, say, v_1, v_3, v_5 are 3-vertices. For i = 1, 3, 5, $d_G(v_i) = d_H(v_i)$ by Lemma 3.4, depicted in Fig. 1(d). Let $G' = G - vv_1$, which has a linear-8-coloring ϕ . First remove the colors of vv_3 and vv_5 . Then color the edges vv_1, vv_3 and vv_5 . If $|L(vv_1)| \geq 2$, $|L(vv_3)| \geq 1$ and $|L(vv_5)| \geq 1$, then the coloring is available by Lemma 2.1(2). Otherwise, there are three cases to be be considered.

Case 1. $|L(vv_1)| = 1$, $|L(vv_3)| \ge 1$ and $|L(vv_5)| \ge 1$.

Suppose that $8 \in L(vv_1)$, $a \in L(vv_3)$ and $b \in L(vv_5)$. If $a \neq 8$ or $b \neq 8$, then we color vv_1 with 8, vv_3 with a and vv_5 with b. Otherwise, a = b = 8. If there is a color in C, say 1, appears twice in S(v), then assume that $S(v) = \{1, 1, 2, 3, 4, 5\}$ with $\phi(vv_6) = 4$, $C(v_i) = \{6, 7\}$ for i = 1, 3, 5. Suppose that $\phi(v_4v_5) = 6$ and $\phi(v_5v_6) = 7$. Coloring vv_1, vv_3 with 8, we color vv_5 . It follows that $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 7)$. In this case, recolor v_5v_6 with 8 and color vv_5 with 7.

Otherwise, $C(v) = \{1, 2, 3, 4, 5, 6\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$ and $\phi(vv_6) = 4$. Obviously, $7 \in C(v_i)$ for i = 1, 3, 5. We first color vv_1 and vv_3 with 8, then color vv_5 , w.l.o.g. say $\phi(v_4v_5) = 7$. So, $S(v_4) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$ and $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$ if $\phi(v_5v_6) = 3$. Suppose $3 \notin C(v_1)$, then recolor vv_1 with 3 and color vv_5 with 8. It follows that $S(v_1) = \{3, 7, 8\}$. Hence recolor v_5v_6 with 4, vv_6 with 3, vv_1 with 4, and color vv_5 with 8.

Suppose $\phi(v_5v_6) \neq 3$. If $3 \notin C(v_1)$, then recolor vv_4 with 7, v_4v_5 with 3, vv_1 with 3 and color vv_5 with 8. Otherwise, we have $S(v_1) = \{3, 7, 8\}$. It turns out that $S(v_3) = \{3, 7, 8\}$ similarly. Assume that $\phi(v_0v_1) = 3$ and $\phi(v_1v_2) = 7$. Then $S(v_2) = (1, 2, 2, 4, 5, 6, 7, 7, 8)$. Recolor v_4v_5 with 3, vv_4 with 7, vv_2 with 3, vv_1 with 2, and color vv_5 with 8.

Case 2. $|L(vv_1)| \ge 1$, and $|L(vv_3)| = 0$ or $|L(vv_5)| = 0$.

Suppose that $|L(vv_5)| = 0$. We may assume that $C(v) = \{1, 2, 3, 4, 5, 6\}$ with $\phi(vv_0) = 1, \phi(vv_2) = 2, \phi(vv_4) = 3, \phi(vv_6) = 4$ and $8 \in L(vv_1), C(v_5) = \{7, 8\}$. Assume that $\phi(v_4v_5) = 7$ and $\phi(v_5v_6) = 8$. If $8 \notin C(v_3)$, then we color vv_1 and vv_3 with 8, and then similar to the above argument, we can verify that $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 7, 7)$ and $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$. Thus, we can recolor v_4v_5 with 8 and color vv_5 with 7. Otherwise, $8 \in C(v_3)$. If $7 \in C(v_3)$, then derive that $S(v_4) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$ and $S(v_6) = (1, 2, 3, 4, 4, 5, 6, 7, 8)$. We recolor vv_6 with 8, v_5v_6 with 4, and color vv_5 with 3 and vv_3 with 4. If $7 \notin C(v_3)$, then recolor vv_4 with 7 and color vv_3 and vv_5 with 3. Otherwise, recolor vv_6 with 8, v_5v_6 with 7 and vv_3 with 4.

Case 3. $|L(vv_1)| = 0$, $|L(vv_3)| = 0$ and $|L(vv_5)| = 0$.

Suppose that $\phi(v_0v_1) = 7$. It follows that $S(v_0) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$. We claim that $\{2, 3, 4, 5, 6\} \subseteq C(v_0)$, for otherwise we recolar v_0v_1 , and recolar vv_0 with 7, color vv_1 and vv_3 with 1. Now we color vv_5 , w.l.o.g., let $\phi(v_4v_5) = 8$. We obtain that $S(v_4) = (1, 2, 3, 3, 4, 5, 6, 8, 8)$. Thus, recolar v_4v_5 , vv_4 , vv_3 and vv_5

with 3, 8, 3 and 1, respectively. Furthermore, we conclude that $8 \in S(v_0)$, since, otherwise, we can color vv_0 with 8, v_0v_1 with 1, a vv_1 with 7, vv_3 and vv_5 with 1. Finally, 7 appears twice in $S(v_0)$, if not, we may recolor vv_0 with 7, v_0v_1 with 1, and color vv_1 with 7, vv_3 and vv_5 with 1.

Suppose that $\phi(v_5v_6) = 7$. It is easy to see that $S(v_6) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$. Therefore, we can recolor vv_0 with 7, v_0v_1 with 1, and color vv_1 with 4, vv_3 and vv_5 with 1.

Lemma 3.15. *H* does not contain a vertex *v* such that $d_H(v) = 9$, $n'_3(v) = 4$ and every 3-vertex v_i satisfies $t(vv_i) \ge 1$.

Proof. Suppose that $d_H(v_i) = 3$ for i = 1, 3, 5, 7. Furthermore, let $[vv_0v_1]$, $[vv_2v_3]$, $[vv_4v_5]$ and $[vv_6v_7]$ be 3-faces. By Lemma 3.4, $d_G(v_i) = d_H(v_i)$ for i = 1, 3, 5, 7, depicted in Fig. 1(e). Let $G' = G - vv_1$, which has a linear-8-coloring ϕ . First remove the colors of vv_3 , vv_5 and vv_7 . If $|L(vv_1)| \ge 2$, $|L(vv_3)| \ge 2$, $|L(vv_5)| \ge 1$ and $|L(vv_7)| \ge 1$, then by Lemma 2.1(3), vv_1, vv_3, vv_5, vv_7 can be colored properly. Otherwise, we assume that $|L(vv_3)| = 1$, $|L(vv_5)| = 1$ and $|L(vv_7)| = 1$. Suppose that $C(v) = \{1, 2, 3, 4, 5\}$ with $\phi(vv_0) = 1$, $\phi(vv_2) = 2$, $\phi(vv_4) = 3$ and $\phi(vv_6) = 4$, $a \in L(vv_3)$, $b \in L(vv_5)$ and $c \in L(vv_7)$. It is easy to observe that $a, b, c \in \{6, 7, 8\}$ are available. Now we consider the following two cases.

• $|L(vv_1)| = 1$. Suppose that $C(v_1) = \{6,7\}$ and $8 \in L(vv_1)$. If no three colors in $\{a, b, c, 8\}$ are the same, then we can color vv_1 with 8, vv_3 with a, vv_5 with b and vv_7 with c. Otherwise, assume that a = b = 8. Thus, $C(v_i) = \{6,7\}$ for i = 1, 3, 5.

If $c \neq 8$, say c = 7, then $C(v_7) = \{6, 8\}$. We color vv_1 and vv_3 with 8, vv_7 with 7, and then color vv_5 . Assume that $\phi(v_4v_5) = \alpha$, since $C(v_5) = \{6, 7\}$, we can recolor v_4v_5 with 3, vv_4 with α , vv_3 with 3 and color vv_5 with 8. Assume that c = 8, then $C(v_7) = \{6, 7\}$. We first color vv_1 and vv_3 with 8, and then color vv_5 and vv_7 . W.l.o.g., we may suppose that $\phi(v_0v_1) = 7$. Since v_0v_1 and vv_0 cannot be recolored, we deduce that $S(v_6) = (1, 2, 3, 4, 5, 6, 7, 7, 8)$. Therefore, recolor v_6v_7 with 4, vv_6 with 7 and vv_1 with 4, and color vv_7 with 8 and vv_5 with 4.

• $|L(vv_1)| \geq 2$. The foregoing discussion implies that $L(vv_1) \subseteq \{6,7,8\}$. Suppose that a = 8, which implies that $C(v_3) = \{6,7\}$. If 8, b, c are mutually distinct, then color vv_3 with $8, vv_5$ with b and vv_7 with c. Moreover, vv_1 can be colored properly by $|L(vv_1)| \geq 2$. Otherwise, b = c = 8, then $C(v_i) = \{6,7\}$ for i = 3,5,7. We first color vv_3, vv_5 with 8, then color vv_1 with some color $\beta \in L(vv_1) \setminus \{8\}$. Since $L(vv_1) \subseteq \{6,7,8\}$, we may choose $\beta \in \{6,7\}$. Finally, we color vv_7 , say $\phi(v_6v_7) = 7$. We conclude that $S(v_6) = (1,2,3,4,4,5,6,7,8)$. Thus, we may recolor v_6v_7 with 4, vv_6 with 7, vv_5 with 4, and color vv_7 with 8.

Lemma 3.16. If $f_1 = [uvw]$ is a $(5, 6, 7^-)$ -face in H, then the other face f_2 incident to the (5, 6)-edge is not a 3-face.

Proof. By contradiction. Let f_2 be a 3-face. Set $d_H(u) = 5$, $d_H(v) = 6$, $d_H(w) \le 7$, and $f_2 = [uvx]$. Note that it suffices to consider the case that $d_G(v) = 9$ with $n_2(v) = 3$ and $d_G(w) = 9$ with $n_1(w) + n_2(w) = 2$. Suppose that $d_G(v_i) = 2$, v and y_i are the neighbors of v_i for i = 1, 2, 3, $d_G(w_j) \le 2$ with w and z_j being the neighbors of w_j for j = 1, 2 (see Fig. 1(f)). Let G' = G - uv, which has a linear-8-coloring ϕ . Remove the colors of vv_1 , vv_2 and vv_3 .

Claim 5. Let $\phi(uv) = \alpha$ which only appears once in S(v) and S(u). Then the edges vv_1, vv_2 , and vv_3 can be colored properly.

Proof. It can readily be checked that $|L(vv_i)| \ge 1$ for i = 1, 2, 3. If there exists an edge $v_i y_i$ with $\phi(v_i y_i) \ne \alpha$ for i = 1, 2, 3, say $\phi(v_1 y_1) \ne \alpha$, then color the edge vv_1 with α . Hence vv_2 and vv_3 can be colored properly, by Lemma 2.1(1). Otherwise, $\phi(v_i y_i) = \alpha$, and then we have $|L(vv_i)| \ge 2$ for i = 1, 2, 3. Therefore, again by Lemma 2.1(2), vv_1 , vv_2 and vv_3 can be colored properly.

If $C \setminus (C(u) \cup C(v)) \neq \emptyset$, then ϕ can be extend to G by Claim 5, a contradiction. It follows that $C = C(u) \cup C(v)$, without loss of generality, we may suppose that $\phi(uw) = 1$. Next, we color the edges uv, vv_1 , vv_2 and vv_3 .

Case 1. $\phi(vw) = 1$.

Assume that $C(u) = \{1, 2, 3, 4\}$ with $\phi(ux) = 4$, $C(v) = \{1, 5, 6, 7, 8\}$ with $\phi(vx) = 8$. Because ux and vx cannot be recolored, S(x) = (2, 3, 4, 4, 5, 6, 7, 8, 8). Furthermore, because uw and vw cannot be recolored, S(w) = (1, 1, 2, 3, 4, 5, 6, 7, 8, 8). Hence, we may assume that $\phi(ww_1) \in \{2, 3, 4\}$ (the case of $\phi(ww_1) \in \{5, 6, 7, 8\}$ is proved similarly). Assume, without loss of generality, $\phi(ww_1) = 2$. We first color the edge uv. Recolor vw with 2, xv with 1 and color uv with 8 if $\phi(w_1z_1) \neq 2$; otherwise, $\phi(w_1z_1) = 2$. Then recolor ww_1 with 1, vw with 2, xv with 1 and color uv with 1 and color uv with 8. Therefore, again by Claim 4, vv_1 , vv_2 and vv_3 can be colored.

Case 2. $\phi(vw) \neq 1$

Without loss of generality, we may assume that $\phi(vw) = 8$.

Case 2.1. Each of the colors 1 and 8 only appears once in S(u) and S(v), and $1 \notin C(v)$ and $8 \notin C(u)$.

Suppose that the color 2 appears twice in S(u) or S(v), or $2 \in C(u) \cap C(v)$, then it implies that each of the other colors appears once in S(u) and S(v). Because uwand vw cannot be recolored, S(w) = (1, 1, 3, 4, 5, 6, 7, 8, 8).

• $\phi(ww_1) \in \{3, 4, 5, 6, 7\}$. Without loss of generality, assume that $\phi(ww_1) = 3$. We first color the edge uv, then recolor ww_1 with the color 2, vw or uw with 3, uv with 8 or 1 if $\phi(w_1z_1) \neq 2$; otherwise, $\phi(w_1z_1) = 2$. Then recolor vw or uw with 3, and color uv with 8 or 1. Finally, by Claim 5, we may color the edges vv_1 , vv_2 and vv_3 . The case of $\phi(ww_2) \in \{3, 4, 5, 6, 7\}$ can be disposed of similarly

• $\phi(ww_1) \in \{1, 8\}$. Without loss of generality, we may assume that $\phi(ww_1) = 1$ and $\phi(ww_2) = 8$. First, color the edge uv, then recolor ww_1 with the color 2, vwwith 1 and color uv with 8 if $\phi(w_1z_1) \neq 2$; otherwise, $\phi(w_1z_1) = 2$. $\phi(w_2z_2) = 2$ can be shown by the same approach. Thus, we can recolor ww_1 with 8, vw with 1 and color uv with 8, and color the edges vv_1 , vv_2 and vv_3 by Claim 5. The case of $\phi(ww_2) \in \{1, 8\}$ is proved similarly.

Case 2.2. The color 1 appears twice in S(u) or $1 \in C(v)$.

• If $1 \in C(v)$, say $\phi(vx) = 1$, then without loss of generality, we assume that $C(u) = \{1, 2, 3, 4\}$ with $\phi(ux) = 4$, $C(v) = \{1, 5, 6, 7, 8\}$ with $\phi(vw) = 8$. Now claim that vx cannot be recolored. Suppose not, it can be reduced to the case of Case 2.1. Because vx and ux cannot be recolored, S(x) = (1, 2, 3, 4, 4, 5, 6, 7, 8). Based on this evidence, we immediately deduce that S(w) = (1, 2, 3, 4, 4, 5, 6, 7, 8). In conclusion, $\phi(ww_1)$ or $\phi(ww_2)$ is contained in $\{2, 3, 4, 5, 6, 7\}$. Without loss of generality, we may assume that $\phi(ww_1) = 2$. If $\phi(w_1z_1) \neq 2$, then recolor vw with 2 and color uv with 8; otherwise, $\phi(w_1z_1) = 2$. Then recolor ww_1 with 1, wv with 2 and color uv with 8. Finally, we color the edges vv_1 , vv_2 and vv_3 by the Claim 5.

Suppose now that $\phi(vx) \neq 1$. Without loss of generality, assume that $\phi(vx) = 7$. We can confirm that S(x) = (2, 3, 4, 4, 5, 6, 7, 7, 8) and S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8) similar to the foregoing discussion. Therefore, we can color uv, vv_1 , vv_2 and vv_3 similarly.

• The color 1 appears twice in S(u). Without loss of generality, we may assume that S(u) = (1, 1, 2, 3) and S(v) = (4, 5, 6, 7, 8) with $\phi(vx) = 7$. We obtain that S(w) = (1, 2, 3, 4, 5, 6, 7, 8, 8). Hence we have $\phi(ww_1) \in (2, 3, 4, 5, 6, 7)$. If $\phi(ww_1) \in \{2, 3\}$, w.l.o.g., say $\phi(ww_1) = 2$. First, we color the edge uv, then recolor vw with 2 and color uv with 8 if $\phi(w_1z_1) \neq 2$; otherwise $\phi(w_1z_1) = 2$. Then recolor ww_1 with 8, vw with 2 and color uv with 8. By Claim 5, the edges vv_1 , vv_2 and vv_3 can be colored. Otherwise, $\phi(ww_1) \in \{5, 6, 7\}$, which can be solved by the same approach.

Case 2.3. The color 8 appears twice in S(v) or $8 \in C(u)$.

The proof of this situation is similar to the proof of Case 2.2.

To obtain a contradiction, we use the discharging method. By Euler's Formula, |V(H)| - |E(H)| + |F(H)| = 2 and the following fundamental identities

$$\sum_{v \in V(H)} d_H(v) = \sum_{f \in F(H)} d_H(f) = 2|E(H)|,$$

we have

$$\sum_{v \in V(H)} (d_H(v) - 4) + \sum_{f \in F(H)} (d_H(f) - 4) = -8.$$
(3.1)

Let ω denote a weight function defined by $\omega(x) = d_H(x) - 4$ for each $x \in V(H) \cup F(H)$. We are going to redistribute the weight between vertices and faces in H so that the resultant weight $\omega'(x) \ge 0$ for every $x \in V(H) \cup F(H)$, while keeping the sum of all weights fixed. Therefore

$$0 \le \sum_{x \in V(H) \cup F(H)} \omega'(x) = \sum_{x \in V(H) \cup F(H)} \omega(x) = -8 < 0,$$
(3.2)

a contradiction.

The following are the discharging rules. For a face $f = [v_1v_2v_3]$, we use $(d_H(v_1), d_H(v_2), d_H(v_3)) \rightarrow (\alpha_1, \alpha_2, \alpha_3)$ to denote the amount of weight α_i transferred from v_i to f for i = 1, 2, 3.

(R1) Every 7⁺-vertex sends $\frac{1}{3}$ to each adjacent 3-vertex. (R2) Let $f = [v_1v_2v_3]$ be a 3-face of H with $d_H(v_1) \le d_H(v_2) \le d_H(v_3)$. Then (R2.1) $(3, 7^+, 7^+) \to (0, \frac{1}{2}, \frac{1}{2})$. (R2.2) $(4, 7^+, 7^+) \to (0, \frac{1}{2}, \frac{1}{2})$. (R2.3) $(5, 6, 7^-) \to (\frac{1}{5}, \frac{2}{5}, \frac{2}{5})$; $(5, 6, 8^+) \to (\frac{1}{5}, \frac{1}{3}, \frac{7}{15})$; $(5, 7^+, 7^+) \to (\frac{1}{5}, \frac{2}{5}, \frac{2}{5})$. (R2.4) $(6^+, 6^+, 6^+) \to (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Let ω' denote the final weight function after (R1) and (R2) are carried out in H.

Let $f \in F(H)$. If $d_H(f) \ge 4$, then $\omega'(f) = \omega(f) = d_H(f) - 4 = 0$. Assume that $d_H(f) = 3$, say, f = [xyz] satisfies $d_H(x) \le d_H(y) \le d_H(z)$. If $d_H(x) = 3$, then by Lemmas 3.1, 3.4 and 3.5, we derive that $d_H(y), d_H(z) \ge 7$. It follows that $\omega'(f) = -1 + 2 \times \frac{1}{2} = 0$ by (**R2.1**). If $d_H(x) = 4$, by Lemmas 3.1, 3.4 and 3.8, $d_H(y), d_H(z) \ge 7$. By (**R2.2**), $\omega'(f) = -1 + 2 \times \frac{1}{2} = 0$. By (**R2.4**), if $d_H(x) \ge 6$, then $\omega'(f) = -1 + 3 \times \frac{1}{3} = 0$. Assume that $d_H(x) = 5$. Applying Lemmas 3.1, 3.4 and 3.9, we obtain that $d_H(y), d_H(z) \ge 6$. So, it is easy to check that $\omega'(f) = 0$ by (**R2.3**).

Let $v \in V(H)$. Then $d_H(v) \geq 3$ by Lemma 3.3. We have to consider some possibilities, depending on the size $d_H(v)$.

(1) If $d_H(v) = 3$, then v is adjacent to three 7⁺-vertices in H by Lemmas 3.1, 3.4 and 3.5. Hence, $\omega'(v) \ge -1 + 3 \times \frac{1}{3} = 0$ by (**R1**).

(2) If $d_H(v) = 4$, then $\omega'(v) = \omega(v) = d_H(v) - 4 = 0$.

(3) If $d_H(v) = 5$, then v sends at most $\frac{1}{5}$ to each incident face by (**R2.3**). Thus, $\omega'(v) \ge 1 - 5 \times \frac{1}{5} = 0$.

(4) Assume that $d_H(v) = 6$. By Lemma 3.16, if v is adjacent to a 5-vertex, say v_1 , then at least one of f_0 and f_1 is not a 3-face. Thus, v is incident to at most four $(5, 6, 7^-)$ -faces. If v is incident to three or four $(5, 6, 7^-)$ -faces, then v is incident to at least two 4⁺-faces. Thus, $\omega'(v) \ge 2 - 4 \times \frac{2}{5} > 0$. Otherwise, v is incident to at most one $(5, 6, 7^-)$ -face, so that $\omega'(v) \ge 2 - 5 \times \frac{2}{5} = 0$ or $\omega'(v) \ge 2 - 6 \times \frac{1}{3} = 0$ by (**R2.3**) and (**R2.4**).

(5) Assume that $d_H(v) = 7$. By Lemma 3.6(a), we see that $n'_3(v) \le 1$. If $n'_3(v) = 1$, say $d_H(v_1) = 3$, then $n'_4(v) \le 1$ by Lemma 3.6(b). If $n'_4(v) = 1$, then $n'_5(v) \le 1$ by Lemma 3.6(c). Moreover, if f_0 is a 3-face, then f_1 is a 4⁺-face by Lemma 3.10. Thus, $\omega'(v) \ge 3 - 3 \times \frac{1}{2} - 2 \times \frac{2}{5} - \frac{1}{3} - \frac{1}{3} = \frac{1}{30} > 0$ by (**R2.1**)-(**R2.4**). Otherwise, $n'_4(v) = 0$, then $\omega'(v) \ge 3 - \frac{1}{2} - 5 \times \frac{2}{5} - \frac{1}{3} = \frac{1}{6} > 0$. We may therefore assume that $n'_3(v) = 0$.

By (R2.1)-(R2.4), the following Observation can be easily confirmed.

Observation. Every 5-vertex, 6-vertex and 7⁺-vertex sends at most $\frac{1}{5}$, $\frac{2}{5}$ and $\frac{1}{2}$ to an incident 3-face, respectively.

Recall that t(v) denotes the number of 3-faces incident to v. If $t(v) \le 6$, then $\omega'(v) \ge 3 - 6 \times \frac{1}{2} = 0$. So suppose that t(v) = 7. By Lemma 3.12, $n'_4(v) \le 2$. Moreover, $n'_5(v) = 0$ if $n'_4(v) = 2$, then $\omega'(v) \ge 3 - 4 \times \frac{1}{2} - 3 \times \frac{1}{3} = 0$ by (**R2.4**). If $n'_4(v) = 1$, then $\omega'(v) \ge 3 - 2 \times \frac{1}{2} - 4 \times \frac{2}{5} - \frac{1}{3} = \frac{1}{15} > 0$ by (**R2.3**) and (**R2.4**). If $n'_4(v) = 0$, then $\omega'(v) \ge 3 - 6 \times \frac{2}{5} - \frac{1}{3} = \frac{4}{15} > 0$ by (**R2.3**) and (**R2.4**).

(6) Assume that $d_H(v) = 8$. By Lemma 3.7, $n'_3(v) \leq 3$. If $n'_3(v) = 0$, then $\omega'(v) \geq 4 - 8 \times \frac{1}{2} = 0$ by Observation. Otherwise, $1 \leq n'_3(v) \leq 3$.

• $n'_{3}(v) = 1$. If $t(v) \leq 7$, then $\omega'(v) \geq 4 - 7 \times \frac{1}{2} - \frac{1}{3} = \frac{1}{6} > 0$ by Observation and **(R1)**. Otherwise, t(v) = 8. Lemmas 3.1, 3.4, 3.5 and 3.8 yield that $d_{H}(v_{i-1}), d_{H}(v_{i+1}) \geq 7$ if v_{i} is a 4⁻-vertex in *H*. By Lemma 3.9 and 3.12, $n'_{4}(v) \leq 2$ and $n'_{5}(v) \leq 3$. If $n'_{4}(v) = 2$, then $n'_{5}(v) = 0$ by Lemma 3.12. By Observation, **(R1)** and **(R2.4)**, we deduce that $\omega'(v) \geq 4 - 6 \times \frac{1}{2} - 2 \times \frac{1}{3} - \frac{1}{3} = 0$. By Lemma 3.12, $n'_{5}(v) \leq 1$ if $n'_{4}(v) = 1$. Hence, Observation, **(R1)**, **(R2.3)** and **(R2.4)** imply that $\omega'(v) \geq 4 - 4 \times \frac{1}{2} - 2 \times \frac{7}{15} - 2 \times \frac{1}{3} - \frac{1}{3} = \frac{1}{15} > 0$. Otherwise, $n'_{4}(v) = 0$, then $n'_{5}(v) \leq 3$, we have $\omega'(v) \geq 4 - 2 \times \frac{1}{2} - 4 \times \frac{7}{15} - 2 \times \frac{2}{5} - \frac{1}{3} = 0$.

• $n'_3(v) = 2$. We may assume that $d_H(v_i) = 3$ and $d_H(v_j) = 3$, where $i \neq j$. If $t(v) \leq 6$, then $\omega'(v) \geq 4 - 6 \times \frac{1}{2} - 2 \times \frac{1}{3} = \frac{1}{3} > 0$ by **(R1)** and Observation. Otherwise, assume that $t(v) \geq 7$. It is easy to check that each of the edges vv_i and vv_j is incident to at least one 3-face. If vv_i or vv_j is incident to two 3-faces, then by Lemma 3.13, H does not contain the configuration. Thus, each of the edges vv_i and vv_j is incident to one 3-face, which yields that t(v) = 7. Therefore, by Observation, **(R1)** and **(R2.4)**, $\omega'(v) \geq 4 - 6 \times \frac{1}{2} - \frac{1}{3} - 2 \times \frac{1}{3} = 0$.

• $n'_3(v) = 3$. Let $d_H(v_i) = d_H(v_j) = d_H(v_k) = 3$, where $i \neq j \neq k$. If $t(v) \geq 7$, then there exists a 3-vertex, say v_i , such that vv_i incident to two 3-faces. Moreover, each of the edges vv_j and vv_k is incident to at least one 3-face. This contradicts with Lemma 3.13. Hence, $t(v) \leq 6$, then $\omega'(v) \geq 4 - 6 \times \frac{1}{2} - 3 \times \frac{1}{3} = 0$ by **(R1)**

and Observation.

(7) Assume that $d_H(v) = 9$. By Lemma 3.2(4), $n'_3(v) \le 5$. If $n'_3(v) \le 2$, then by Observation and (**R1**), $\omega'(v) \ge 5 - 8 \times \frac{1}{2} - \frac{1}{3} - 2 \times \frac{1}{3} = 0$. If $n'_3(v) = 3$, then Lemma 3.14 asserts that $t(v) \le 8$, and hence $\omega'(v) \ge 5 - 8 \times \frac{1}{2} - 3 \times \frac{1}{3} = 0$ by Observation and (**R1**). If $n'_3(v) = 4$, then we may assume that $d_H(v_i) = d_H(v_j) = d_H(v_k) = d_H(v_l) = 3$. If $t(v) \le 7$, then $\omega'(v) \ge 5 - 7 \times \frac{1}{2} - 4 \times \frac{1}{3} > 0$ by Observation and (**R1**). Otherwise, each of the edges vv_i, vv_j, vv_k, vv_l is incident to at least one 3-face. By Lemma 3.15, such configuration is not available in H. Finally, we suppose that $n'_3(v) = 5$. If $t(v) \le 6$, then $\omega'(v) \ge 5 - 6 \times \frac{1}{2} - 5 \times \frac{1}{3} > 0$ by Observation and (**R1**). Otherwise, v is adjacent to at least four 3-vertices, and every (3,9)-edge is incident with at least one 3-face. By Lemma 3.15, such configuration does not exist in H.

Proof of Theorem 1.1. If $\Delta(G) = 9$, then Theorem 3.1 asserts that $la_2(G) \leq 8 = \Delta - 1$. So assume that $\Delta(G) \geq 10$. By [13], G is a $\Delta(G)$ -edge-coloring ϕ . Let E_i denote the set of edges colored with the color *i* for $i = 1, 2, ..., \Delta(G)$. Set $H = E_1 \cup E_2 \cup \cdots \cup E_9$ and $H' = E_{10} \cup E_{11} \cup \cdots \cup E_{\Delta(G)}$. Then H and H' are planar graphs with $\Delta(H) = 9$ and $\Delta(H') = \Delta(G) - 9$, respectively. By Lemmas 2.2 and 2.3 and Theorem 3.1, we deduce that $la_2(G) \leq la_2(H) + la_2(H') \leq 8 + \Delta(G) - 9 \leq \Delta(G) - 1$.

References

- R. E. L. Aldred and N. C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin., 1998, 18, 97–104.
- [2] J. C. Bermond, J. L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math., 1984, 52, 123–132.
- [3] G. J. Chang, B. L. Chen, H. L. Fu and K. C. Huang, *Linear k-arboricities on trees*, Discrete Appl. Math., 2000, 103, 281–287.
- [4] B. L. Chen and K. C. Huang, On the linear k-arboricity of K_n and $K_{n,n}$, Discrete Math., 2002, 254, 51–61.
- [5] B. L. Chen, H. L. Fu and K. C. Huang, Decomposing graphs into forests of paths with size less than three, Australas. J. Combin., 1991, 3, 55–73.
- [6] M. Habib and B. Peroche, Some problems about linear arboricity, Discrete Math., 1982, 41, 219–220.
- B. Jackson and N. C. Wormald, On the linear k-arboricity of cubic graphs, Discrete Math., 1996, 162, 293–297.
- [8] K. W. Lih, L. D. Tong and W. F. Wang, The linear 2-arboricity of planar graphs, Graphs & Combin., 2003, 19, 241–248.
- [9] K. W. Lih, L. D. Tong and W. F. Wang, The linear 2-arboricity of outerplanar graphs, Ars Combin., 2004, 73, 13–22.
- [10] J. Liu, X. X. Hu, W. F. Wang and Y. Q. Wang, Light structures in 1-planar graphs with an application to linear 2-arboricity, Discrete Appl. Math., 2019, 267, 120–130.
- [11] Q. Ma, J. L. Wu and X. Yu, Planar graphs without 5-cycles or without 6-cycles, Discrete Math., 2009, 309, 2998–3005.

- [12] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory Ser. B, 1999, 75, 100–109.
- [13] V. G. Vizing, Critical graphs with given chromatic class, Diskret. Analiz., 1965, 5, 9–17.
- [14] W. F. Wang, Y. C. Li, X. X. Hu and Y. Q. Wang, *Linear 2-arboricity of toroidal graphs*, Bull. Malays. Math. Sci. Soc., 2018, 41, 1907–1921.
- [15] Y. Q. Wang, An improved upper bound on the linear 2-arboricity of planar graphs, Discrete Math., 2016, 339, 39–45.
- [16] Y. Q. Wang, X. X. Hu and W. F. Wang, A note on the linear 2-arboricity of planar graphs, Discrete Math., 2017, 340, 1449–1455.