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WELL-POSEDNESS AND NUMERICAL
SIMULATIONS OF AN ANISOTROPIC

REACTION-DIFFUSION MODEL IN CASE 2D
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Abstract This paper presents a qualitative study of a nonlinear second-order
parabolic problem, endowed with a nonlinearity of cubic type as well as non-
homogeneous Cauchy-Neumann boundary conditions. Under certain hypothe-
ses on the input data (f(t, x), w(t, x), v0(x)), we prove the well-posedness and
a priori estimates of a solution in the Sobolev space W 1,2

p (Q), extending the
results already proven by other authors. Our mathematical model can be
applied in many physical phenomena, such as image processing. Numerical
simulations illustrate the effectiveness of the mathematical model in image
restoration.
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1. Introduction
Let Ω ⊂ IR2 be a bounded domain with a C2 boundary ∂Ω and let T > 0. We
examine the next problem of second-order boundary value:

p
1

∂

∂t
v(t, x) = p

2
K(vx(t, x))∆v(t, x) + p

2
∇K(vx(t, x)) · ∇v(t, x)

+ p3

[
v(t, x)− v3(t, x)

]
+ f(t, x), in Q,

q(t, x)
∂

∂nv(t, x) + v(t, x) = w(t, x), on Σ,

v(0, x) = v0(x), on Ω,

(1.1)

where:

• t ∈ (0, T ], x = (x1, x2) ∈ Ω, Q = (0, T ]× Ω, Σ = (0, T ]× ∂Ω;
• v(t, x) (v in short) is the unknown function and denote by ∇v(t, x) = v

x
(t, x)

(∇v = vx in short) the gradient of v(t, x) in x, that is ∇v =

(
∂

∂x1
v,

∂

∂x2
v

)
.

We set ∂

∂xi
v = vxi

, i = 1, 2, and so v
x
=

(
v
x1
, v

x2

)
;
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• ∆v(t, x) is the Laplace operator - a second-order differential operator, defined
as the divergence (∇·) of the gradient of v(t, x) in x, i.e.

∆v(t, x) = div(∇v(t, x)) = ∇ · ∇v(t, x) = ∇2v(t, x);

• p1 , p2 , p3 , are positive values;

• K(vx(t, x)) - is the mobility (attached to the solution v(t, x) of (1.1));

• q(t, x) - is a positive and bounded real function;

• f(t, x) ∈ Lp(Q) is the distributed control, where

p ≥ 2; (1.2)

• w(t, x) ∈ W
1− 1

2p ,2−
1
p

p (Σ) is the boundary control;

• v0(x) ∈ W
2− 2

p
∞ (Ω) and satisfies

q(0, x)
∂

∂nv0(x) + v0(x) = w(0, x);

• n=n(x) is the outward unit normal vector to Ω at a point x ∈ ∂Ω; ∂
∂n means

differentiation along n.

Let’s note

ai(t, x, v(t, x), vx(t, x)) = p2K
(
vx(t, x)

)
vxi

(t, x), i = 1, 2. (1.3)

Then, it is easy to recognize equation (1.1)1 as being a quasi-linear one of type (2.4)
in [11] - p. 3 and p. 11, with

aij
(
t, x, v(t, x), vx(t, x)

)
=

∂

∂v
xj

ai
(
t, x, v(t, x), vx(t, x)

)
=

∂

∂vxj

p2K
(
vx(t, x)

)
vxi(t, x), i = 1, 2,

and

a
(
t, x, v(t, x), vx(t, x)

)
= − ∂

∂v

(
p2K(vx(t, x))vxi(t, x)

)
vxi(t, x)

− ∂

∂xi
p

2
K
(
vx(t, x)

)
vxi

(t, x)

− p
3

[
v(t, x)− v3(t, x)

]
− f(t, x),

while the boundary conditions (1.1)2 are of second type:

[aij
(
t, x, v(t, x), vx(t, x)

)
vxj (t, x) cos(n, xi) + v(t, x)− w(t, x)]

∣∣∣
Σ

= 0

(see [11] - p. 475, relation (7.2)).
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For reader’s convenience, we will write problem (1.1) in the equivalent form

p
1

∂

∂t
v(t, x)− div

(
p

2
K
(
vx(t, x)

)
∇v(t, x)

)
= p

3

[
v(t, x)− v3(t, x)

]
+ f(t, x), in Q,

q(t, x)
∂

∂nv(t, x) + v(t, x) = w(t, x), on Σ,

v(0, x) = v0(x), on Ω.

(1.4)

Concerning equation (1.4)1, we recall that this is a quasi-linear one with principal
part in divergence form (see (2.3) of page 11 in [11]), with ai, i = 1, 2, given by
(1.3) and

a(t, x, v(t, x), vx(t, x)) = −p3

[
v(t, x)− v3(t, x)

]
− f(t, x).

Furthermore, we suppose that equations (1.1)1 [or (1.4)1] are uniformly parabolic,
that is

ν
1
(|u|)ζ2 ≤ aij

(
t, x, u, z

)
ζiζj ≤ ν

2
(|u|)ζ2, (1.5)

for arbitrary u(t, x) and z(t, x), (t, x) ∈ Q and ζ = (ζ1, ζ2) an arbitrary real vector,
where ν1(s) and ν2(s) are positive continuous functions of s ≥ 0, ν1(s) is nonin-
creasing and ν

2
(s) is nondecreasing.

The starting point in the elaboration of this paper is [15], with great interest -
in theory and applications equaly - focused on finding concrete cases of functions
for the general case K(t, x, u(t, x), ux(t, x)) introduced in [15], different from those
of [3]. In this respect, we elaborated a complete qualitative and quantitative study
and, by using a single method (PSNR), we gained in efficiency of our proposed
model (problem (3.2)), as we have 10 iterations (see Figure 4) compared to the 35th

ones of [3]. Moreover, the approach of partial time derivative is done by the help of
a second order scheme, while in [3] a first order scheme is used.

Another advantage in our paper concerns the non-homogeneous Cauchy-Neumann
boundary conditions (1.1)2 which can be seen as boundary control in industry. Thus,
the system (1.1) can be applied in problems of moving interface such as the
nucleation of solids, the mixture of two incompressible fluids, vesicle membranes
( [1,14,27,32]), the phase separation and transition ( [4,13,16–23], [25,26,31]),
the anisotropy effects ( [3, 6, 28]), the image denoising and restoration (
[2,3,5,10,29,33]). Another novelty of our study is that in (1.1)1 we consider a cubic
nonlinearity v − v3, unlike the linear reaction (see [2, 3]). Therefore, the presence
of nonlinear terms at the level of diffusion and reaction, increases the possibility to
better capture the complexity of real world phenomena.

Definition 1.1. The function v(t, x) is called a classic solution of the problem
(1.1) if it is continuous in Q̄, has continuous derivatives vt, vx, vxx in Q, verifies
(1.1)1 in every (t, x) ∈ Q and verifies (1.1)2 and (1.1)3 for (t, x) ∈ Σ and t = 0,
respectively.

In short, in our paper we study the solvability of the problem (1.4), characterized
by the presence of some new physical parameters (p

1
, p

2
, p

3
, K(vx)), the principal



An anisotropic reaction-diffusion model in case 2D 2261

part in divergence form and by considering the cubic nonlinearity v− v3, satisfying
the condition H0 in [24]:

H0 : (v − v3)|v|3p−4v ≤ 1 + |v|3p−1 − |v|3p.

In Theorem 2.1, we prove the existence, the regularity and the uniqueness of the
solution for (1.4) in W 1,2

p (Q) (see (2.1) for k = 1).
See [3] for a numerical study of equation (1.1) corresponding to a linear term

v − v0, with homogeneous Neumann boundary condition.
In the sequel we will denote by C some positive constants.

2. Well-posedness of the solution of (1.4)
Theorem 2.1 of this Section presents the dependence of the solution v(t, x) of (1.4)
on f(t, x) and w(t, x). In our study, we rely on the following:

• the Leray-Schauder degree theory ( [2–5,7–9,19–21]);

• the Lp-theory of linear and quasi-linear parabolic equations ( [11]);

• Green’s first identity

−
∫
Ω

y div z dx =

∫
Ω

∇y · z dx−
∫
∂Ω

y
∂

∂nz dγ,

−
∫
Ω

y∆ z dx =

∫
Ω

∇y · ∇z dx−
∫
∂Ω

y
∂

∂nz dγ,

for any scalar-valued function y and z - a continuously differentiable vector field in
n dimensional space;

• the Lions and Peetre embedding Theorem (see [12], p. 24) to ensure the existence
of a continuous embedding W 1,2

p (Q) ⊂ Lµ(Q), where the real µ is given by (see
(1.2)):

µ =


any positive number ≥ 3p, if p ≥ 2,(1
p
− 1

2

)−1

, if p < 2,

and, for k ∈ {1, 2, · · · } and 1 ≤ p ≤ ∞, W k,2k
p (Q) denotes the Sobolev space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂q

∂xq
y ∈ Lp(Q), for 2r + q ≤ 2k

}
, (2.1)

i.e., the spaces of functions whose t-derivatives and x-derivatives up to the order k

and 2k, respectively, belong to Lp(Q) (see [11], p. 5).
Also, we shall use the set C1,2(Q̄) (C1,2(Q)) of all continuous functions in Q̄ (in

Q) having continuous derivatives ut, ux, uxx in Q̄ (in Q), as well as the Sobolev
spaces W l

p(Ω), W
l,l/2
p (Σ) with non integral l for the initial and boundary conditions,

respectively (see p. 8, p. 70 and p. 81 of [11]).
The main result for study the existence, a priori estimates, uniqueness and

regularity for the solution of (1.4) is the next theorem.
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Theorem 2.1. For any classic solution v(t, x) ∈ C1,2(Q) of (1.4), suppose there
are M , M

1
, M

2
, M

3
, M

4
∈ (0,∞) such that the next hypotheses are satisfied:

I1. |v(t, x1, x2)| < M , ∀(t, x1, x2) ∈ Q and for any z(t, x), the map K(z(t, x)) is
continuous, differentiable in x, its x-derivatives are measurable bounded and verifies
(1.5), as well as

0 < Kmin ≤ K(vx(t, x)) < Kmax, for (t, x) ∈ Q, (2.2)

|K(z)vxi
|(1 + |z|) +

∣∣∣∣ ∂

∂x1
(K(z)vx1

)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(K(z)vx1

)

∣∣∣∣
+

∣∣∣∣ ∂

∂x1
(K(z)vx2)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(K(z)vx2)

∣∣∣∣+ |v(t, x1, x2)| ≤ M1(1 + |z|)2
(2.3)

(see [11] p. 451).

I2. For every ε > 0, the functions v and K(vx) satisfy the relations

∥v∥
Ls(Q)

≤ M2 , ∥K(vx)vxi∥Lr(Q)
< M3 , i = 1, 2,

where

r =

max{p, 4} p ̸= 4

4 + ε p = 4,
s =

max{p, 2} p ̸= 2

2 + ε p = 2.

Then, for all f ∈ Lp(Q) and v0 ∈ W
2− 2

p
∞ (Ω), so that p ̸= 3

2 , the problem (1.4) has
a solution v ∈ W 1,2

p (Q) and the following estimate holds:

∥v∥W 1,2
p (Q) ≤ C

[
1 + ∥v0∥

W
2− 2

p
∞ (Ω)

+ ∥v0∥
3− 2

p

L3p−2(Ω)

+∥f∥Lp(Q) + ∥w∥3−
2
p

L3p−2(Σ) + ∥w∥
W

1− 1
2p

,2− 1
p

p (Σ)

]
,

(2.4)

where C > 0 is a constant, that does not depend on v, f and w.
If v1, v2 ∈ W 1,2

p (Q) are two solutions to (1.4), corresponding to {f1, w1, v10} and
{f2, w2, v20}, respectively, such that ∥v1∥W 1,2

p (Q) ≤ M4 , ∥v2∥W 1,2
p (Q) ≤ M4 , and

0 < Kmin ≤ q(t, x) < Kmax, for (t, x) ∈ Σ, (2.5)

then the following estimate holds

max
(t,x)∈Q

|v1−v2|≤C1e
CTmax

[
max

(t,x)∈Q
|f1−f2|, max

(t,x)∈Σ
|w1−w2|, max

(t,x)∈Ω
|v10−v20 |

]
, (2.6)

where C,C1>0 are constants that do not depend on {v1, f1, w1, v10} and {v2, f2, w2, v20}.
Particularly, it results that the solution of (1.4) is unique.

Proof. For the proof, we use the Leray-Schauder principle. So, we consider the
Banach space

B = W 0,1
p (Q) ∩ L3p(Q),
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endowed with the norm

∥u∥B = ∥u∥Lp(Q) + ∥ux∥Lp(Q),

and a nonlinear operator H : B × [0, 1] → B defined by

v = v(u, λ) = H(u, λ) for all (u, λ) ∈ W 0,1
p (Q) ∩ L3p(Q)× [0, 1], (2.7)

where v(u, λ) is the unique solution of the next problem

p
1

∂

∂t
v(t, x)−

[
λ

∂

∂uxj

(p
2
K(ux)uxi

) + (1− λ)δji

]
vxixj

= λ
{
A(t, x, u, ux) + p

3

[
u(t, x)− u3(t, x)

]
+ f(t, x)

}
, in Q,

q(t, x)
∂

∂ν
v(t, x) + v(t, x) = λw(t, x), on Σ,

v(0, x) = λv0(x), on Ω,

(2.8)

where vxixj
= ∂2

∂xi∂xj
v(t, x), i, j = 1, 2 and A(t, x, u, ux) = p

2
∇K(ux) · ∇u(t, x),

for all (t, x) ∈ Q.
Firstly, we show that the nonlinear operator H satisfies the following properties

A and B.
A. If (2.8) has a unique solution, then H is well-defined.

By the right hand of (2.8)1, using I1 and I2, it results that

A(t, x, u, uxi
) + p

3
(u− u3) + f(t, x) ∈ Lp(Q), ∀u ∈ W 0,1

p (Q) ∩ L3p(Q). (2.9)

Indeed, since u ∈ L3p(Q), then ∥u∥L3p(Q) ≤ Konst and thus ∥u3∥Lp(Q) ≤ (Konst)3,
i.e., for the nonlinear term u3 in (2.9) we can deduce that u3 ∈ Lp(Q) (see [15] for
more details). Next, from the properties of K and since uxi ∈ Lp(Q), it results that
A(t, x, u, uxi

) ∈ Lp(Q).
According to Theorem 7.4, Theorem 9.1 (for p = 3), Theorem 9.2 in [11], p.

491, p. 341 and p. 343, respectively, and (2.9), for w(t, x) ∈ W
2− 1

p ,1−
1
2p

p (Σ), the
parabolic boundary value problem (2.8) has a unique solution v ∈ W 1,2

p (Q) ⊂ Lp(Q)

(see (2.30) at p. 54 of [11]). Thus, the operator H is well-defined.
B. Let us now show that H is continuous and compact. Let un → u in W 0,1

p (Q) ∩
L3p(Q) and λn → λ in [0, 1]. Making the notation

vn,λn = H(un, λn), vn,λ = H(un, λ) and vλ = H(u, λ)

and then considering the difference H(un, λn)−H(un, λ), we obtain from relations
(2.7) and (2.8) that

p1

∂

∂t
V n,λn,λ −

[
λ

∂

∂un
xj

(
p2K(un

x)u
n
xi

)
+ (1− λ)δji

]
V n,λn,λ

xixj

= (λn−λ)

{[
∂

∂un
xj

(p
2
K(un

x)u
n
xi
)−δji

]
vn,λn
xixj

+A(t, x, un, un
xi
) + p

3

[
un − (un)3

]
+ f(t, x)

}
, in Q,

q(t, x) ∂
∂nV n,λn,λ + V n,λn,λ = (λn − λ)w(t, x), on Σ,

v(0, x) = (λn − λ)v0(x), on Ω,

(2.10)
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where V n,λn,λ = vn,λn − vn,λ.
The right-hand side in (2.10) belongs to Lp(Q), since vn,λn ∈ W 1,2

p (Q). There-
fore, the Lp-theory of PDE gives the estimate

∥V n,λn,λ∥W 1,2
p (Q) ≤ C|λn − λ| ×

{∥∥∥∥[ ∂
∂un

xj

(
p

2
K(un

x)u
n
xi

)
− δji

]
vn,λn
xixj

∥∥∥∥
Lp(Q)

+∥A(t, x, un, un
xi
)∥Lp(Q) + ∥un − (un)3∥Lp(Q)

+∥v0∥
W

2− 2
p

p (Ω)
+ ∥f∥Lp(Q) + ∥w∥

W
1− 1

2p
,2− 1

p
p (Σ)

}
,

with a constant C(|Ω|, p
1
, p

2
, p

3
,M,M1,M2,M3).

Having un bounded in W 0,1
p (Q) ∩ L3p(Q), it results that (un)3 is bounded in

Lp(Q) (see, e.g., [8] or [11], p. 42). In addition, the inequality (2.3), the condition
I2 and the inclusion un,λn

xixj
∈ Lp(Q) imply the boundedness in Lp(Q) of the terms

A(t, x, un, un
xi
),

(
∂

∂un
xj

(p
2
K(un

x)u
n
xi
) − δji

)
vn,λn
xixj

. Also, since W
2− 2

p
∞ (Ω) ⊂ Lp(Ω), it

results that the other terms on the right-hand side from the above inequality are
also bounded in Lp(Q). Thus, making λn → λ, we obtain (V n,λn,λ = vn,λn − vn,λ)

∥vn,λn − vn,λ∥W 1,2
p (Q) → 0 for n → ∞. (2.11)

In order to evaluate the difference H(vn, λ) − H(v, λ), we use again the relations
(2.7), (2.8) and we obtain

p
1

∂

∂t
V n,1,λ −

[
λ

∂

∂un
xj

(
p

2
K(un

x)u
n
xi

)
+ (1− λ)δji

]
V n,1,λ

xixj

= λ
{
p2

[
∂

∂un
xj

(K(un
x)u

n
xi
)− ∂

∂uxj
(K(ux)uxi)

]
vλxixj

+A(t, x, un, un
xi
)−A(t, x, u, uxi

)

+p
3

[
(un − u)−

(
(un)3 − u3

)]}
, in Q,

q(t, x) ∂
∂nV n,1,λ + V n,1,λ = 0, on Σ,

V n,1,λ(0, x) = 0, on Ω,

(2.12)

where V n,1,λ = vn,λ − vλ.
The Lp-theory applied to (2.12), give us the estimate

∥V n,1,λ∥W 1,2
p (Q) ≤ Cλ

[∥∥∥∥( ∂
∂un

xj

(K(un
x)u

n
xi
)− ∂

∂uxj
(K(ux)uxi

)
)
vλxixj

∥∥∥∥
Lp(Q)

+∥A(t, x, un, un
xi
)−A(t, x, u, uxi

)∥Lp(Q)

+∥(un − u)− ((un)3 − u3)∥Lp(Q)

]
,

with a constant C. From the convergence vn → v in W 0,1
p (Q) ∩ L3p(Q), the conti-

nuity of the Nemytskij operator ( [8]), and the continuity of ∂
∂un

xj

(K(un
xi
)un

xi
) and
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A(t, x, un, un
xi
), it follows that

∥vn,λ − vλ∥W 1,2
p (Q) → 0 as n → ∞. (2.13)

Using (2.11) and (2.13), we obtain the continuity of H defined by (2.7). Now,
we prove that H is compact. Indeed, since µ > 3p, the inclusion W 1,2

p (Q) ↪→
W 0,1

p (Q) ∩ L3p(Q) is compact (see [12], p. 21]). Furthermore, writing H as

B × [0, 1] → W 1,2
p (Q) ↪→ W 0,1

p (Q) ∩ L3p(Q) = B,

it results that H is compact.

2.1. The regularity of the solution v(t, x)

In this subsection, we prove that there exists δ > 0 such that

(v, λ) ∈ B × [0, 1], v = H(v, λ) =⇒ ∥v∥B < δ. (2.14)

Let v ∈ B = W 0,1
p (Q) ∩ L3p(Q). Then, the equality v = H(v, λ) in (2.14) is

equivalent to 

p
1

∂

∂t
v(t, x)− λ div

(
p

2
K(vx)∇v

)
− (1− λ)∆v

= λ
[
p

3

(
v(t, x)− v3(t, x)

)
+ f(t, x)

]
, in Q,

q(t, x)
∂

∂nv(t, x) + v(t, x) = λw(t, x), on Σ,

v(0, x) = λv0(x), on Ω,

(2.15)

(see (1.1), (1.4) and (2.8)).
Multiplying the first equation in (2.15) by |v|3p−4v, integrating over Qt := (0, t)×

Ω, t ∈ (0, T ], we get

p
1

∫
Qt

∂

∂t
|v(τ, x)|3p−2 dτdx− λ

∫
Qt

div
(
p

2
K(vx)∇v

)
|v|3p−4v dτdx

− (1− λ)

∫
Qt

∆v |v|3p−4v dτdx

=λp
3

∫
Qt

(v − v3)|v|3p−4v dτdx+ λ

∫
Qt

f |v|3p−4v dτdx.

Owing to the Green’s first identity, left inequality in (2.2) and (2.5), the condition
(I2) and the boundary conditions (2.15)2, the previous equality gives us

p
1

3p− 2

∫
Ω

|v(t, x)|3p−2 dx+ λ

∫
Qt

K(vx)∇v · ∇
(
p2 |v|3p−4v

)
dτdx

+ (1− λ)(3p− 3)

∫
Qt

|∇v|2|v|3p−4 dτdx
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+ λp
2

∫
Σt

|v|3p−2 dτdγ +
(1− λ)

Kmax

∫
Σt

|v|3p−2 dτdγ

≤ λ
p1

3p− 2

∫
Ω

|v0(x)|3p−2 dx

+ λp
3

∫
Qt

(v − v3)|u|3p−4v dτdx+ λ

∫
Qt

f |v|3p−4v dτdx

+ λp
2

∫
Σt

w|v|3p−4v dτdγ +
(1− λ)

Kmin

∫
Σt

w|v|3p−4v dτdγ, (2.16)

for every t ∈ (0, T ]. Applying Hölder’s and Cauchy’s Inequalities to the last terms
in (2.16), we get

a. λ

∫
Qt

f |v|3p−4v dτdx ≤ p− 1

p
ε

p
p−1

∫
Qt

|v|3p dτdx+ λ
1

p
ε−p∥f∥pLp(Q)

b. λp
2

∫
Σt

w|v|3p−4v dτdγ

≤ λp2

(
1− 1

3p− 2

)∫
Σt

|v|3p−2 dτdγ +
1

p2

1

3p− 2

∫
Σt

|w|p dτdγ,

c.
(1−λ)

Kmin

∫
Σt

w|v|3p−4v dτdγ

≤
(
1− 1

3p− 2

)
(1− λ)

Kmax

∫
Σt

|v|3p−2dτdγ +
Kmax

Kmin

1

3p− 2

∫
Σt

|w|3p−2 dτdγ.

By H0, relation (1.2) and Young’s inequality, we obtain

λp3

∫
Qt

(v − v3)|v|3p−4v dτdx

≤ λp
2
|Ω|T + λp

2
|Ω|T 1

3p
ε−3p +

3p− 1

3p
ε

3p
3p−1

∫
Qt

|v|3pdτdx

− λp
3

∫
Qt

|v|3pdτdx.

From the previous inequality, the continuous embedding L3p−2(Σt) ⊂ Lp(Σt), and
(a.-c.), by (2.16) we derive the following estimate

p
1

3p− 2

∫
Ω

|v(t, x)|3p−2 dx+ λ

∫
Qt

K(vx)∇v · ∇
(
p

2
|v|3p−4v

)
dτdx

+ (1− λ)(3p− 3)

∫
Qt

|∇v|2|v|3p−4 dτdx+ λp
3

∫
Qt

|v|3pdτdx

1

3p− 2

[
λp

2
+

(1− λ)

Kmax

] ∫
Σt

|v|3p−2dτdγ
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≤ λ
p

1

3p− 2

∫
Ω

|v0(x)|3p−2 dx

+

[
3p− 1

3p
ε

3p
3p−1 +

p− 1

p
ε

p
p−1

] ∫
Qt

|v|3p dτdx

+ λ

(
p

2
|Ω|T + p

2
|Ω|T 1

3p
ε−3p +

1

p
ε−p∥f∥pLp(Q)

)
+

1

3p− 2

[
p

2
+

Kmax

Kmin

] ∫
Σt

|w|3p−2 dτdγ.

Considering ε > 0 small, from the above inequality it holds

λ∥|v|3∥pLp(Q) ≤ C1

(
1 + ∥v0∥3p−2

L3p−2(Ω) + ∥f∥pLp(Q) + ∥w∥3p−2
L3p−2(Σt)

)
, (2.17)

for a positive constant C1 = C(|Ω|, T, n, p, p
1
, p

2
, p

3
,Kmin,Kmax,M1

).
Applying Lp-theory to problem (2.8) (see [11], p. 341–342]), we get

∥v∥W 1,2
p (Q) ≤ C2

(
∥v0∥

W
2− 2

p
p (Ω)

+ p
3
∥(v − v3)∥Lp(Q)

+ ∥f∥Lp(Q) + ∥w∥
W

1− 1
2p

,2− 1
p

p (Σ)

)
,

(2.18)

for a constant C2 = C(|Ω|, T, n, p, p
1
, p

2
, p

3
) > 0.

Using Lemma 1.1 in [24] and (2.17), we obtain

∥v − v3∥Lp(Q) ≤ C1

(
1 + ∥v0∥

3p−2
p

L3p−2(Ω) + ∥f∥Lp(Q) + ∥w∥
3p−2

p

L3p−2(Σ)

)
,

and then (2.18) becomes

∥v∥W 1,2
p (Q) ≤ C2

(
1 + ∥v0∥

W
2− 2

p
∞ (Ω)

+ ∥v0∥
3p−2

p

L3p−2(Ω)

+∥f∥Lp(Q) + ∥w∥
W

1− 1
2p

,2− 1
p

p (Σ)
+ ∥w∥

3p−2
p

L3p−2(Σt)

)
.

(2.19)

The continuous embedding W 1,2
p (Q) ⊂ B = W 0,1

p (Q) ∩ L3p(Q) ensures that

∥v∥B ≤ C∥v∥W 1,2
p (Q),

which, due to (2.19), implies that there exists δ > 0 verifying (2.14).

Denoting
Bδ :=

{
v ∈ B : ∥v∥B < δ

}
,

(2.14) implies that

H(v, λ) ̸= v ∀v ∈ ∂Bδ, ∀λ ∈ [0, 1],

for a large δ > 0. Moreover, acting as in [4], [7], we obtain that (1.4) has a solution
v ∈ W 1,2

p (Q) (see also [24], p. 195). The estimate (2.4) results from (2.19) and the
proof of the first part in Theorem 2.1 is finished.
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2.2. The uniqueness of the solution v(t, x)

Now, we prove (2.6) which implies the uniqueness of the solution of (1.1) or (1.4).
By hypothesis, v1, v2∈W 1,2

p (Q) solve problem (1.1) corresponding to {f1, w1, v10}
and {f2, w2, v20}, respectively. So v1 − v2 ∈ W 1,2

p (Q).
Let us recall that

aij(t, x, v
1, v1x) =

∂

∂v1xj

p2K(v1x)v
1
xi
,

aij(t, x, v
2, v2x) =

∂

∂v2xj

p2K(v2x)v
2
xi
,

and (see (5.3) at p. 445 of [11]) we write

aij(t, x, v
1, v1x)− aij(t, x, v

2, v2x) =

∫ 1

0

d

dλ
aij

(
t, x, vλ, vλx

)
dλ,

where

vλ(t, x) = λv1(t, x) + (1− λ)v2(t, x), vλx(t, x) = λv1x(t, x) + (1− λ)v2x(t, x).

Then

aij(t, x, v
1, v1x)v

1
xixj

− aij(t, x, v
2, v2x)v

2
xixj

=aij(t, x, v
1, v1x)Vxixj

+ v2
xixj

[
Vxi

∫ 1

0

∂

∂vλxj

aij
(
t, x, vλ, vλx

)
dλ

+ V

∫ 1

0

∂

∂vλ
aij

(
t, x, vλ, vλx

)
dλ

]
,

(2.20)

where V (t, x) = v1(t, x)− v2(t, x).
Regarding A(t, x, v, vx), we have

A(t, x, v1, v1x)−A(t, x, v2, v2x)

=

∫ 1

0

d

dλ
A
(
t, x, vλ, vλx

)
dλ

=Vxi

∫ 1

0

∂

∂vλxj

A
(
t, x, vλ, vλx

)
dλ+ V

∫ 1

0

∂

∂vλ
A
(
t, x, vλ, vλx

)
dλ.

(2.21)

Now, we subtract the equation (1.1)1 for v2(t, x) from the equations (1.1)1 for
v1(t, x) and by (2.5), (2.20) and (2.21), we get

p1

∂

∂t
V − âij(t, x)Vxixj + âi(t, x)Vxi + â(t, x)V = f1 − f2, in Q,

q(t, x)
∂

∂nV + V = w1 − w2, on Σ,

V (0, x) = v10(x)− v20(x), on Ω,

(2.22)

where

âij(t, x) = aij(t, x, v
1, v1x),
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âi(t, x) = −v2
xixj

∫ 1

0

∂

∂vλxj

ai,j
(
t, x, vλ, vλx

)
dλ+

∫ 1

0

∂

∂vλxj

A
(
t, x, vλ, vλx

)
dλ,

â(t, x) = −v2
xixj

∫ 1

0

∂

∂vλ
ai,j

(
t, x, vλ, vλx

)
dλ+

∫ 1

0

∂

∂vλ
A
(
t, x, vλ, vλx

)
dλ

− p2

[
1−

(
(v1)2 + v1v2 + (v2)2

)]
.

By (2.2) and the assumptions on v1 and v2, i.e.:

∥v1∥W 1,2
p (Q), ∥v

2∥W 1,2
p (Q) ≤ M

4
,

the hypothesis of Theorem 2.3 in [11], p. 16 are fulfilled. So, from (2.22) it results
that the estimate (2.6) is valid for V , which finishes the proof of Theorem 2.1.

As a consequence, it results the uniqueness for the solution of (1.1).

Corollary 2.1. For the same initial conditions, the problem (1.1) possesses a
unique solution v(t, x) ∈ W 1,2

p (Q).

Proof. Let f1 = f2 = f and w1 = w2 = w in Theorem 2.1. Then (2.6) demon-
strates the corollary (see Theorem 2.4 - [11], p. 17).

Remark 2.1. The nonlinear operator H in (2.7) depends on λ ∈ [0, 1] and its fixed
point for λ = 1 are solutions of (2.8).

3. A nonlinear second-order anisotropic reaction-
diffusion model in image analysis

The nonlinear parabolic second-order PDE problem (1.4) can be applied for image
denoising, enhancement, restoration, and segmentation. In Section 3 we consider a
particularization of this differential model by setting the diffusivity (edge-stopping)
function K

(
vx(t, x)

)
as the following form

K : [0,∞) → (0, 1], K(s) =
1

e

(s
c

)2 , (3.1)

where the parameter c is the conductance (see [28], p. 633). Also, we may take
f = w = 0 and q(t, x) = 1, t ∈ [0, T ], x = (x1, x2) ∈ ∂Ω. Therefore, the following
PDE scheme with homogeneous Cauchy-Neumann boundary conditions is achieved:

p1

∂

∂t
v(t, x)− div

(
p

2
K
(
∥vx(t, x)∥

)
∇v(t, x)

)
= p3

[
v(t, x)− v3(t, x)

]
, in Q,

∂

∂nv(t, x) + v(t, x) = 0, on Σ,

v(0, x) = v0(x), on Ω.

(3.2)

The edge-stopping (diffusivity) function in (3.1) satisfies the main conditions
required by a proper diffusion, being positive monotonically decreasing, and con-
verging to zero [28, 33]. Moreover, it is easy to check that K in (3.1) satisfies
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the assumption (2.3) in Theorem 2.1 and thus the nonlinear anisotropic reaction-
diffusion model (3.2) is well-posed, as we proved in the previous section. So, it
admits a unique classic solution v(t, x) ∈ W 1,2

p (Q), that represents the evolving im-
age of the observed image v(0, x) = v0(x). That solution is determined by solving
numerically the nonlinear reaction-diffusion model (3.2), using the finite-differences
method.

3.1. Numerical approximation
In this subsection we propose a numerical approximation scheme for the new non-
linear reaction-diffusion model (3.2) based on the finite difference method (see
also [2, 3]). By using a grid of space size h, one quantizes the space coordinates
x = (x1, x2) as:

x1i = ih, x2j = jh, for all i = 1, 2 . . . , I, j = 1, 2, . . . , J,

where [Ih× Jh] represents the dimension of the support image.
Given a positive value T and considering M as the number of equidistant nodes

in which is divided the time interval [0, T ], we set

tm = (m− 1)ε, m = 1, 2, . . . ,M, ε = T/(M − 1).

Let’s denote by vmi,j the approximate values in the point (tm, x1i, x2j) of the
unknown function v(t, x) in (3.2), i.e.

vmi,j = v(tm, x1i, x2j), m = 1, 2, . . . ,M, i = 1, 2 . . . , I, j = 1, 2, . . . , J,

or, for later use

vm =
(
vm1,1, v

m
2,1, . . . , v

m
Ih,Jh

)T
m = 1, 2, . . . ,M. (3.3)

From the initial condition (3.2)3, we have

v(0, x) ≈ v1 = v(t1, x1i, x2j) = v0(x1i, x2j), i = 1, I, j = 1, J. (3.4)

To approximate the partial derivative with respect to time, ∂

∂t
v(t, x), we em-

ployed a second-order scheme (see [30]):

∂

∂t
v(tm+1, x1i, x2j) ≈

3vm+1
i,j − 4vmi,j + vm−1

i,j

2ε
, (3.5)

m = 2, 3, . . . ,M − 1, i = 1, I, j = 1, J .
The partial differential equation in (3.2)1 can be written in the form (vx(t, x) =

∇v(t, x))

p
1

∂

∂t
v(t, x) + p

3

[
v3(t, x)− v(t, x)

]
= p

2

[
∂

∂x1

(
K(∥vx(t, x)∥)vx1

)
+

∂

∂x2

(
K(∥vx(t, x)∥)vx2

)]
.

(3.6)
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Its left term is approximated as

p1

3vm+1
i,j − 4vmi,j + vm−1

i,j

2ε
+ p3

[
(vmi,j)

3 − vmi,j
]
,

and the right term is discretized using central differences (see [3] and references
therein). Thus, we determine Ki,j = K(∥∇vi,j∥), where

∥∇vi,j∥ ≈

√(
vmi+1,j − vmi−1,j

2h

)2

+

(
vmi,j+1 − vmi,j−1

2h

)2

,

for all i = 1, 2 . . . , I, j = 1, 2, . . . , J.

The component ∂

∂x1
(K(∥vx(t, x)∥)vx1

) is discretized as

Ki+ 1
2 ,j

(vmi+1,j − vmi,j)−Ki− 1
2 ,j

(vmi,j − vmi−1,j)

while ∂

∂x2
(K(∥vx(t, x)∥)vx2) is approximated by

Ki,j+ 1
2
(vmi,j+1 − vmi,j)−Ki,j− 1

2
(vmi,j − vmi,j−1)

where
Ki± 1

2 ,j
=

Ki±1,j +Ki,j

2
, Ki,j± 1

2
=

Ki,j±1 +Ki,j

2
.

Finally, one obtains the following explicit numerical approximation scheme:

3p
1

2ε
vm+1
i,j =

(
2p

1

ε
+ p

3

)
vmi,j − p

3
(vmi,j)

3 − p
1

2ε
vm−1
i,j +

1

p
2

vmi,j

∣∣∣
∂Ω

+ p
2

[
Ki+ 1

2 ,j
(vmi+1,j − vmi,j)−Ki− 1

2 ,j
(vmi,j − vmi−1,j)

+Ki,j+ 1
2
(vmi,j+1 − vmi,j)−Ki,j− 1

2
(vmi,j − vmi,j−1)

]
.

(3.7)

3.2. Experimental results
The iterative numerical approximation scheme provided by (3.7) has been success-
fully applied in our restoration experiments, for each m = 1, 2, . . . ,M − 1, starting
with v1 = v0(x) (see (3.4)), which represents the initial [Ih× Jh] noisy image. The
numerical tests consider the Allen-Cahn equation (see [1]), i.e., in the nonlinear
reaction-diffusion equations (3.2) we take p

1
= 1, p

2
= 200 and p

3
= 0.0001. The

developed explicit numerical approximation scheme is consistent to the nonlinear
second-order anisotropic reaction-diffusion model given by (3.2).

The performance of the proposed restoration technique has been assessed by
using the well-known performance measures Peak Signal to Noise Ratio (PSNR)
(see [2, 3] and reference therein).

Some restoration results provided by these new techniques are displayed in fig-
ures 1–3. All pictures in Figure 1 were contaminated with same amount of noise.
Images that have a higher segmentation, first two rows, will be harder to reconstruct
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Figure 1. Noise reduction applied to 4 different pictures.

(lower PSNR) while more omogenos images, last two rows, will be reconstructed
with a higher affinity grade.

In Figure 2 a) we can see a 100x100 pixel area, taken from original picture in
Figure 3 a), represented as a 3D visualization of pixel intensity. In 2 b) the same
area but taken from the noise contaminated picture Figure 3 b) second row, is also
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Figure 2. 3D detail of a 100x100 pixels region for a) original image b) noise contaminated image and
c) noise removed image.

represented in same 3D manner. This way we can visualize, comparing 2 a) and
b), the amount of noise added to original picture, in b) the edges become almost
invisible for the respective 100x100 pixel area. Applying the noise removal model
detailed in (3.2) respectively (3.7) to b) we obtain c). The visualisation in Figure
2 c) shows the noise is removed and the resulting picture is closely following the
structure of original picture in a). All edges are well preserved (this we can see
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comparing a) and c)) while all sharp peaks in b) are removed.
Same original picture contaminated with different amount of noise, is considered

in Figure 3. The noise doubles from top to bottom row. As expected, with less
amount of noise, the reconstructed image will be closer to original after restoration
(top row has the best PSNR).

The performed denoising tests show that our PDE-based scheme reduces con-
siderably the noise, while preserving the image boundaries and other important
features. Also, it avoids unintended effects, such as image blurring, blocky effect or
speckle noise (see [3, 28], for example).

Figure 3. An original picture contaminated with different amount of noise.

In Figure 4 we are showing the evolution of PSNR for up to 20 time iterations.
The plots also consider various input noise added to the original picture. We can
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see that no matter of the input noise the model converges in about 10 iterations.
After 10 iterations the PSNR value is stabilized at it’s best value for the given input
image.
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Figure 4. Number of iterations taken to converge to best PSNR, given a picture contaminated with
different amount of noise.

4. Conclusions
We study the well-posedness of the solution to a nonlinear second-order anisotropic
reaction-diffusion problem (1.4) (or (1.1)) with principal part in divergence form and
with non-homogeneous Neumann boundary conditions and the mobility K(vx(t, x)),
(t, x) ∈ Q = (0, T ]×Ω, Ω ⊂ IR2. We use the Leray-Schauder principle to prove the
existence and uniqueness results and the Lp theory to obtain regularity properties
of the solution. Moreover, the a priori estimates are done in Lp(Q), implying a
better estimates of v(t, x) (see [3, 4, 7, 9, 15,20,21,24]).

The rigorous mathematical investigation performed here are mainly used to
analyze the well-posedness of the nonlinear anisotropic reaction-diffusion model
(3.2), demonstrating the existence of a unique classical solution v(t, x) ∈ W 1,2

p (Q).
Next, using the finite-difference method, an explicit second-order approximation

scheme is constructed (see (3.7)) for the proposed second-order PDE model (3.2).
This scheme converges fast to the approximation of its unique classical solution
v(t, x) ∈ W 1,2

p (Q), representing the optimal restoration vM , since the number of
iterations, M, takes low values. Exactly, by using a single method (PSNR), we
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gained in efficiency of our proposed model (problem (3.2)), as we have 10 iterations
(see Figure 4) compared to the 35-th ones of [3, p. 180].

In our future works, we will improve the reaction-diffusion-based restoration
scheme (3.2), by modelling new edge-stopping functions (see [28]). Also, we will
apply this nonlinear PDE model in order to obtain higher-order PDE denoising
schemes, such as the fourth-order PDE approaches.

The results of this paper may be applied in the quantitative study of the model
(1.4) and in the analysis of distributed and/or boundary nonlinear optimal control
problems governed by such a second-order boundary value problem.
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