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Abstract In the paper, the authors propose an effective Kneser-type oscilla-
tion test for Property A for linear third-order delay differential equations that
ensures that any nonoscillatory solution converges to zero asymptotically. The
result is sharp when applied to Euler-type delay differential equation and im-
proves all existing results reported in the literature.
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1. Introduction
Consider the third-order linear delay differential equation

y′′′(t) + q(t)y(τ(t)) = 0, t ≥ t0 > 0, (1.1)

where q(t) ∈ C([t0,∞)) is nonnegative and does not eventually vanish identically,
and the delay function τ(t) ∈ C([t0,∞)) satisfies τ(t) ≤ t and τ(t) → ∞ as t → ∞.

By a solution of (1.1) we mean a three times differentiable real-valued function
y satisfying (1.1) for all large t. We restrict our attention to those solutions of (1.1)
that satisfy the condition sup {|y(t)| : T ≤ t < ∞} > 0 for any large T ≥ t0, and we
tacitly assume that equation (1.1) possesses such solutions.

As is customary, a nontrivial solution of (1.1) is termed oscillatory or nonoscil-
latory according to whether it does or does not have infinitely many zeros. Equation
(1.1) is is called oscillatory if all its solutions are oscillatory.

The investigation of qualitative properties of (1.1) is important for applications
since such equations are considered as valuable tools in the modelling of many
phenomena in different areas of applied mathematics and physics (see [16]). In
particular, oscillation theory of third-order differential equations with variable co-
efficients has attracted a great deal of attention over the last three decades as is
evidenced by the extensive research in the area.
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It follows from a classical result of Kiguradze [21, Lemma 1.1] that the set N of
all positive nonoscillatory solutions of (1.1) can be divided into the following two
classes:

N0 = {y(t) : (∃t1 ≥ t0)(∀t ≥ t1)(y(t) > 0, y′(t) < 0, y′′(t) > 0)} ,
N2 = {y(t) : (∃t1 ≥ t0)(∀t ≥ t1)(y(t) > 0, y′(t) > 0, y′′(t) > 0)} .

Solutions belonging to the class N0 are called Kneser solutions. It is known that in
the absence of a delay in (1.1), i.e., if τ(t) = t, the class N0 is always nonempty (see,
e.g., [18]). Therefore, results for third-order equations have been often accomplished
by introducing the concept of the so-called Property A. We say that equation (1.1)
has Property A if any solution y of (1.1) is either oscillatory or is a Kneser type
solution tending to zero as t → ∞ (see [21]).

To name the situation where N = N0, we will say equation (1.1) is almost
oscillatory. On the other hand, if the class N2 is nonempty, we will say that (1.1)
is nonoscillatory.

Comparison principles have been especially powerful tools in oscillation theory
since Sturm’s initial contribution to the subject. Their underlying feature is to
deduce the oscillatory properties of the given equation from those of a simpler one
whose oscillatory behavior is already known. Euler-type differential equations and
their various generalizations often serve as suitable comparison equations. Perhaps
the most familiar situation is the one for the second-order linear Euler equation

y′′(t) +
q0
t2
y(t) = 0, q0 > 0, (1.2)

which is oscillatory if and only if

q0 > max{−x(x− 1) : 0 < x < 1} =
1

4
.

In 1893, A. Kneser [22] was the first to use Sturmian comparison methods and
equation (1.2) to show that the linear equation

y′′(t) + q(t)y(t) = 0 (1.3)

is oscillatory if
lim inf
t→∞

t2q(t) >
1

4

and nonoscillatory if
lim sup
t→∞

t2q(t) <
1

4
.

An extension of Kneser’s oscillation criterion to the third-order ordinary differ-
ential equation (which is the special case of (1.1) with τ(t) = t)

y′′′(t) + q(t)y(t) = 0 (1.4)

was given by M. Hanan in 1961 [17, Theorem 5.7] and essentially kindled the cur-
rent interest in investigating the oscillatory and asymptotic behavior of third-order
differential equations.

Using the third-order Euler equation

y′′′(t) +
q0
t3
y(t) = 0, q0 > 0, (1.5)
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for comparison purposes, which is almost oscillatory if and only if

q0 > max{−x(x− 1)(x− 2) : 1 < x < 2} =
2

3
√
3
,

Hanan showed that (1.4) is almost oscillatory if

lim inf
t→∞

t3q(t) >
2

3
√
3

(1.6a)

and nonoscillatory (in the sense that all its solutions are nonoscillatory) if

lim sup
t→∞

t3q(t) <
2

3
√
3
. (1.6b)

The constant 2/(3
√
3) corresponding to 1/4 for the second-order equation (1.3) is

the best possible for (1.4) in the sense that all solutions of (1.5) are nonoscillatory
if q0 ≤ 2/(3

√
3).

A natural question that arises is how to extend Hanan’s Kneser-type criterion
(1.6) from the ordinary equation (1.4) to the delay equation (1.1). To test the
strength of the results, we shall use the delay Euler-type equation

y′′′(t) +
q0
k2t3

y(kt) = 0, q0 > 0, k ∈ (0, 1]. (1.7)

Applying Mahfoud’s comparison theorem [24, Theorem 1], we see that (1.7) is
almost oscillatory if

q0 >
2

3
√
3
. (1.8)

For nonoscillation, we use the trial solution y(t) = tx, x ∈ (1, 2) to see that un-
bounded solutions y ∈ N2 of (1.7) exist if x satisfies the indicial equation

f(x) := −x(x− 1)(x− 2)k2−x = q0, (1.9)

that is, if
q0 ≤ max {f(x) : 1 < x < 2} =: m2. (1.10)

Clearly, there is the gap (m2, 2/(3
√
3)] between the almost oscillation and nonoscil-

lation of (1.7) in case k < 1. To the best of our knowledge, this gap cannot be
completely filled by any existing results for (1.1) obtained by different techniques;
see the papers [1–6, 8–11, 13–15, 23, 26, 28] and the references cited therein or the
recent monographs of Padhi and Pati [25] and Saker [27] for extensive bibliographies
on the subject.

The purpose of the paper is to establish an efficient criterion for detecting Prop-
erty A for equation (1.1) that is sharp in the sense that it gives a necessary and
sufficient condition for the delay Euler equation (1.7) to be almost oscillatory (or,
more precisely, to have Property A). Our motivation comes from the recent papers
[12, 19, 20], where a similar technique lead to obtaining sharp oscillation results for
second-order half-linear differential equations with deviating arguments. A major
advantage of this technique is its potential for investigating more general nonlinear
differential equations.
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2. Main results
The main result in this paper is the following.

Theorem 2.1. Let
λ∗ := lim inf

t→∞

t

τ(t)
.

If

lim inf
t→∞

τ2(t)tq(t) >

{
0, for λ∗ = ∞,

M2, for λ∗ < ∞,
(2.1)

where M2 is defined by
M2 := max

{
−x(x− 1)(x− 2)λx−2

∗ : 1 < x < 2
}
, (2.2)

then equation (1.1) has Property A.

Note that for τ(t) = t, Theorem 2.1 reduces to the oscillation part of Hanan’s
result [17, Theorem 5.7] (see (1.6)). Moreover, as an immediate consequence of
Theorem 2.1 and the nonoscillation condition (1.10), we obtain the following sharp
result for the delay Euler equation (1.7).

Corollary 2.1. The Euler equation (1.7) has Property A if and only if
q0 > M2 = m2. (2.3)

Remark 2.1. The particular case λ∗ = ∞ applies, for example, if the function τ
is of the form τ(t) = tk, k ∈ (0, 1). As an illustration of Theorem 2.1 in this special
case, we can conclude that the equation

y′′′(t) +
q0

t1+2/k
y
(
tk
)
= 0, q0 > 0, 0 < k < 1, (2.4)

has Property A for any q0.

Remark 2.2. In many results for third-order delay differential equations including
(1.1) as a particular case, the authors require that the delay function τ(t) is strictly
increasing. This is not needed in Theorem 2.1.

Remark 2.3. In general, results in the literature consist of two independent condi-
tions, the first one ensuring that any Kneser solution tends to zero, and the second
one for the nonexistence of solutions in the class N2. To the contrary, our Theorem
2.1 is a single-condition criterion guaranteeing the same property.

Open problem. It is known that the delay argument τ(t) can cause the oscillation
of all solutions of (1.1), that is, N0 = N2 = ∅. In a recent work [7], the authors
show that the delay Euler equation (1.7) is oscillatory if and only if

q0 > max{m0,m2},

where m0 and m2 are local maxima of f(x) defined by (1.9) on (−∞, 0) and (1, 2),
respectively. In view of this, the open problem is to show whether

lim inf
t→∞

τ2(t)tq(t) > max{M0,M2},

where λ∗ < ∞ and
M0 := max

{
−x(x− 1)(x− 2)λx−2

∗ : −∞ < x < 0
}
.

is sufficient or not for the oscillation of (1.1).
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3. Auxiliary results and proof of the main theorem
We assume that all functional inequalities hold eventually, that is, they are satisfied
for all t large enough. As usual, and without loss of generality, we can assume from
now on that nonoscillatory solutions of (1.1) are eventually positive.

In the sequel, we will make use of the constants

β∗ := lim inf
t→∞

τ2(t)tq(t)

2
and λ∗ := lim inf

t→∞

t

τ(t)
.

The following lemmas require the positivity of β∗ as does Theorem 2.1. Clearly, for
any β ∈ (0, β∗) and λ ∈ (1, λ∗) for τ(t) < t, and λ = λ∗ for τ(t) = t, there is a
t1 ≥ t0 large enough such that

τ2(t)tq(t)

2
≥ β and t

τ(t)
≥ λ, t ≥ t1. (3.1)

We will make use of these facts in our proofs.

Lemma 3.1. Assume that β∗ > 0. If y is a solution of (1.1) belonging to N0, then
limt→∞ y(t) = 0.

Proof. Let y(t) ∈ N0 and choose t1 ≥ t0 so that y(τ(t)) > 0 on [t1,∞). Clearly,
there exists a finite number ℓ such that limt→∞ y(t) = ℓ ≥ 0. Assume that ℓ > 0.
Then there exists t2 ≥ t1 such that y(τ(t)) ≥ ℓ for t ≥ t2. Using this and (3.1) in
(1.1), we see that

−y′′′(t) = q(t)y(τ(t)) ≥ 2β

τ2(t)t
y(τ(t)) ≥ 2βℓ

τ2(t)t
≥ 2βℓ

t3
t2

τ2(t)
≥ 2βℓλ2

t3
.

Integrating the above inequality twice from t to ∞, we have

− y′(t) ≥ βℓλ2

t
. (3.2)

Integrating (3.2) from t2 to t, we arrive at

y(t2) ≥ y(t) + βℓλ2 ln
t

t2
→ ∞ as t → ∞,

which contradicts the fact that y is bounded. Hence ℓ = 0 and this proves the
lemma.

In our next lemma, we prove some basic but important properties of solutions
belonging to the class N2.

Lemma 3.2. Assume that β∗ > 0 and let y be a solution (1.1) belonging to N2.
Then for t sufficiently large:

(i) limt→∞ y(t) = limt→∞ y′(t) = ∞;
(ii) limt→∞ y′′(t) = limt→∞ y′(t)/t = limt→∞ y(t)/t2 = 0;

(iii) y′(t)/t is decreasing and y′(t) > ty′′(t);
(iv) y(t)/t2 is decreasing and y(t) > ty′(t)/2.
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Proof. Let y ∈ N2 and choose t1 ≥ t0 such that y(τ(t)) > 0 for t ≥ t1.
(i) First, note that β∗ > 0 implies∫ ∞

t0

τ2(s)q(s)ds = ∞ (3.3)

since ∫ t

t1

τ2(s)q(s)ds ≥ 2β

∫ t

t1

ds

s
= 2β ln

t

t1
→ ∞ as t → ∞.

Now y′ is increasing and positive, so y′(t) ≥ y′(t1) =: ℓ for t ≥ t1. Integrating from
t1 to t, we obtain

y(t) ≥ ℓ(t− t1). (3.4)

Letting t to ∞, it is obvious that y → ∞. Employing (3.4) in (1.1) yields

− y′′′(t) ≥ ℓq(t)(τ(t)− t1) (3.5)

and integrating (3.5) from t to ∞, we obtain

y′′(t) ≥ ℓ

∫ ∞

t

q(s)(τ(s)− t1)ds.

Integrating the last inequatity from t1 to t, interchanging the order of integration,
and using (3.3) in resulting inequality, we arrive at

y′(t) ≥ ℓ

∫ t

t1

∫ ∞

u

q(s)(τ(s)− t1)dsdu =

∫ t

t1

q(s)(τ(s)− t1)(s− t1)ds

≥
∫ t

t1

q(s)(τ(s)− t1)
2ds → ∞ as t → ∞

which finishes the proof of (i).
(ii) Since y′′ is a positive decreasing function,

lim
t→∞

y′′(t) = ℓ ≥ 0.

If ℓ > 0, then y′′(t) ≥ ℓ > 0 and so y(t) ≥ ℓ(t− t1)
2/2. Using this in (1.1), we have

y′′′(t) ≥ q(t)y(τ(t)) ≥ ℓ

2
q(t)(τ(t)− t1)

2. (3.6)

Integrating from t1 to t gives

y′′(t) ≥ ℓ

2

∫ t

t1

q(s)(τ(s)− t1)
2ds → ∞ as t → ∞,

which is a contradiction. Hence, ℓ = 0. Applying l’Hôspital’s rule and using (i), we
see that (ii) holds.

(iii) Again using the fact that y′′ is positive and decreasing, it follows that

y′(t) = y′(t1) +

∫ t

t1

y′′(s)ds ≥ y′(t1) + y′′(t)(t− t1).
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In view of (ii), there is a t2 > t1 such that y′(t1) > y′′(t)t1 for t ≥ t2. Thus,

y′(t) > ty′′(t), t ≥ t2,

and consequently, (
y′(t)

t

)′

=
y′′(t)t− y′(t)

t2
< 0,

which proves (iii).
(iv) In view of the fact that y′(t)/t is a decreasing function tending to zero,

we see that

y(t) = y(t1) +

∫ t

t1

y′(s)

s
sds ≥ y(t1) +

y′(t)

t

(
t2

2
− t21

2

)
=

y′(t)t

2
+ y(t1)−

y′(t)t21
2t

>
y′(t)t

2

for t ≥ t3 for some t3 ≥ t2. Therefore,(
y(t)

t2

)′

=
y′(t)t2 − 2ty(t)

t4
< 0,

which proves (iv) and completes the proof of the lemma.
Our next lemma provides some additional properties of solutions in the class

N2.

Lemma 3.3. Assume that β∗ > 0 and y ∈ N2. Then, for any β ∈ (0, β∗) and t
sufficiently large:

(v) y′(t)/t1−β is decreasing and ty′′(t) < (1− β)y′(t);
(vi) β < 1;

(vii) limt→∞ y′(t)/t1−β = 0;
(viii) y(t)/t2−β is decreasing and y(t) > y′(t)t/(2− β).

Proof. Let y ∈ N2 with y(τ(t)) > 0 for t ≥ t1 ≥ t0.
(v) Define the function

z(t) := y′(t)− ty′′(t),

which is positive by (iii). Differentiating z, and using (1.1) and (3.1), we see that

z′(t) = (y′ − ty′′)
′
= −ty′′′(t) = tq(t)y(τ(t)) ≥ 2β

y(τ(t))

τ2(t)
. (3.7)

Using (iv), we have

z′(t) ≥ 2β
y(t)

t2
≥ β

y′(t)

t

for t ≥ t2 for some t2 ≥ t1. Integrating from t2 to t and using the fact that y′(t)/t
is decreasing (see (iii)), there exists t3 ≥ t2 such that

z(t) = z(t2) + β

∫ t

t2

y′(s)

s
ds ≥ z(t2) + β

y′(t)

t
(t− t2) > βy′(t), t ≥ t3. (3.8)
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That is,
ty′′(t) < (1− β)y′(t), t ≥ t3.

Hence, for t ≥ t3,(
y′(t)

t1−β

)′

=
y′′(t)t1−β − (1− β)t−βy′(t)

t2(1−β)
=

y′′(t)t− (1− β)y′(t)

t2−β
< 0, (3.9)

so part (v) holds.
Part (vi) clearly holds in view of (v) and (iii).
To prove (vii), it suffices to show that there is an ε > 1 such that(

y′(t)

t1−εβ

)′

< 0 (3.10)

for large t. Using (3.9), we see that for any k ∈ (0, 1) and t sufficiently large, say
t ≥ t4 ≥ t3,

y(t) = y(t1) +

∫ t

t1

y′(s)

s1−β
s1−βds

≥ y(t1) +
y′(t)

t1−β

∫ t

t1

s1−βds

= y(t1) +
y′(t)

t1−β

t2−β − t2−β
1

2− β
≥ k

y′(t)t

2− β
, (3.11)

which implies ( y

t(2−β)/k

)′

≤ 0, t ≥ t4.

Employing the above monotonicity in (3.7) gives

z′(t)≥2β
y(τ(t))

τ2(t)
=2β

y(τ(t))τ (2−β)/k(t)

τ2+(2−β)/k(t)
≥2β

y(t)τ (2−β)/k(t)

t(2−β)/kτ2(t)
=2β

y(t)

t2

(
t

τ(t)

)2−(2−β)/k

.

If we choose k > (2− β)/2, then(
t

τ(t)

)2−(2−β)/k

≥ λ2−(2−β)/k ≥ 1

and using (3.11), we have

z′(t) ≥ 2β
y(t)

t2
≥ 2βk

2− β

y′(t)

t
. (3.12)

Integrating the last inequality from t4 to t and using (iii), we see that there exists
t5 > t4 such that

z(t) ≥ z(t3) +
2βk

2− β

y′(t)

t
(t− t3) >

2βk

2− β
y′(t), t ≥ t5.

In view of the definition of z, we conclude that

ty′′(t) <

(
1− 2βk

2− β

)
y′(t),
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which implies that (3.10) holds with ε = 2k/(2− β) > 1. This proves (vii).
(viii) Using (vii) in (3.11), there exists t6 > t5 such that

y(t1)−
y′(t)

t1−β

t2−β
1

2− β
> 0, t ≥ t6,

and so (3.11) becomes
(2− β)y(t) > y′(t)t, t ≥ t6, (3.13)

which implies(
y(t)

t2−β

)′

=
y′(t)t2−β − (2− β)t1−βy(t)

t2(2−β)
=

y′(t)t− (2− β)y(t)

t3−β
< 0

for t ≥ t6. This proves (viii) and finishes the proof of the lemma.

Lemma 3.4. Assume that β∗ > 0 and λ∗ = ∞. Then N2 = ∅.

Proof. Suppose, to the contrary, that y ∈ N2 ̸= ∅ and let t1 ≥ t0 be such that
y(τ(t)) > 0 for t ≥ t1. Since λ∗ = ∞, for any λ > 1, there exists tλ ≥ t1 such that
t/τ(t) ≥ λ for t ≥ tλ. From (3.7), (viii), and (3.1), for t ≥ t2 ≥ tλ,

z′(t) ≥ 2β
y(τ(t))

τ2(t)
≥ 2β

y(t)

t2

(
t

τ(t)

)β

≥ 2βλβ y(t)

t2
>

2

2− β
βλβ y

′(t)

t
. (3.14)

As λ can be arbitrarily large, we can choose it such that λβ > (2−β)/2β. Therefore,

z′(t) >
y′(t)

t
.

Integrating and using the fact that y′(t)/t is decreasing, we obtain

z(t) ≥ z(t1) +
y′(t)

t
(t− t1),

so z(t) > y′(t) for t sufficiently large, say t ≥ t2 for some t2 ≥ t1. This implies
ty′′(t) < 0, which is a contradiction, and completes te proof of the lemma.

In view of Lemma 3.4, from this point forward it is reasonable to assume that
λ∗ is a finite constant so that N2 ̸= ∅. It is then possible to initiate an iterative
procedure that will improve the monotonicity results in Lemma 3.3 and that in turn
will lead to a sharp oscillation result for equation (1.1). To this end, let us define
the sequence {βn}n∈N0

by

β0 := β∗, βn :=
2β0λ

βn−1
∗

(2− βn−1)(1− βn−1)
. (3.15)

By induction, it is easy to verify that if βi < 1 for i = 1, 2, . . . , n, then βn+1 exists
and

βn+1

βn
= ℓn > 1, (3.16)

where

ℓ0 :=
β1

β0
=

2λβ0
∗

(2− β0)(1− β0)
> 1,
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ℓn :=
βn+1

βn
=

λβn
∗ (2− βn−1)(1− βn−1)

λ
βn−1
∗ (2− βn)(1− βn)

> 1.

The following lemma is an iterative version of Lemma 3.3.

Lemma 3.5. Assume that β∗ > 0 and y is a solution of (1.1) belonging to the class
N2. Then for any εn ∈ (0, 1) and sufficiently large t:

(I)n y′(t)/t1−εnβn is decreasing and ty′′(t) < (1− εnβn)y
′(t);

(II)n εnβn < 1;
(III)n limt→∞ y′(t)/t1−εnβn = 0;
(IV)n y(t)/t2−εnβn is decreasing and y(t) > y′(t)t/(2− εnβn).

Proof. Let y ∈ N2 with y(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. We will proceed
by induction on n. For n = 0, the conclusion follows from Lemma 3.3, where
ε0 = β/β∗ and limβ→β∗ ε0 = 1.

Next, assume that (I)n–(IV)n hold for n ≥ 1 for t ≥ tn ≥ t1. We need to show
that they each hold for n+ 1.

(I)n Using (viii) and (3.1) in (3.7), we have

z′(t) = (y′ − ty′′)′ ≥ 2ε0β0
y(τ(t))

τ2(t)

= 2ε0β0
y(τ(t))

τ2−εnβn(t)τεnβn(t)

≥ 2ε0β0
y(t)

t2
tεnβn

τεnβn(t)

≥ 2ε0β0λ
εnβn

y(t)

t2

≥ 2ε0β0λ
εnβn

2− εnβn

y′(t)

t
.

Integrating from tn to t and using (v) and (vii) in the resulting inequality, we see
that there exists t′n > tn such that

z(t) ≥ z(tn) +
2ε0β0λ

εnβn

2− εnβn

∫ t

tn

y′(s)

s1−εnβnsεnβn
ds

≥ z(tn) +
2ε0β0λ

εnβn

(2− εnβn)(1− εnβn)

y′(t)

t1−εnβn

(
t1−εnβn − t1−εnβn

n

)
>

2ε0β0λ
εnβn

(2− εnβn)(1− εnβn)
y′(t)

= εn+1βn+1y
′(t), t ≥ t′n,

where
εn+1 = ε0

λεnβn

λβn
∗

(2− βn)(1− βn)

(2− εnβn)(1− εnβn)
, n ∈ N0.

Clearly,
lim

(λ→λ∗)(β→β0)
εn+1 = 1,
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which proves (I)n.
(II)n This clearly holds in view of (I)n and (iii).
(III)n As for the case n = 0, it will suffice to show that there is ε > 1 such

that (
y′(t)

t1−εεnβn

)′

< 0. (3.17)

Using (I)n, we see that for any k ∈ (0, 1), there exists t′′n ≥ t′n so that

y(t) = y(tn) +

∫ t

tn

y′(s)

s1−εnβn
s1−εnβnds

≥ y(tn) +
y′(t)

t1−εnβn

∫ t

tn

s1−εnβnds

= y(tn) +
y′(t)

t1−εnβn

t2−εnβn − t2−εnβn
n

2− εnβn
≥ k

y′(t)t

2− εnβn
, t ≥ t′′n, (3.18)

that is, ( y

t(2−εnβn)/k

)′

< 0. (3.19)

Then (3.7) and (3.19) imply

z′(t) ≥ 2ε0β0
y(τ(t))

τ2(t)

= 2ε0β0
y(τ(t))τ (2−εnβn)/k(t)

τ2+(2−εnβn)/k(t)

≥ 2ε0β0
y(t)

t(2−εnβn)/k

τ (2−εnβn)/k(t)

τ2(t)
(3.20)

= 2ε0β0
y(t)

t2
τ (2−εnβn)/k(t)

τ2(t)

t2

t(2−εnβn)/k

= 2ε0β0
y(t)

t2

(
t

τ(t)

)2−(2−εnβn)/k

.

Now take k > (2− εnβn)/2. Then again by (iv),

z′(t) ≥ 2ε0β0
y(t)

t2
≥ 2ε0β0k

2− εnβn

y′(t)

t
.

Integrating from t′′n to t and using (ii), we have

z(t) ≥ z(t′′n) +
2ε0β0k

2− εnβn

y′(t)

t
(t− t′′n) >

2ε0β0k

2− εnβn
y′(t), t ≥ t′′′n ,

for some t′′′n ≥ t′′n. Therefore,

ty′′(t) <

(
1− 2ε0β0k

2− εnβn

)
y′(t),

and so (3.17) holds, where ε = 2k/(2− εnβn) > 1. This proves (III)n.
(IV)n From (3.18),

(2− εnβn)y(t) > y′(t)t
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and so(
y(t)

t2−εnβn

)′

=
y′(t)t2−εnβn−(2− εnβn)t

1−εnβny(t)

t2(2−εnβn)
=

y′(t)t− (2− εnβn)y(t)

t3−εnβn
< 0,

completing the proof of the lemma.
As a consequence of the above lemmas, we can prove the main result in our

paper, namely, Theorem 2.1.

Proof of Theorem 2.1. Assume that y is a nonoscillatory solution of (1.1) such
that y(τ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then either y ∈ N0 or y ∈ N2. By
condition (2.1), β∗ > 0, so if y ∈ N0, then by Lemma 3.1, limt→∞ y(t) = 0.

Now if y ∈ N2, we need to consider two cases, namely, λ∗ = ∞ or λ∗ < ∞. If
λ∗ = ∞, then by Lemma 3.4 we see that N2 = ∅, and so (1.1) has Property A.

Finally, assume that λ∗ < ∞. We claim that

βn−1 < 1, n ∈ N. (3.21)

From (II)n, εnβn < 1. Since εn ∈ (0, 1) can be chosen arbitrarily, set εn > 1/ℓn,
where ℓn is defined by (3.16). Then,

1 > εnβn = εnℓnβn−1 > βn−1,

which proves the claim. In view of (3.21), we conclude that the sequence {βn}∞n=0

defined by (3.15) is increasing and bounded from above, that is, there exists a finite
limit

lim
n→∞

βn = y,

where y ∈ (0, 1) is a root of the equation

y(2− y)(1− y)λ−y
∗ = 2β0.

Set x = 2− y. Then x ∈ (1, 2) satisfies

− x(1− x)(2− x)λx−2
∗ = 2β0. (3.22)

However, condition (2.1) implies that (3.22) does not possess positive solutions.
Hence, N2 = ∅ and the proof is complete.

As a final remark, we wish to mention that one of the reviewers asked if it would
be possible to obtain corresponding non-improvable bounds for solutions in the class
N0. This would in fact be an interesting problem to investigate. The biggest barrier
to applying the approach used here is that a lower non-zero bound for a positive
solution belonging to the class N0 is not known due to the alternating signs of its
derivatives. If such a bound could be determined, then what the reviewer suggests
might be possible.

References
[1] R. P. Agarwal, M. F. Aktas and A. Tiryaki, On oscillation criteria for third

order nonlinear delay differential equations, Arch. Math. (Brno), 2009, 45(1),
1–18.



Third-order differential equations 2471

[2] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Hille and Nehari type criteria
for third-order delay dynamic equations, J. Difference Equ. Appl., 2013, 19(10),
1563–1579.

[3] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Oscillation of third-order
nonlinear delay differential equations, Taiwanese J. Math., 2013, 17(2), 545–
558.

[4] M. Aktaş, A. Tiryaki and A. Zafer, Oscillation criteria for third-order nonlinear
functional differential equations, Appl. Math. Lett., 2010, 23(7), 756–762.

[5] B. Baculíková and J. Džurina, Oscillation of third-order functional differential
equations, Electron. J. Qual. Theory Differ. Equ., 2010, (43), 1–10.

[6] B. Baculíková and J. Džurina, Oscillation of third-order nonlinear differential
equations, Appl. Math. Lett., 2011, 24(4), 466–470.

[7] B. Baculíková and J. Džurina, Oscillation of the third order Euler differential
equation with delay, Math. Bohem., 2014, 139(4), 649–655.

[8] B. Baculíková, E. M. Elabbasy, S. H. Saker and J. Džurina, Oscillation criteria
for third-order nonlinear differential equations, Math. Slovaca, 2008, 58(2),
201–220.

[9] M. Bohner, S. R. Grace and I. Jadlovská, Oscillation criteria for third-order
functional differential equations with damping, Electron. J. Differential Equa-
tions, 2016, 2016(215).

[10] T. Candan and R. S. Dahiya, Oscillation of third order functional differential
equations with delay, in Proceedings of the Fifth Mississippi State Conference
on Differential Equations and Computational Simulations (Mississippi State,
MS, 2001), 10 of Electron. J. Differ. Equ. Conf., Southwest Texas State Univ.,
San Marcos, TX, 2003, 79–88.

[11] M. Cecchi, Z. Došlá and M. Marini, Disconjugate operators and related dif-
ferential equations, in Proceedings of the 6th Colloquium on the Qualitative
Theory of Differential Equations (Szeged, 1999), Proc. Colloq. Qual. Theory
Differ. Equ., Electron. J. Qual. Theory Differ. Equ., Szeged, 2000, 4, 17.

[12] J. Džurina and I. Jadlovská, A sharp oscillation result for second-order half-
linear noncanonical delay differential equations, Electron. J. Qual. Theory Dif-
fer. Equ., 2020, (46), 1–14.

[13] E. M. Elabbasy, T. S. Hassan and B. M. Elmatary, Oscillation criteria for third
order delay nonlinear differential equations, Electron. J. Qual. Theory Differ.
Equ., 2012, 5, 11.

[14] S. R. Grace, Oscillation criteria for third order nonlinear delay differential
equations with damping, Opuscula Math., 2015, 35(4), 485–497.

[15] S. R. Grace, R. P. Agarwal, R. Pavani and E. Thandapani, On the oscillation
of certain third order nonlinear functional differential equations, Appl. Math.
Comput., 2008, 202(1), 102–112.



2472 J. R. Graef, I. Jadlovská & E. Tunç

[16] J. K. Hale, Functional Differential Equations, Springer-Verlag, New York, 1971.
Applied Mathematical Sciences.

[17] M. Hanan, Oscillation criteria for third-order linear differential equations, Pa-
cific J. Math., 1961, 11(3), 919–944.

[18] P. Hartman and A. Wintner, Linear differential and difference equations with
monotone solutions, Amer. J. Math., 1953, 75(4), 731–743.

[19] I. Jadlovská, Oscillation criteria of kneser-type for second-order half-linear
advanced differential equations, Appl. Math. Lett., 2020, 106354.

[20] I. Jadlovská and J. Džurina, Kneser-type oscillation criteria for second-order
half-linear delay differential equations, Appl. Math. Comput., 2020, 380,
125289.

[21] I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of
nonautonomous ordinary differential equations, 89 of Mathematics and its
Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht,
1993. Translated from the 1985 Russian original.

[22] A. Kneser, Untersuchungen über die reellen nullstellen der integrale linearer
differentialgleichungen, Math. Ann., 1893, 42(3), 409–435.

[23] T. Li, C. Zhang, B. Baculí ková and J. Džurina, On the oscillation of third-
order quasi-linear delay differential equations, Tatra Mt. Math. Publ., 2011,
48, 117–123.

[24] W. Mahfoud, Comparison theorems for delay differential equations, Pacific J.
Math., 1979, 83(1), 187–197.

[25] S. Padhi and S. Pati, Theory of third-order differential equations, Springer,
New Delhi, 2014.

[26] S. Saker, Oscillation criteria of hille and nehari types for third-order delay
differential equations, Comm. Appl. Anal., 2007, 11(3–4), 451–468.

[27] S. Saker, Oscillation Theory of Delay Differential and Difference Equations:
Second and Third Orders., LAP Lambert Academic Publishing, 2010.

[28] S. H. Saker and J. Džurina, On the oscillation of certain class of third-order
nonlinear delay differential equations, Math. Bohem., 2010, 135(3), 225–237.


	Introduction
	Main results
	Auxiliary results and proof of the main theorem

