
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 11, Number 5, October 2021, 2387–2401 DOI:10.11948/20200397

TIKHONOV REGULARIZATION METHOD OF
AN INVERSE SPACE-DEPENDENT SOURCE

PROBLEM FOR A TIME-SPACE FRACTIONAL
DIFFUSION EQUATION∗

Jing Li1,2,†, Gongsheng Tong1, Rouzi Duan1, Shanlin Qin3

Abstract The aim of this paper is to identify a space-dependent source term
in the time-space fractional diffusion equation with an initial-boundary data
and an additional measurement data at the final time point. A series ex-
pression for the solution of the direct problem is used to transfer the inverse
problem into the first type of Fredholm integral equation. Before solving the
inverse problem, the uniqueness of its solution is proved. We then use the
Tikhonov regularization method to deal with the integral equation and ob-
tain a series expression for the regularized solution of the inverse problem.
Moreover, according to the prior and the posterior regularization parameter
selection rules, we prove the convergence rates of the regularization solution.
Finally, we provide some numerical experiments to show the effectiveness of
our method.
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diffusion equation, Tikhonov regularization.
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1. Introduction
Fractional derivatives provide a promising tool for the description of the abnormal
diffusion in the heterogeneous and fractal media. As an example, the time-space
fractional diffusion equation has received much attention among researchers since it
can model complex physical phenomena in biology, chemistry and signal processing
et al. [3, 4, 9, 20]. There are many theoretical works about the direct problems
of the time-space fractional diffusion equations. For example, Guo et al. [5, 13]
studied the well-posedness, the attractors, and the asymptotic behavior of the time-
space fractional diffusion equation. Different numerical schemes based on the finite
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difference/element methods, the ADI method, the spectral method and the Fourier
fast method are proposed to obtain its numerical solution [12,14,16,22,27,31].

In many practical applications, the absence of a part of the initial data, the
boundary coefficient or the source term will lead to an inverse problem (IP), where
these parameters are required to be determined. Recently, the inverse source prob-
lems have been extensively considered for the time fractional diffusion equations.
For example, Sakamoto and Yamamoto [19] established the uniqueness results of
several inverse time-dependent source problems. Sun and Liu [21] employed the
conjugate gradient method to identify the unknown time-dependent source in a
distributed time fractional diffusion equation. Liu et al. [17] used two regular-
ization methods to recover the time-dependent factors of a time fractional diffu-
sion equation with non-local measured data. Wei and Wang [28] solved an inverse
space-dependent source problem for the time fractional diffusion equation by a mod-
ified quasi-boundary value method. By using the Tikhonov regularization method,
Wei also [29] identified a time-dependent source term in a multi-dimensional time
fractional diffusion equation with boundary Cauchy data. This method was also
used to investigated an inverse source problem for a time fractional diffusion-wave
equation [30]. Nguyen Minh Dien et al. [1] investigated a multi-dimensional space-
dependent heat source in a time fractional diffusion equation by using the Tikhonov
method. However, the above-mentioned works are predominantly focused on the
time fractional diffusion equation, and the inverse problem for the time-space frac-
tional diffusion equation is relatively less studied.

In this paper, we consider the following time-space fractional diffusion equation:
∂α
0+u(x, t) = −(−∆)

β
2 u(x, t) + f(x)p(t), x ∈ Ω, t ∈ (0, T ],

u(x, 0) = ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ].

(1.1)

with addition data u(x, T ) = g(x). In (1.1), the unknown source term f(x) is yet
to be determined.

Here, Ω ⊂ Rd(d = 1, 2 or 3) is a bounded domain with a sufficient smooth
boundary ∂Ω; u represents the pollutant concentration at the position x and the
time t; and ∂α

0+ is the Caputo left-sided fractional derivative of order α ∈ (0, 1]
defined by

∂α
0+u(x, t) =


1

Γ(1−α)

∫ t

0
ut(x,τ)
(t−τ)α dτ, 0 < α < 1,

ut(x, t), α = 1,
(1.2)

where Γ(·) is the Gamma function. (−∆)
β
2 is the space fractional Laplacian operator

of order β ∈ (1, 2), whose definition will be given in Definition 2.1.
Since the measured noise is unavoidable, we assume that the noisy measurement

data gδ(x) satisfies
∥ gδ(x)− g(x) ∥⩽ δ, (1.3)

where ∥ · ∥ denotes the L2(Ω) norm and δ > 0 is a noise level.
After studying the direct problem of (1.1), Wei and Li [15] combined the bound-

ary element method with a generalized Tikhonov regularization method to identify
a time-dependent source term. Tatar et al. [23–25] determined the orders of the
time-space fractional derivatives in (1.1). Tuan and Long [26] recovered the source
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term that depends only on the space by using a truncated Fourier method. More-
over, they gave the convergence estimation and the selection rules of the choices of
the regularization parameters, but provided with no numerical calculation. In this
paper, we discuss the numerical reconstruction of the source term f(x) in (1.1). We
use the Tikhonov regularization method to determine the source f(x) and present
some numerical experiments to show the effectiveness of this method. In this work,
we focus on:

(IP): Assume that the time-dependent source term p(t) is given, we will recon-
struct f(x) from the measurement gδ(x).

The structure of this paper is organized as follows. In Section 2, we give some
preliminary definitions and lemmas. The ill-posedness of the inverse problem, and
the conditional stability are studied in Section 3. In Section 4, we present the
Tikhonov regularization method and give the convergence rate of the regularized
solution. A numerical example is presented to show the effectiveness of our result
in Section 5.

2. Preliminaries
Throughout this paper, we use the following definitions and lemmas.

Definition 2.1 ( [15]). Let −∆ be the Laplacian operator in Ω and {λn, φn} be the
eigenvalues and the eigenvectors with Dirichlet homogeneous boundary conditions,
respectively −∆φn = λnφn, in Ω,

φn = 0, on ∂Ω.

Let

Hβ
0 (Ω) :=

{
u =

∞∑
n=1

anφn :∥ u ∥2Hβ
0 (Ω)

=

∞∑
n=1

a2nλ
β

n < ∞

}
.

For u ∈ Hβ
0 (Ω), the operator (−∆)

β
2 can be defined as follows :

(−∆)
β
2 u =

∞∑
n=1

anλ
β/2

n φn.

This operator maps Hβ
0 (Ω) to L2(Ω) with

∥ u ∥Hβ
0 (Ω)=∥ (−∆)

β
2 u ∥L2(Ω) .

Definition 2.2. The Mittag-Leffler function is

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0, β ∈ R are arbitrary constants.

Lemma 2.1 ( [18]). For 0 < α < 1, η > 0, we have 0 ≤ Eα,α(−η) ≤ 1
Γ(α) .

Moreover, Eα,α(−η) is a completely monotone increasing function for η > 0.
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Lemma 2.2 ( [18]). If 0 < α < 1, t > 0, then we have 0 < Eα,1(−t) < 1. Moreover,
Eα,1(−t) is a completely monotone increasing function for t > 0, and we obtain
0 < Eα,1(t) < Eα,1(0) = 1, ∀t > 0.

Lemma 2.3 ( [10]). If λ > 0, then we have

d

dt
Eα,1(−λtα) = −λtα−1Eα,α(−λtα), t > 0 and 0 < α < 1. (2.1)

Lemma 2.4 ( [10]). For α > 0, β ∈ R, it follows

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
, z ∈ C.

Lemma 2.5 ( [28]). For any λn that satisfies λn ≥ λ1 > 0, there exists a positive
constant C1 = 1− Eα,1(−λ1T

α) depending on α, T, λ1, such that

C1

Tαλn
⩽ Eα,α+1 (−λnT

α) ⩽ 1

Tαλn
. (2.2)

Lemma 2.6 ( [28]). For constants q > 0, µ > 0, ρ > 0, s ≥ λ1 > 0, we have

F (s) =
µs2−

q
2

µs2 + ρ
⩽

C2µ
q
4 , 0 < q < 4,

C3µ, q ⩾ 4,
(2.3)

G(s) =
µs1−

q
2

µs2 + ρ
⩽

C4µ
2+q
4 , 0 < q < 2,

C5µ, q ⩾ 2,
(2.4)

where C2 = C2(q, ρ) > 0, C3 = C3(q, ρ, λ1) > 0, C4 = C2(q, ρ) > 0, C5 =
C3(q, ρ, λ1) > 0 are independent of s.

3. Uniqueness and conditional stability for the in-
verse source problem

Denote the eigenvalues of the operator −∆ with the Dirichlet homogeneous bound-
ary condition as λn and the corresponding eigenfunctions as φn(x) ∈ H2(Ω)∩H1

0 (Ω).
Then we have −∆φn = λnφn and φn|∂Ω = 0. Additionally,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , lim
n−→∞

λn = +∞,

and {φn(x)}∞n=1 is an orthonormal basis in L2(Ω).

Theorem 3.1 ( [15]). Let ϕ ∈ Hβ
0 (Ω), f ∈ L2(Ω), and p ∈ AC[0, T ], where

AC[0, T ] is the space of functions which are absolutely continuous on [0, T ]. Then
there exists a unique weak solution u ∈ C([0, T ];L2(Ω))

⋂
L2(0, T ;Hβ

0 (Ω)) with
∂α
0+u ∈ C([0, T ];L2(Ω))

⋂
L2(0, T ;L2(Ω)) of (1.1), which is given by

u(x, t) =

∞∑
n=1

(ϕ, φn)Eα,1 (−λnt
α)φn(x)

+

∞∑
n=1

(f, φn)

∫ t

0

p(τ)(t− τ)α−1Eα,α (−λn(t− τ)α) dτφn(x),

(3.1)
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where λn = λ
β
2

n .

Let t = T in (3.1), then we have

g(x) = u(x, T ) =

∞∑
n=1

(ϕ, φn)Eα,1 (−λnT
α)φn(x)

+

∞∑
n=1

(f, φn)

∫ T

0

p(τ)(T − τ)α−1Eα,α (−λn(T − τ)α) dτφn(x).

Denote g1(x) = g(x)−
∑∞

n=1 (ϕ, φn)Eα,1 (−λnT
α)φn(x), and Qn(t) =

∫ t

0
p(τ)(t−

τ)α−1Eα,α (−λn(t− τ)α) dτ. Setting fn = (f, φn), g1n = (g1, φn), then we have

g1n = fnQn(T ). (3.2)

To find f(x), we just need to solve the following first kind integral equation

(Kf)(x) =

∫
Ω

k(x, ξ)f(ξ)dξ = g1(x), x ∈ Ω, (3.3)

where
k(x, ξ) =

∞∑
n=1

Qn(T )φn(x)φn(ξ).

Theorem 3.2. If p(t) ∈ C[0, T ] satisfying p(t) ≥ p0 > 0, ∀t ∈ [0, T ], then the
solution f(x) of problem (1.1) is unique.

Proof. By Lemma 2.1, we know Eα,α(−λn(t − τ)α) ⩾ 0 when τ ⩽ t. From
Lemmas 2.1 - 2.3, we have

Qn(T ) ⩾ p0

∫ T

0

(T − τ)α−1Eα,α (−λn(T − τ)α) dτ

=
p0
λn

Eα,1 (−λn(T − τ)α) |T0

= p0T
αEα,α+1 (−λnT

α) .

(3.4)

Furthermore, we know Qn(T ) > 0 via Lemma 2.5. Thus, from (3.2), it is obvious
that if g1(x) = 0, then f(x) = 0.

This proves the uniqueness of f(x).
Remark. K is a compact operator. From Kirsch [11], we conclude that the inverse
problem (IP) is ill-posed, i.e. the integral equation (3.3) is ill-posed. For example,
if we take ϕ(x) = 0, g1s(x) = gs(x) = φs(x)√

λs
in (1.1), then ∥ gs ∥= 1√

λs
→ 0

as s → ∞. The corresponding source terms are fs(x) = φs(x)

Qs(T )
√
λs

, and we have
∥ fs ∥= 1

Qs(T )
√
λs

. By Lemma 2.5, it can be concluded that

Qs(T ) ⩽∥ p ∥C[0,T ]

∫ T

0

(T − τ)α−1Eα,α (−λs(T − τ)α) dτ

=∥ p ∥C[0,T ] T
αEα,α+1 (−λsT

α) ⩽
∥ p ∥C[0,T ]

λs
.

(3.5)

Hence ∥ fs ∥= 1
Qs(T )

√
λs

⩾ λs

∥p∥C[0,T ]
→ ∞, as s → ∞.

Next, we’ll give a conditional stability about the source term f(x).
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Theorem 3.3. If p(t) ∈ C[0, T ], and p(t) ⩾ p0 > 0, t ∈ [0, T ]. Let f(x) ∈ H
βq
2
0 (Ω)

satisfy a priori bound condition

∥ f ∥
H

βq
2

0 (Ω)
⩽ E, q > 0, (3.6)

then we can assert that

∥ f ∥⩽ C6E
2

q+2 ∥ g1 ∥
q

q+2 , q > 0,

where C6 = (p0C1)
− q

q+2 is a constant depending on α, T, q, λ1, p0.

Proof. From (3.2) and the Hölder inequality, we have

∥ f ∥2 =

∞∑
n=1

f2
n =

∞∑
n=1

g21n
Q2

n(T )

=
∞∑

n=1

g
4

q+2

1n

Q2
n(T )

g
2q

q+2

1n

⩽
( ∞∑

n=1

g21n
Qq+2

n (T )

) 2
q+2
( ∞∑

n=1

g21n

) q
q+2

.

(3.7)

Applying Lemma 2.5 and the equation (3.4), it yields

∞∑
n=1

g21n
Qq+2

n (T )
⩽

∞∑
n=1

f2
n

(p0TαEα,α+1(−λnTα))
q

⩽
∞∑

n=1

f2
nλ

q
n (p0C1)

−q
=∥ f ∥2

H
βq
2

0 (Ω)
(p0C1)

−q
.

(3.8)

Combining (3.7) with (3.8), we obtian

∥ f ∥2⩽ C2
6 ∥ f ∥

4
q+2

H
βq
2

0 (Ω)

∥ g1 ∥
2q

q+2 ,

where C6 = (p0C1)
− q

q+2 . The proof is completed.

4. Tikhonov regularization method and convergence
rate

In this section, we will solve the integral equation (3.3). Due to the ill-posedness
of this equation, we utilize the Tikhonov regularization method to obtain the ap-
proximation solution. We then prove the convergence rates for the approximation
solutions.

The Tikhonov regularization method (see e.g., [6–8]) is used to solve the integral
equation (3.3) as follows :

min
f∈L2(Ω)

∥ Kf − g1 ∥2 +µ ∥ f ∥2, (4.1)
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where µ > 0 is a regularization parameter. Let K∗ be the adjoint of K. Since
{φn}∞n=1 are orthonormal in L2(Ω), it is easy to verify

K∗Kφn(ξ) = Q2
n(T )φn(ξ).

Hence, the singular values of K are σn = Qn(T ). Therefore, we conclude that
(see [2])

Ψn(x) =
Kφn(x)

∥ Kφn(x) ∥
= φn(x).

It is clear that Ψn(x) are orthonormal in L2(Ω) and the following formulas hold

Kφn(ξ) = σnΨn(x) = Qn(T )φn(x),

K∗Ψn(x) = σnφn(ξ) = Qn(T )Ψn(ξ).

Consequently, the singular system of K is (σn; Ψn(x), φn). The range of the operator
K is as follows

R(K) =

{
g1 ∈ L2(Ω)

∣∣∣∣∣
∞∑

n=1

(
g1n

Qn(t)

)2

< ∞

}
.

By Theorem 5.1 in [2], we know that the minimizer of (4.1) can be denoted by fµ
which satisfies

(K∗K + µI) fµ = K∗g1. (4.2)
Hence, for the compact linear operator K with singular systems (σn; Ψn(x), φn),
we obtain

fµ(x) =

∞∑
n=1

Qn(T )

Q2
n(T ) + µ

(g1, φn)φn(x). (4.3)

Additionally,

gδ1 = gδ −
∞∑

n=1

(ϕ, φn)Eα,1(−λnT
α)φn(x).

Thus, the Tikhonov regularized solution is

fδ
µ(x) =

∞∑
n=1

Qn(T )

Q2
n(T ) + µ

(
gδ1, φn

)
φn(x). (4.4)

Next, we give two convergence rate estimates for ∥ fδ
µ − f ∥ by using a priori

and a posteriori choice rules for the regularization parameter.

4.1. Convergence rate estimate under an a priori regulariza-
tion parameter choice rule

Theorem 4.1. Let p(t) ∈ C[0, T ], p(t) ≥ p0 > 0, ∀t ∈ [0, T ]. Suppose that the
priori condition (3.6) and the noise assumption (1.3) hold, then

(i) if 0 < q < 4 and choose µ = ( δ
E )

4
q+2 , we have

∥ fδ
µ − f ∥⩽ C7E

2
q+2 δ

q
q+2 ; (4.5)

(ii) if q ⩾ 4 and choose µ = ( δ
E )

2
3 , we have

∥ fδ
µ − f ∥⩽ C8E

1
3 δ

2
3 , (4.6)

where C7 = C7(α, T, λ1, p0, q) and C8 = C8(α, T, λ1, p0, q) are positive constants.
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Proof. From the triangle inequality, we know

∥ fδ
µ − f ∥⩽∥ fδ

µ − fµ ∥ + ∥ fµ − f ∥ . (4.7)

We firstly give an estimate for the first term on the right side of (4.7),

∥ fδ
µ − fµ ∥2=

∞∑
n=1

(
Qn(T )

Q2
n(T ) + µ

)2 (
gδ1n − g1n

)2 ⩽ δ2
(
sup
n

A(n)

)2

, (4.8)

where gδ1n = (gδ1, φn) and

A(n) =
|Qn(T )|

Q2
n(T ) + µ

⩽ 1

2
√
µ
.

Thus, we get
∥ fδ

µ − fµ ∥⩽ δ

2
√
µ
. (4.9)

Now we estimate the second term on the right side of (4.7)

fµ(x)− f(x) =

∞∑
n=1

(
Qn(T )

Q2
n(T ) + µ

− 1

Qn(T )

)
g1nφn(x)

=

∞∑
n=1

g1n
Qn(T )

−µ

Q2
n(T ) + µ

φn(x).

(4.10)

Applying the a priori bound condition (3.6), we obtain

∥ fµ(x)− f(x) ∥2 =

∞∑
n=1

g21n
Q2

n(T )
λq
n

(
−µ

Q2
n(T ) + µ

)2
1

λq
n

⩽∥ f ∥2
H

βq
2

0 (Ω)

(
sup
n

B(n)

)2

⩽ E2

(
sup
n

B(n)

)2

,

(4.11)

where B(n) = µλ
− q

2
n

Q2
n(T )+µ . From (3.4) and Lemma 2.5, we have

B(n) ⩽ µλ
2− q

2
n

(C1p0)2 + µλ2
n

. (4.12)

With the help of Lemma 2.6, it follows that

B(n) ⩽

C2µ
q
4 , 0 < q < 4,

C3µ, q ≥ 4,
(4.13)

where C2(α, T, λ1, p0, q) > 0 and C3(α, T, λ1, p0, q) > 0. Based on the above in-
equalities, we obtain

∥ fδ
µ − f ∥⩽ 1

2

δ
√
µ
+

C2Eµ
q
4 , 0 < q < 4,

C3Eµ, q ≥ 4.
(4.14)
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Choosing the regularization parameter µ by

µ =


(
δ
E

) 4
q+2 , 0 < q < 4,(

δ
E

) 2
3 , q ≥ 4.

(4.15)

Then, we conclude

∥ fδ
µ − f ∥⩽

C7E
2

q+2 δ
q

q+2 , 0 < q < 4,

C8E
1
3 δ

2
3 , q ≥ 4,

(4.16)

where C7 = C7(α, T, λ1, p0, q) > 0 and C8 = C8(α, T, λ1, p0, q) > 0, which completes
the proof.

4.2. Convergence rate estimate under an a posteriori regular-
ization parameter choice rule

In this subsection, we use a posterior regularization parameter principle (namely
the Morozov’s discrepancy principle) to select the regularization parameter µ in the
equation (4.4). By using the conditional stability estimate in Theorem 3.3, we can
derive a convergence rate for the regularized solution (4.4).

Define the orthogonal project operator F : L2(Ω) → R(K). Then according to
the equation (1.3), we have

∥ Fgδ1 − Fg1 ∥⩽∥ gδ1 − g1 ∥=∥ gδ − g ∥⩽ δ. (4.17)

The Morozov discrepancy principle here is to find µ such that

∥ Kfδ
µ − Fgδ1 ∥= τδ, (4.18)

where τ > 1 is a constant. According to the following lemma, we know there exists
a unique solution for (4.18) if ∥ Fgδ1 ∥> τδ.

Lemma 4.1. Setting ρ(µ) =∥ Kfδ
µ − Fgδ1 ∥, then the following results hold

(i) ρ(µ) is a continuous function;
(ii) limµ→0 ρ(µ) = 0;
(iii) limµ→+∞ ρ(µ) =∥ Fgδ1 ∥;
(iv) ρ(µ) is a strictly increasing function over µ ∈ (0,∞).

Proof. The proof can be straightforward given by the expression of

ρ(µ) =

( ∞∑
n=1

(
µ

Q2
n(T ) + µ

)2 (
gδ1n
)2) 1

2

.

Theorem 4.2. Let p(t) ∈ C[0, T ], p(t) ≥ p0 > 0, ∀t ∈ [0, T ]. Suppose that the
priori condition (3.6) and the noise assumption (1.3) hold, and there exists τ > 1
such that ∥ Fgδ1 ∥> τδ > 0. Additionally, the regularization parameter µ > 0 is
chosen by the Morozov’s discrepancy principle (4.18). Then
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(i) if 0 < q < 2, we get

∥ fδ
µ − f ∥⩽ C9E

2
q+2 δ

q
q+2 ; (4.19)

(ii) if q ⩾ 2, we obtain

∥ fδ
µ − f ∥⩽ C10E

1
2 δ

1
2 , (4.20)

where C9 = C9(α, T, λ1, p0, q, τ, p1) and C10 = C10(α, T, λ1, p0, q, τ, p1) are positive
constants.

Proof. From the triangle inequality, we have

∥ fδ
µ − f ∥⩽∥ fδ

µ − fµ ∥ + ∥ fµ − f ∥ . (4.21)

Firstly, we give an estimate for the second term on the right side of (4.21). Following
proof process of Theorem 4.3 in [30], we get

K
(
fµ(x)− f(x)

)
=

∞∑
n=1

g1n
−µ

Q2
n(T ) + µ

φn(x)

=

∞∑
n=1

(
g1n − gδ1n

) −µ

Q2
n(T ) + µ

φn(x) +

∞∑
n=1

gδ1n
−µ

Q2
n(T ) + µ

φn(x).

(4.22)
Combining (4.17) with (4.18), we have

∥ K (fµ(x)− f(x)) ∥⩽ δ + τδ = (τ + 1)δ. (4.23)

In addition, by applying the prior condition (3.6), it yields that

∥ fµ(x)− f(x) ∥
H

βq
2

0 (Ω)
=

( ∞∑
n=1

(
g1n

Qn(T )

−µ

Q2
n(T ) + µ

λ
q
2
n

)2
) 1

2

⩽
( ∞∑

n=1

(
g1n

Qn(T )

)2

λq
n

) 1
2

⩽ E.

(4.24)

By Theorem 3.3, we deduce that

∥ fµ(x)− f(x) ∥⩽ C6(τ + 1)
q

q+2E
2

q+2 δ
q

q+2 , ∀q > 0, (4.25)

where C6 = (p0C1)
− q

q+2 . Now we give an estimate for the first term on the right
side of (4.21). Similar to (4.9), we have

∥ fδ
µ − fµ ∥⩽ δ

2
√
µ
. (4.26)

From (4.18), we have

τδ =∥
∞∑

n=1

µ

Q2
n(T ) + µ

gδ1nφn(x) ∥

⩽∥
∞∑

n=1

µ

Q2
n(T ) + µ

(
gδ1n − g1n

)
φn(x) ∥ + ∥

∞∑
n=1

µ

Q2
n(T ) + µ

g1nφn(x) ∥

⩽ δ + J.

(4.27)
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Using the priori bound condition (3.6), we obtain

J =∥
∞∑

n=1

µQn(T )

Q2
n(T ) + µ

1

λ
q
2
n

g1n
Qn(T )

λ
q
2
nφn(x) ∥

⩽∥ f ∥
H

βq
2

0 (Ω)

(
sup
n

C(n)

)
⩽ E sup

n
C(n),

(4.28)

where C(n) = µQn(T )
Q2

n(T )+µ
1

λ
q
2
n

. Due to Lemma 2.5 and (3.5), we obtain

C(n) ⩽
µ p1

λn

(C1p0)2

λ2
n

+ µ

1

λ
q
2
n

⩽ p1µλ
1− q

2
n

(C1p0)2 + µλ2
n

, (4.29)

where p1 =∥ p ∥C[0,T ]. By Lemma 2.6, we can conclude that

C(n) ⩽

p1C4µ
2+q
4 , 0 < q < 2,

p1C5µ, q ⩾ 2,
(4.30)

where C4 (α, T, λ1, p0, q) > 0 and C5 (α, T, λ1, p0, q) > 0. Substitute (4.28) and
(4.30) into (4.27), we obtain

1

µ
⩽

 (p1C4

τ−1 )
4

q+2 (Eδ )
4

q+2 , 0 < q < 2,

p1C5

τ−1
E
δ , q ⩾ 2.

(4.31)

Substitute (4.31) into (4.26), we conclude

∥ fδ
µ − f ∥≤

C9E
2

q+2 δ
q

q+2 , 0 < q < 2,

C10E
1
2 δ

1
2 , q ≥ 2,

(4.32)

where C9 = C9(α, T, λ1, p0, q, τ, p1) and C10 = C10(α, T, λ1, p0, q, τ, p1) are positive
constants, which completes the proof.

5. Numerical example
In this section, we present an example to verify the effectiveness of the previous
regularization method.

We assume that the source function f(x) = cos(πx), p(t) = 1 in (1.1). Let
ϕ(x) = x2(1 − x)2, T = 1, Ω = (0, 1). Then one obtains the kernel k(xi, ξj) =∑∞

n=1
1
λn

Eα,α+1(−λnT
α)φn(xi)φn(ξj) in (3.3). During the computation, the Mittag-

Leffler function is calculated with an accuracy of 10−6.
To estimate the error of the numerical solution, we calculate the relative root-

mean-square error as follows:

ε(f) =

(∑n
i=1

(
(fδ

µ)i − f(xi)
)2∑n

i=1 f(xi)2

) 1
2

, (5.1)
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where i is uniformly distributed over the interval [0,1] with n = 100. The noisy
data is generated by adding a random perturbation, i.e.

gδ1 = g1 + δg1 · (2 · rand(size(g1))− 1),

where δ is the relative noise level.
Figures 1 shows the numerical results of the inverse source term f(x) for different

values of α and β with relative noise levels δ = 0, 1%, 5%, 10% respectively. It can
be seen that the proposed method can provide a good approximation of f(x) though
the precision is relatively poor at the endpoints due to the existence of singularities.
Table 1 presents the relative error of the inverse source term f(x) for different values
of α and β. From this table, we see that a higher noise in the data leads to a smaller
error in the results. Our results show that the Tikhonov regularization method
based on the compound trapezoidal formula method is effective for identifying the
source term in the time-space fractional diffusion equation.
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Figure 1. The numerical results of the inverse source term f(x) for (a) α = 0.3, β = 1.2; (b) α = 0.3, β =
1.8; (c) α = 0.7, β = 1.2; and (d) α = 0.7, β = 1.8 with different noise levels δ = 0, 0.01, 0.05 and 0.1

6. Concluding remarks
In this paper, we investigate an inverse problem of determining the space-dependent
source term for the time-space diffusion fractional equation with initial-boundary
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Table 1. The relative errors of the inverse source term ϵ(f) for different values of α and β

α, β

δ 0 0.0100 0.0500 0.1000

ε(f)

0.3, 1.2 0.0911 0.0842 0.0647 0.0695
0.3, 1.8 0.0969 0.0900 0.0695 0.0709
0.7, 1.2 0.1259 0.1172 0.0857 0.0630
0.7, 1.8 0.1228 0.1144 0.0848 0.0660

data and additional measurement data at the final time point. We adopt the
Tikhonov regularization method to obtain the regularized solution and prove the
convergence rates under the priori regularization parameter selection rule and Mori-
ozov’s discrepancy principle, respectively. The numerical example shows that our
proposed method is effective. For the future work, we will consider the non-uniform
grid method to improve the precision at the endpoint.
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