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GLOBAL DYNAMICS OF DETERMINISTIC
AND STOCHASTIC SIRS EPIDEMIC MODELS∗

Zhewen Chen1, Ruimin Zhang1, Jiang Li1, Xiaohui Liu1,†

and Chunjin Wei1,†

Abstract In this paper, we analyze the dynamic behavior of Heesterbeek et
al. [12] obtained saturating contact rate applied to SIRS epidemic model. We
define two threshold values, the deterministic basic reproduction number R0

and the stochastic basic reproduction number Rs
0, by comparing the value with

one to determine the persistence and extinction of the disease. For determin-
istic model, if R0 < 1, we show that the disease-free equilibrium is globally
asymptotically stable; while if R0 > 1, the system admits a unique endemic
equilibrium which is locally asymptotically stable. For stochastic model, we
also establish the threshold value Rs

0 for disease persistence and extinction.
Finally, some numerical simulations are presented to illustrate our theoretical
results. Our results prove that large stochastic perturbation will lead to the
extinction of diseases with probability one, revealing the significant influence
of stochastic perturbation on diseases and the importance of incorporating
stochastic perturbation into deterministic model.

Keywords Epidemic, stochastic, stationary solution, extinction, noise.

1. Introduction
Infectious diseases kill millions of people every year. For example, more than 20
million people died of plague in India at the beginning of the 20th century, and the
black death killed many more Europeans in 1346 [32]. Therefore, how to control
the spread of disease is one of the most important hot topics, which is necessary to
understand and analyze the transmission mechanism of infectious diseases. Mathe-
matical model is an important tool to analyze the spread and control of infectious
diseases [1, 13, 38]. Nowadays, more and more mathematicians are working on the
dynamics of infectious disease models [9, 10, 19, 30, 33, 36, 37, 39, 42, 43]. For exam-
ple, Lan et al. [19] considered a stochastic SIQR epidemic model with saturating
incidence. They obtained the existence of a unique stable stationary distribution
using the Markov semigroup theory and pointed out that environmental noise plays
a positive role in controlling disease. The classical SIR model is the Kermack and
Mckendrick model, and the total population is divided into three compartments
Susceptible(S), Infective(I), and Removed(R). In many infectious diseases, such as
pertussis, dysentery, influenza, and malaria, recovered individuals are once again
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susceptible (temporarily immune). Therefore, many scholars proposed the SIRS
epidemic models [2, 15, 20, 23, 29]. Particularly, Wang et al. [2] considered the
following general SIRS infectious disease model:

dS(t)

dt
= b− g(S, I)− dS(t) + δR(t),

dI(t)

dt
= g(S, I)− (µ+ α+ d)I(t),

dR(t)

dt
= µI(t)− (d+ δ)R(t),

(1.1)

where S(t), I(t), R(t) denotes the numbers of susceptible individuals, infective
individuals and removed individuals, respectively. Parameters b, d, δ, α and µ are all
positive constants. b represents the recruitment rate of the population, d denotes the
natural death rate of the population, δ is the rate at which removed individuals loss
immunity and return to the susceptible class, α stands for the diseased death rate, µ
is the recovery rate of infective individuals. The transmission function g(S, I) plays
an important role in epidemiological models. Up to now, many experts have studied
many kinds of incidences of epidemic models [5, 8, 12, 26, 28]. Such as, the bilinear
incidence rate g(S, I) = βSI, the standard incidence rate g(S, I) = βSI

N and so on.
Especially, Heesterbeek et al. [12] proposed a saturating contact rate g(S, I) = βSI

h(N) ,
where N

h(N) is the “unknown” probability for an individual to take part in a contact;
One of the reasonable requirements for h(N) is that it’s a non-decreasing function of
N . N represents the total population size and β is the probability per unit time of
transmitting the infection between two individuals taking part in a contact. Finally,
they got this expression h(N) = 1+fN+

√
1+2fN

f . This saturating incidence rate is
more realistic than the bilinear rate and the standard rate, as it takes into account
the crowding effect and behavioral change of the infective individuals and prevents
the unboundedness of the contact rate occurring by choosing suitable parameters.
Furthermore, combining g(S, I) = βSI

h(N) into model (1.1), we get the following model:

dS(t)

dt
= b− βS(t)I(t)

h(N)
− dS(t) + δR(t),

dI(t)

dt
=

βS(t)I(t)

h(N)
− (µ+ α+ d)I(t),

dR(t)

dt
= µI(t)− (d+ δ)R(t),

(1.2)

where N(t) = S(t) + I(t) + R(t), other parameters have the same meaning as
the system (1.1). One disadvantage of deterministic models is that they ignore the
effect of environmental noise on disease transmission. Numerous studies have shown
that environmental noise may affect the spread and control measures of diseases.
For instance, in temperate regions, influenza A outbreaks occur in winter. At the
same time, the obtained result shown that relative humidity also affects disease
transmission and survival [17]. Therefore, the stochastic model is more rational
and realistic than the deterministic model. Recently, many researchers [3, 4, 16, 21,
24, 25, 27, 35, 40, 41] have introduced stochastic environmental perturbations into
deterministic models. Liu et al. [25] studied a stochastic SEIR epidemic model
with standard incidence. They established sufficient conditions for extinction of the
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disease. And they also showed the existence of the stationary distribution of system,
which implies the disease is persistent. Their results improve the previous result to
a greater extent. Cao et al. [4] assumed that the disease transmission coefficient β is
subject to the environmental white noise. They concluded that as long as the white
noise is large enough, the disease will die out almost surely. Motivated by these
works, we assume that the environmental fluctuation affects the rate of transmission
per contact. Hence, in this paper, we formulate the fluctuation in the environment
by a stochastic process β + σḂ(t) instead of a constant β. Whereupon, we obtain
the following stochastic model:

dS(t) = [b− βS(t)I(t)

h(N)
− dS(t) + δR(t)]dt− σS(t)I(t)

h(N)
dB(t),

dI(t) = [
βS(t)I(t)

h(N)
− (µ+ α+ d)I(t)]dt+

σS(t)I(t)

h(N)
dB(t),

dR(t) = [µI(t)− (d+ δ)R(t)]dt,

(1.3)

where B(t) represents standard Brownian motion, σ2 denotes the intensity of white
noise.

Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0, P ) denote
a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e. it is right continuous and F0 contains all P-null sets). Moreover, for the sake
of convenience, we define the following symbols. Let R+ = [0,∞),Rn

+ = {x =
(x1, ..., xn) ∈ Rn : xi > 0, i = 1, ..., n}; C2 denotes the class of functions in Rn

which are twice continuously differentiable; a.s. means almost surely; i.e. means
that is to say.

This paper mainly discusses the following problems:
• For model (1.2), how to define the basic reproduction number ?
• For model (1.3), under what conditions the disease will become extinct? and
under what conditions the disease will stochastic persistent?
• What factors will play an important role in the extinction of infectious diseases?

This paper is organized as follows. In section 2, we show that the disease-
free equilibrium is globally asymptotically stable if the basic reproduction number
R0 < 1; and if R0 > 1, model (1.2) admits a unique endemic equilibrium which
is locally asymptotically stable. In Section 3, we also define a stochastic basic
reproduction number Rs

0. If Rs
0 < 1 and under additional conditions, the disease

will extinct. If Rs
0 > 1, the model (1.3) has a stationary distribution which implies

that the disease is persistent. Finally, we introduce several numerical simulations
to illustrate the main results and the paper ends with some discussion in section 4.

2. Dynamics of the deterministic model
From system (1.2), we can obtain that the total population Ṅ = b − dN − αI. In
this way, we get Γ = {(S, I,R) | S ≥ 0, I ≥ 0, R ≥ 0, b

d+α ≤ S + I + R ≤ b
d}

is a positive invariant set of system (1.2). By simple calculation, it’s easy to get
that the system (1.2) has two equilibrium states: the disease-free equilibrium state
E0 = (S0, 0, 0) = ( bd , 0, 0) which exists for all parameter values. Define the basic
reproduction number R0 = βb

d(µ+d+α)h( b
d )

.
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Next, we will calculate the endemic equilibrium. From model (1.2), the coordi-
nates of an equilibrium E∗ = (S∗, I∗, R∗) satisfy

b− βS∗I∗

h(N∗)
− dS∗ + δR∗ = 0,

βS∗I∗

h(N∗)
− (µ+ α+ d)I∗ = 0,

µI∗ − (d+ δ)R∗ = 0,

(2.1)

from the second equation we can obtain that

S∗ =
d+ µ+ α

β
h(N∗). (2.2)

Similarly, from the third equation we have

I∗ =
d+ δ

µ
R∗. (2.3)

Substituting (2.2) and (2.3) into the first equation in (2.1) gives

R∗ =
µ[b− d(d+µ+α)

β h(N∗)]

(d+ µ+ α)(d+ δ)− µδ
=

d(d+µ+α)
β h(N∗)µ[ βb

d(d+µ+α)h(N∗) − 1]

(d+ µ+ α)(d+ δ)− µδ
.

One can see that, if R0 > 1, system (1.2) has a unique endemic equilibrium E∗ =
(S∗, I∗, R∗) which is locally asymptotic stable.

Theorem 2.1. If R0 < 1, the disease-free equilibrium E0 = ( bd , 0, 0) is globally
asymptotically stable; while if R0 > 1, E0 is unstable, and system (1.2) has a
unique endemic equilibrium E∗ = (S∗, I∗, R∗) which is locally asymptotically stable.

Proof. When R0 < 1, we will show that lim
t→∞

I(t) = 0. From the second equation
of model (1.2) that

dI

dt
=(

βS

h(N)
− (µ+ d+ α))I

≤(
βb

h( bd )d
− (µ+ d+ α))I

=(µ+ d+ α)(R0 − 1)I.

The linear comparison system

dĨ

dt
= (µ+ d+ α)(R0 − 1)Ĩ , Ĩ(0) = I(0).

Obviously, Ĩ = e(d+µ+α)(R0−1)t. Consequently, lim
t→∞

Ĩ(t) = 0. By the comparison
principle, we have lim

t→∞
I(t) = 0. Therefore, for any small ϵ > 0, there exists T > 0,

such that for all t ≥ T , I(t) ≤ ϵ. From the first equation of model (1.2), we have

b− dN − αϵ ≤ dN

dt
≤ b− dN.

For the arbitrariness of ϵ, it is easy to get lim
t→∞

N(t) = b
d . Hence, the disease-free

equilibrium E0 is globally asymptotically stable, if R0 < 1.
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When R0 > 1, the Jacobian matrix of model (1.2) at E0 is

J(E0) =


−d − βb

dh( b
d )

δ

0 βb
dh( b

d )
− (µ+ d+ α) 0

0 µ −(d+ δ)

,

which obeys the following characteristic equation:

(λ+ d)[λ− (
βb

dh( bd )
− (µ+ d+ α))](λ+ δ + d) = 0.

Therefore, λ1 = −d < 0, λ2 = (µ+d+α)( βb
dh( b

d )(µ+d+α)
−1) > 0 and λ3 = −δ−d < 0.

Whereupon, E0 is unstable. Then, we will discuss the stability of endemic
equilibrium.

The stability of the endemic equilibrium E∗ = (S∗, I∗, R∗) of system (1.2) is
determined by the Jacobian matrix

J(E∗) =


−d− βI∗

h(N∗) − βS∗

h(N∗) δ

βI∗

h(N∗) −(µ+ α+ d) 0

0 µ −(d+ δ)

,

we get the following characteristic equation:

λ3 +B1λ
2 +B2λ+B3 = 0,

where B1 = 3d+ µ+ δ + α+M , B2 = (d+ µ+ α)(d+ δ) + d(d+ µ+ α)(d+ δ) +

(d+M)(d+ δ), B3 = d(d+ µ+ α)(d+ δ) + µδM , M = (d+δ)k
µh(N∗)R∗ .

For R0 > 1, we have Bj > 0 (j = 1, 2, 3). Furthermore, by simple calculation,
we have

H1 = B1 > 0,

H2 =

∣∣∣∣∣∣B1 B3

1 B2

∣∣∣∣∣∣ = B1B2 −B3 > 0,

H3 =

∣∣∣∣∣∣∣∣∣
B1 B3 0

1 B2 0

0 B1 B3

∣∣∣∣∣∣∣∣∣ = B3(B1B2 −B3) > 0.

Hence the Routh-Hurwitz conditions are satisfied. Therefore, the endemic equi-
librium E∗ is local asymptotically stable, if R0 > 1. This completes the proof.

Remark 2.1. Theorems 2.1 reveals that the basic reproduction number R0 is a
threshold value of model (1.2) determining whether the disease is extinct or not.
That is to say, if R0 < 1, the disease is extinct, while if R0 > 1, the disease is
persistent.
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3. Dynamics of stochastic model

In this section, we mainly study the dynamic behavior of the model (1.3). To study
the dynamics of infectious disease models, the main concerns are how to control
outbreaks of infectious diseases and under what conditions they are persistent. And
can we still get a threshold for disease persistence or extinction?

3.1. Existence and uniqueness of the global positive solution

The following result is related to the existence and uniqueness of the global positive
solution, which is a prerequisite for researching the long term behavior of model
(1.3).

Theorem 3.1. For any initial value (S(0), I(0), R(0)) ∈ R3
+, system (1.3) has a

unique global positive solution (S(t), I(t), R(t)) for t ≥ 0. Furthermore, the solution
will remain in R3

+ with probability one, namely (S(t), I(t), R(t)) ∈ R3
+ for all t ≥ 0

almost surely.

Proof. Note that the coefficients of our model (1.3) are locally Lipschitz contin-
uous and for any given initial value (S(0), I(0), R(0)) ∈ R3

+, there exists a unique
local solution (S(t), I(t), R(t)) on t ∈ [0, τe), where τe is the explosion time [31].
Therefore, the unique local solution to model (1.3) is positive by Itõ’s formula.
In order to demonstrate that this solution is global, it’s sufficient to prove that
τe = ∞ a.s.. Let k0 ≥ 0 be a sufficiently large constant for every component of
(S(0), I(0), R(0)) all lying within the interval [ 1

k0
, k0]× [ 1

k0
, k0]× [ 1

k0
, k0]. For each

integer k ≥ k0, we define the stopping time as follows:

τk = inf{t ∈ [0, τe) : min{S(t), I(t), R(t)} ≤ 1

k
or max{S(t), I(t), R(t)} ≥ k}.

Throughout this paper, we set inf ∅ = ∞(as usual ∅ denotes the empty set). Clearly,
τk is increasing as k → ∞. Set τ∞ = lim

k→∞
τk, hence τ∞ ≤ τe a.s.. If we can show

that τ∞ = ∞ a.s., then τe = ∞ a.s. In other words, to complete the proof, we
only need to show that τ∞ = ∞ a.s.. If this statement is false, there is a pair of
constants T > 0 and ε ∈ (0, 1) such that P{τk ≤ T} ≥ ε for any k ≥ k0.

We define a C2−function V : R3
+ → R+ as follows:

V (S, I,R) = S − lnS − 1 + I − ln I − 1 +R− lnR− 1,

the nonnegativity of this function can be obtained from

x− lnx− 1 ≥ 0, x > 0.

Applying Itô’s formula yields

dV = LV dt+
σ(I − S)

h(N)
dB(t),
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and

LV =b−dS− βSI

h(N)
+δR− b

S
+d+

βI

h(N)
− δ

S
R+

σ2I2

2h2(N)
+

βSI

h(N)
−(d+µ+α)I

− βS

h(N)
+ d+ µ+ α+

σ2S2

2h2(N)
+ µI − (d+ δ)R− µI

R
+ d+ δ

≤3d+ b+ µ+ α+ δ +
βI

h(N)
+

σ2N2

2h2(N)

≤3d+ b+ µ+ α+ δ + β +
σ2

2
:=K,

where K is a positive number, the remainder of the proof follows that in Li et al
[22], here, we omit it. The proof is complete.

Remark 3.1. From theorem 3.1, we know that for any initial value (S(0), I(0), R(0))∈
R3

+, system (1.3) has a unique positive solution (S(t), I(t), R(t)) ∈ R3
+ with prob-

ability one. From system (1.3), it is straightforward to get Ṅ = b − dN − αI,
then, the region Γ = {(S, I,R) ∈ R3

+ : b
d+α ≤ N ≤ b

d} also is a positively invari-
ant set of system (1.3). In the following, we always assume that the initial value
(S(0), I(0), R(0)) ∈ Γ.

3.2. Extinction of disease

Obtaining sufficient conditions for the extinction of infectious diseases can provide
us with effective measures, so it is important to study it. In this subsection, we shall
establish sufficient conditions for extinction of the disease in the stochastic model
(1.3).

Theorem 3.2. Let (S(t), I(t), R(t)) be a solution of model (1.3) with initial value
(S(0), I(0), R(0)) ∈ Γ. Assume one of the following conditions is satisfied
(i) σ2 > max{ β2

2(µ+d+α) ,
dβh( b

d )

b };

(ii) σ2 <
dβh( b

d )

b and Rs
0 = βb

d(µ+d+α+ σ2b2

2h2( b
d
)d2

)h( b
d )

< 1.

Then, the disease I(t) goes to extinction exponentially with probability one, i.e.,

lim
t→∞

I(t) = 0 a.s..

Proof. For model (1.3), applying Itô’s formula, one can obtain that

d ln I = [
βS

h(N)
− (d+ µ+ α)− σ2S2

2h2(N)
]dt+

σS

h(N)
dB(t)

= Ψ(
S

h(N)
)dt+

σS

h(N)
dB(t),

(3.1)
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where
Ψ(

S

h(N)
) =

βS

h(N)
− (d+ µ+ α)− σ2S2

2h2(N)

=− σ2

2
(

S

h(N)
− β

σ2
)2 +

β2

2σ2
− (d+ µ+ α)

≤ β2

2σ2
− (d+ µ+ α).

Then d ln I ≤ ( β2

2σ2 − (d+ µ+ α))dt+ σS
h(N)dB(t). Integrating both sides from 0 to

t, dividing by t and taking the limit, since the strong law of large numbers for local
martingales, we derive that lim

t→∞
1
t

∫ t

0
σS(s)

h(N(s))dB(s) = 0 almost surely and

lim sup
t→∞

ln I(t)

t
≤ β2

2σ2
− (d+ µ+ α) < 0 a.s.. (3.2)

Next, we consider the case that βh( b
d )

σ2 > b
d , that is σ2 <

dβh( b
d )

b . Noting that Ψ(x)

is monotone increasing for x ∈ (0, β
σ2 ].

From (3.1), we have

d ln I = [−σ2

2
(

b

dh( bd )
− β

σ2
)2 +

β2

2σ2
− (d+ µ+ α)]dt+

σS

h(N)
dB(t)

≤ [(d+ µ+ α+
σ2b2

2h2( bd )d
2
)(Rs

0 − 1)]dt+
σS

h(N)
dB(t).

Similarly, one can see that

lim sup
t→∞

ln I(t)

t
≤ (d+ µ+ α+

σ2b2

2h2( bd )d
2
)(Rs

0 − 1) < 0 a.s.. (3.3)

From (3.2) and (3.3), we have lim
t→∞

I(t) = 0 a.s.. In other words, the disease I(t)

dies out with probability one. This completes the proof.

Remark 3.2. From theorem 3.2, one can see that diseases go extinct in two ways.
One is the environmental disturbance is large enough; The other is the threshold
Rs

0 is less than one, plus additional conditions, for small intensity noise case. This
reveals that environmental disturbance has a great impact on infectious diseases,
and the threshold Rs

0 is also the key value to determine whether infectious diseases
break out or not.

3.3. Existence of stationary solution
In this subsection, we investigate the existence of the solution to model (1.3) which
is a stationary Markov process, which implies that the disease is persistent.

In general, consider the n-dimensional stochastic differential equation

dx(t) = f(x(t))dt+

n∑
i=1

gs(x(t))dBs(t) t ≥ t0, (3.4)

with the initial value x(t0) = x0 ∈ Rn, B(t) denotes the n−dimensional standard
Brownian motion defined on a complete probability space (Ω,F , {Ft}t≥0, P ).
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By the definition of stochastic differential equation, Eq. (3.4) is equivalent to
the following stochastic integral equation

x(t) = x0 +

∫ t

t0

f(x(s))ds+

n∑
s=1

∫ t

t0

gs(x(t))dBs(t) t ≥ t0. (3.5)

Lemma 3.1. Suppose that the vectors f(x), g1(x), ..., gn(x)(t ≥ t0, x ∈ Rn) are
continuous functions of x, and independent, such that for some constant M the
following conditions hold in UG for every G > 0:

(i) |f(x)− f(y)|+
n∑

s=1

|gs(x)− gs(y)| ≤ M |x− y|; (3.6)

(ii) |f(x)|+
n∑

s=1

|gs(x)| ≤ M(1 + |x|); (3.7)

and there exists a function V (x) ∈ C2 in Rn with the properties

V (x) ≥ 0, and sup
|x|>G

−MG → −∞ as G → ∞. (3.8)

Suppose further that the process Xx(t) is regular for at least one x ∈ Rn. Then
there exists a solution of (3.5) which is a stationary Markov process.

Remark 3.3. Condition (3.8) can be replaced by the weaker condition that LV ≤
−1 outside some compact set (see [11, Chapter 4]).

Theorem 3.3. Let (S(t), I(t), R(t)) be the solution of system (1.3) with any initial
value (S(t), I(t), R(t)) ∈ Γ. Assume that Rs

0 > 1, then the solution (S(t), I(t), R(t))
is a stationary solution of R3

+.

Proof. Define a C2-function G : Γ → R by

G(S, I,R) = g(−l1 lnS−ln I−l2h
2(N))−(lnS+lnR)−ln(

b

d
−N)−ln(N− b

d+α
)

:= gV1 + V2 + V3 + V4,

where V1 = −l1 lnS − ln I − l2h
2(N), V2 = − lnS − lnR, V3 = − ln( bd − N),

V4 = − ln(N − b
d+α ), l1 =

d+µ+α+ σ2b2

2h2( b
d
)d2

d , l2 =
d+µ+α+ σ2b2

2h2( b
d
)d2

2bh( b
d )

and g > 0 satisfies
the following condition

−3g(d+µ+α+
σ2b2

2h2( bd )d
2
)( 3
√

Rs
0−1)+4d+δ+α+

βb

h( bd )d
+

σ2b2

2h2( bd )d
2
≤ −2. (3.9)

Obviously, G(S, I,R) is a continue function of (S, I,R). Thus there exists a unique
minimum value point (S∗(k), I∗(k), R∗(k)) of G(S, I,R) in Γ and S∗(k) > 0, I∗(k) >
0, R∗(k) > 0. Then we define a nonnegative C2-function V (S, I,R) : Γ → R+ as
follows:

V (S, I,R) = G(S, I,R)−G(S∗(k), I∗(k), R∗(k)). (3.10)
By using Itô’s formula to V1 yields

LV1 =l1(−
b

S
+ d+

βI

h(N)
− δR

S
+

σ2I2

2h2(N)
)− βS

h(N)
+ d+ µ+ α+

σ2S2

2h2(N)
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− 2l2(1 +
1√

1 + 2fN
)(b− dN − αI)h(N)

≤− l1
b

S
− βS

h(N)
− 2l2bh(N) + 1d+ 2l2bh(

b

d
) + d+ µ+ α+

σ2b2

2h2( bd )d
2

+ (l1
β

h( bd )
+ 2l2αh(N)(1 +

1√
1 + 2fN

))I + l1
σ2

2h2( bd )
I2

≤− 3 3
√
2l1l2b2β+3(d+µ+α+

σ2b2

2h2( bd )d
2
)+(l1

β

h( bd )
+4l2αh(

b

d
))I+l1

σ2

2h2( bd )
I2

=− 3(d+µ+α+
σ2b2

2h2( bd )d
2
)( 3
√
Rs

0−1)+(l1
β

h( bd )
+4l2αh(

b

d
))I+l1

σ2

2h2( bd )
I2,

(3.11)

likewise
LV2 =− b

S
+ d+

βI

h(N)
− δR

S
+

σ2I2

2h2(N)
− µI

R
+ d+ δ

≤− b

S
− µI

R
+ 2d+ δ +

βb

h( bd )d
+

σ2b2

2h2( bd )d
2
,

(3.12)

similarly
LV3 =

b− dN − αI
b
d −N

= d− αI
b
d −N

, (3.13)

and
LV4 =

dN − b+ αI

N − b
d+α

≤ (d+ α)N − αS

N − b
d+α

= d+ α− αS

N − b
d+α

,

(3.14)

combining (3.9), (3.11), (3.12), (3.13) and (3.14), we have

LV ≤− 3g(d+µ+α+
σ2b2

2h2( bd )d
2
)( 3
√

Rs
0−1)+g(l1

β

h( bd )
+4l2αh(

b

d
))I+gl1

σ2

2h2( bd )
I2

− b

S
− µI

R
+ 4d+ δ + α+

βb

h( bd )d
+

σ2b2

2h2( bd )d
2
− αI

b
d −N

− αS

N − b
d+α

≤− 2+g(l1
β

h( bd )
+4l2αh(

b

d
))I+gl1

σ2

2h2( bd )
I2− b

S
−µI

R
− αI

b
d−N

− αS

N − b
d+α

.

Considering the following bounded closed set

Dε = {(S, I,R) ∈ Γ : ε ≤ S ≤ b

d
, ε ≤ I ≤ b

d
, ε2 ≤ R ≤ b

d
,

b

d+ α
+ε2 ≤ N ≤ b

d
−ε2},

where ε > 0 is a sufficiently small number. In the set Γ \ Dε, we can choose ε
sufficiently small such that the following conditions hold

− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− b

ε
< −1, (3.15)
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− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))ε+ gl1

σ2

2h2( bd )
ε2 < −1, (3.16)

− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− µ

ε
< −1, (3.17)

− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− α

ε
< −1. (3.18)

For convenience, we divide Γ \Dε into five domains

D1 = {(S, I,R) ∈ Γ : 0 < S < ε}, B2 = {(S, I,R) ∈ Γ : 0 < I < ε},
D3 = {(S, I,R) ∈ Γ : ε ≤ I, 0 < R ≤ ε2},

D4 = {(S, I,R) ∈ Γ : ε ≤ I <
b

d
,
b

d
− ε2 ≤ N <

b

d
},

D5 = {(S, I,R, V ) ∈ Γ : ε ≤ I <
b

d
,

b

d+ α
− ε2 ≤ N <

b

d+ α
+ ε2}.

Then, Γ \Dε = D1 ∪D2 ∪D3 ∪D4 ∪D5.
Case 1. if (S, I,R) ∈ D1, we have

LV <− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))I + gl1

σ2

2h2( bd )
I2 − b

S

<− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− b

ε

<− 1,

which follows from (3.15), we arrive at LV < −1 for all (S, I,R) ∈ D1.
Case 2. if (S, I,R) ∈ D2, we get

LV <− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))I + gl1

σ2

2h2( bd )
I2

<− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))ε+ gl1

σ2

2h2( bd )
ε2

<− 1,

which follows from (3.16), we have LV < −1 for all (S, I,R) ∈ D2.
Case 3. if (S, I,R) ∈ D3, we obtain

LV <− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))I + gl1

σ2

2h2( bd )
I2 − µI

R

<− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− µ

ε

<− 1,

which follows from (3.17), one can see that LV < −1 for all (S, I,R) ∈ D3.
Case 4. if (S, I,R) ∈ D4, we gain

LV <− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))I + gl1

σ2

2h2( bd )
I2 − αI

b
d −N
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<− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− α

ε

<− 1,

which follows from (3.18), thus LV < −1 for all (S, I,R) ∈ D4.
Case 5. if (S, I,R) ∈ D5, we obtain

LV <− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))I + gl1

σ2

2h2( bd )
I2 − αS

N − b
d+α

<− 2 + g(l1
β

h( bd )
+ 4l2αh(

b

d
))
b

d
+ gl1

σ2

2h2( bd )

b2

d2
− α

ε

<− 1,

which follows from (3.18), hence LV < −1 for all (S, I,R) ∈ D5.
From above, we can obtain that

LV (S, I,R) ≤ −1 for all (S, I,R) ∈ Γ \Dε.

According to Lemma 3.1, we can obtain that the solution of model (1.3) is a
stationary Markov process. This completes the proof.

Remark 3.4. By comparing R0 = βb
d(µ+d+α)h( b

d )
and Rs

0 = βb

d(µ+d+α+ σ2b2

2h2( b
d
)d2

)h( b
d )

,

one can see that Rs
0 is less than R0, if σ ̸= 0. It is shown that the results of

the stochastic model (1.3) are better than those of the deterministic model (1.2).
That’s one of the important reasons why we incorporate stochastic perturbations
in deterministic model.

4. Numerical simulations and conclusion
In this section, we shall adopt the Milstein’s Higher Order Method mentioned in [14]
to verify our theoretical results. The corresponding discretization equations are

Sk+1=Sk+(b− βSkIk
h(Nk)

−dSk+δRk)∆t− σSkIk
h(Nk)

√
∆tξk−

σ2SkIk
2h(Nk)

(ξ2k − 1)∆t,

Ik+1=Ik+(
βSkIk
h(Nk)

−(µk+αk+dk)Ik)∆t+
σSkIk
h(Nk)

√
∆tξk+

σ2SkIk
2h(Nk)

(ξ2k−1)∆t,

Rk+1 = Rk + (µkIk − (dk + δk)Rk)∆t,
(4.1)

where the time increment ∆t > 0, ξk(k = 1, 2, ..., n) are independent Gaussian
random variables which follow the standard normal distribution N(0, 1).

To verify our main theoretical results, we assume that the parameters are as
follows

b = 0.8, β = 0.8, d = 0.1, δ = 0.3, µ = 0.1, α = 0.1, f = 0.5. (4.2)

First, we focus on the stationary distribution of stochastic model (1.3). The
other parameters remain unchanged. Let σ = 0.1, we have Rs

0 ≈ 1.328 > 1,
R0 ≈ 1.333 > 1. Thereupon, system (1.2) has a unique endemic equilibrium E∗

which is locally asymptotically stable and system (1.3) has a stationary distribution
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which implies that the disease I(t) is stochastic persistent (see Figure 1). In ad-
dition, the system (1.3) exhibits oscillation around the endemic equilibrium of the
corresponding deterministic system (see Figure 2).
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Figure 1. (a), (b) and (c) are frequency histograms of susceptible, infected and removed, respectively
with σ = 0.1 and initial values (S(0), I(0), R(0)) = (3.5, 2, 0.5).
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Figure 2. (a), (b) and (c) are the sample paths of susceptible, infected and removed, respectively with
σ = 0.1 and initial values (S(0), I(0), R(0)) = (3.5, 2, 0.5).

Then, we want to test the effect of white noise on individuals. Hence, we per-
forms the following set of numerical simulations. In case of (4.2), we increase the
noise intensity σ to 0.25. After computation of R0 and Rs

0, we have R0 ≈ 1.333 > 1
and Rs

0 ≈ 1.299 > 1. Similarly, the solution of model (1.2) is locally asymptotically
stable and model (1.3) has a stationary distribution ( see Figure 3 and Figure 4).
By comparing Figure 1 and Figure 3, one can see that the distribution of S, I and
R becomes more widespread as σ increases. At the same time, from Figure 2 and
Figure 4, we can also see that the solution of the model (1.3) oscillates over a larger
range, if σ goes up.

Last but not the least, we want to test whether the conditions required by
our stochastic model are actually weaker than those required by the deterministic
model. To achieve this, we choose σ = 0.9. It is easy to get σ2 = 0.81 <

dβh( b
d )

b = 1.6
and Rs

0 ≈ 0.997 < 1 < R0 = 1.333. According to the theorem we proved above,
we know that system (1.2) has a unique endemic equilibrium E∗ which is locally
asymptotically stable. Meanwhile, for stochastic model (1.3), one can see that the
disease I(t) is extinct, which shows that stochastic perturbations are beneficial to
control outbreaks of disease (see Figure 5).

In the real world, population system is inevitably affected by various environ-
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Figure 3. (a), (b) and (c) are frequency histograms of susceptible, infected and removed, respectively
with σ = 0.15 and initial values (S(0), I(0), R(0)) = (3.5, 2, 0.5).
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Figure 4. (a), (b) and (c) are the sample paths of susceptible, infected and removed, respectively with
σ = 0.15 and initial values (S(0), I(0), R(0)) = (3.5, 2, 0.5).

mental noises. Therefore, we consider the dynamics behavior of stochastic SIRS
epidemic model. We assume that the stochastic perturbation is a white noise type
which perturbs the disease transmission coefficient β. For deterministic system
(1.2), we define a basic reproduction number R0 = βb

d(µ+d+α)h( b
d )

, the disease-free
equilibrium is globally asymptotically stable if R0 < 1; while if R0 > 1, sys-
tem (1.2) admits a unique endemic equilibrium which is locally asymptotically
stable. For stochastic system (1.3), we also obtain a basic reproduction number
Rs

0 = βb

d(µ+d+α+ σ2b2

2h2( b
d
)d2

)h( b
d )

. Epidemiologically, we draw the following conclusions:

Environmental noise can inhibit the outbreak of infectious diseases: From (ii) of
theorem 3.2, one can see that if Rs

0 < 1 plus the additional conditions, the disease
will go to extinct with probability one; Theorem 2.1 indicates that the deterministic
model (1.2) has a unique endemic equilibrium E∗ which is locally asymptotically
stable if the basic reproduction number R0 > 1. Furthermore, from remark 3.4, we
know Rs

0 < R0. If we choose suitable parameters such that Rs
0 < 1 < R0, then the

deterministic model (1.2) has an endemic equilibrium while the stochastic model
(1.3) has disease extinction with probability one (see Figure 5).

The extent of environmental noise impact: From (i) of theorem 3.2, If white
noise is large enough, the disease will extinct exponentially. However, for smaller
environmental noise conditions, additional condition Rs

0 < 1 need to be added to
ensure that the extinction of disease. In this case, the environmental noise is neg-
ligible. That is to say, when the environmental noise is large, the stochastic model
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Figure 5. That is the sample paths of infected with σ = 0.9 and initial values (S(0), I(0), R(0)) =
(3.5, 2, 0.5).

is more suitable for describing epidemic models than the deterministic model. The-
orem 2.1 reveals system (1.2) has a unique endemic equilibrium E∗ which is locally
asymptotically stable if R0 > 1. Under this condition, when the noise intensity
σ is small enough to imply that Rs

0 = R0 − σ2b3β

2h3( b
d )d

3(µ+d+α)(µ+d+α+ σ2b2

2h2( b
d
)d2

)
> 1,

from theorem 3.3, environmental noise forces the solution of model (1.3) to oscillate
around the endemic equilibrium state (see Figure 2 and Figure 4). Furthermore,
from Figure 2 and Figure 4, we can see that when the noise intensity σ is increased,
the amplitude fluctuation of the solution of the model (1.3) becomes larger.

In addition, we want to refine our results further. From Theorems 3.2 and
Theorems 3.3, we need to explore what happens if dβh( b

d )

b < σ2 < β2

2(µ+d+α) and
Rs

0 =< 1? Hence, we add an additional set of numerical simulations: b = 0.8, β =
0.6, d = 0.01, δ = 0.3, µ = 0.08, α = 0.1, f = 0.5, σ = 0.99. We can directly
calculate dβh( b

d )

b = 0.75 < σ2 ≈ 0.941 < β2

2(µ+d+α) ≈ 0.947 and Rs
0 ≈ 0.978 < 1.

From Figure 6, one can see that the infectious disease I(t) go extinct exponentially
almost surely. For system (1.2), we also can get R0 ≈ 2.526 > 1. Hence, system
(1.2) has a unique endemic equilibrium E∗ which implies that the infectious disease
I(t) is persistent.

From above, one can see that it is necessary to take environmental noise into
account when studying the dynamics of infectious disease models. Obviously, envi-
ronmental noise plays an important role in the spread and control of diseases, which
provides us with some useful control strategies for controlling infectious diseases.
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Figure 6. That is the sample paths of infected with σ = 0.97 and initial values
(S(0), I(0), R(0)) = (3.5, 2, 0.5).

And we know it is beneficial to the control of outbreaks of infectious disease.
There are some interesting topics to explore in the future, we know that there are

many types of environment noise, in addition to white noise, we can also incorporate
telegraph noise [6, 18]. Furthermore, we can consider more complex systems, such
as considering delayed [34], impulsive [7] perturbations and so on. We leave that
work for the future.
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