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ANALYTICAL DYNAMICS OF A FRICTION
OSCILLATOR UNDER TWO-FREQUENCY
EXCITATIONS WITH FLOW BARRIERS∗

Guanghui Sun1 and Xilin Fu2,†

Abstract In this paper, the analytical dynamics is investigated in a periodi-
cally forced friction oscillator under two-frequency excitations. The nonlinear
friction force is approximated by a piecewise linear, kinetic friction model with
the static friction force, G-functions are defined through the dot product of the
vector fields and the normal vector. By the sign of G-functions, the necessary
and sufficient conditions for the flow passibility and the grazing motions to
the separation boundary are developed. For the examined system, the bound-
ary possesses flow barriers caused by the static friction force. Because the
flow barriers exist on the separation boundary, the singularities of the flow
on such a separation boundary will be changed accordingly. Based on the
critical values of flow barriers, the necessary and sufficient conditions for the
onset and vanishing of the stick motions on the boundary with flow barriers
are also developed. Furthermore, the periodic motions of such an oscillator
are determined through the corresponding mapping structures. Illustrations
of the periodic motions in such a piecewise friction model are given to verify
the analytical conditions.

Keywords Discontinuous dynamical systems, flow barriers, passable mo-
tions, stick motions, mapping structure.
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1. Introduction
Discontinuous dynamical systems exist widely in industrial applications. The dy-
namics and responses of such discontinuous systems directly cause the efficiency
and destruction of the machines. The early investigation of discontinuous systems
in mechanical engineering can be found in 1930’s [11–13]. The discontinuity in such
dynamical systems is caused by the friction forces. Since then, much research work
has been done to investigate the dynamics of discontinuous dynamical systems for
its important applications [22–24,28,53]. For piecewise linear systems, Levinson [29]
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used a piecewise linear model to investigate the periodically excited Van der Pol
equation, and found infinitely many periodic solutions which cannot be perturbed
away. Further results for this piecewise model of the Van der Pol equation were
given in [30,31]. Shaw and Holmes [56] investigated a piecewise linear system with a
single discontinuity through the mapping techniques and numerically predicted the
chaotic motion. Natsiavas [48] investigated the periodic motions and stability for a
system with a symmetric, tri-linear spring. Nordmark [49] introduced the grazing
mapping to study the non-periodic motions. Kleczka et al. [25] investigated the
periodic motions and bifurcations of a piecewise linear oscillator and numerically
observed the grazing motion. Leine and van Campen [26] discussed the discontin-
uous bifurcations of periodic solutions through the Floquet multipliers of periodic
solutions. The analytical prediction of periodic responses of piecewise linear systems
was given in [27]. Bernardo et al. [6, 7] discussed the normal formal mapping for
piecewise smooth dynamical systems with/without sliding. Li et al. [51] proposed
new conditions of stability and stabilization for periodic piecewise linear systems,
state-feedback controllers with time-varying polynomial controller gain are designed
to stabilize an unstable periodic piecewise system.

For discontinuous dynamical system, Filippov [18] presented differential equa-
tions with discontinuous right-hand sides, which started from the Coulomb friction
oscillator. To investigated the sliding motion along the discontinuous boundary, the
differential inclusion was introduced via the set-valued analysis, and the existence
and uniqueness of the solution for such a discontinuous differential equation were
discussed. The comprehensive discussion of such discontinuous differential equa-
tions can be referred to Ref. [19]. According to the theoretical basis for dynamic
characteristics composition proposed in [4], Bazhenov et al. [5] further studied bi-
furcations in discontinuous vibroimpact system and observed phenomena unique
for non-smooth systems with discontinuous right-hand side. Since the discontinuity
exists widely in engineering and control systems, Aizerman and Pyatniskii [1, 2]
extended Filippov’s concept and developed a generalized theory for discontinuous
dynamical systems. From such a generalized theory, Utkin [58] developed sliding
mode control for controlling dynamic systems through the discontinuity. Utkin [59]
presented sliding modes and the corresponding variable structure systems, and the
theory of automatic control systems described with variable structures and sliding
motions was also developed in [60]. Decarlo et al. [14] gave a review on the de-
velopment of the sliding mode control. In 1988, Filippov systematically presented
a geometrical theory of differential equations with discontinuous right-hand sides.
From geometrical points of view, Broucke et al. [8] discussed structural stability of
piecewise smooth systems. Leine et al. [37] used the Filippov theory to investigate
bifurcations for nonlinear discontinuous system. However, the Filippov’s theory
mainly focused on the existence and uniqueness of the solutions for non-smooth
dynamical systems. Such a differential equation theory with discontinuity is still
difficult to be used for determining the complexity of discontinuous dynamical sys-
tems because the local singularity of a flow to the separation boundary was not
discussed. To further investigate the local singularity of a flow in the vicinity of
the separation boundary, Luo [38] established a general theory for discontinuous
dynamical systems on connectable domains. The local singularity of discontinu-
ous dynamical systems near the separation boundary was discussed. To determine
the sink and source flows in discontinuous dynamical systems, Luo introduced the
imaginary, sink and source flows in [39]. The detailed discussion of the local singu-
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larity and dynamics of discontinuous dynamical systems was presented in Luo [40].
In [41], Luo and Gegg used the local singularity theory to develop the force criteria
for the harmonically driven linear oscillator with dry friction, and in [42], Luo and
Gegg analytically investigated periodic motions in such an oscillator. From differ-
ential geometry points of view, Luo [43] introduced G-function to measure the local
singularity, and presented the flow switchability theory in discontinuous dynamical
systems. In recent years, the dynamics of discontinuous dynamical systems have
been well studied by above G-function and the flow switchability theory. Luo and
Thapa [44] investigated the singularity and switchability of periodic motions in a
simplified brake system with periodic excitation. Luo and Huang [45] investigated
the discontinuous dynamics of a nonlinear friction-induced, periodically forced os-
cillator, the analytical conditions for motion switchability at the velocity boundary
were developed. Guo and Luo [20, 21] used a semi-analytical method to obtain
bifurcation trees of periodic motions to chaos in a periodically driven pendulum
and Duffing oscillator, mapping structures are developed and the corresponding
eigenvalue analysis was carried out for the stability and bifurcation of the periodic
motions. Sun and Fu [54] developed the analytical conditions for synchronization of
the Van der Pol equation with a sinusoidally forced pendulum using the theory of
discontinuous dynamical systems. Fu and Zheng [17] studied the chatter dynamics
for a class of second-order impulsive switched systems-a certain of Van der Pol equa-
tions, and presented the sufficient conditions to keep the pulse phenomena absent.
Also in [62], Zheng and Fu investigated the chatter conditions of a second-order im-
pulsive dynamical system via the method of flow theory in discontinuous systems,
and analyzed the dynamical behaviors of flow on separation surface and got gen-
eral results on chatter criterion. In [63], Zhang and Fu investigated flow switching
on corresponding boundaries in a periodic-excited horizontal impact pair with dry
friction, the analytical switching conditions on each boundary are developed. Tang
and Fu [57] used the theory of discontinuous dynamical system to investigate the
period-k solutions of population differential system with state-dependent impulsive
effect and obtained the necessary and sufficient conditions for trajectory direction of
a population differential system. Sun and Fu [55] studied the discontinuous dynam-
ics of a class of oscillators with asymmetric damping using the flow switchability
theory of the discontinuous dynamical systems.

In the above mentioned theories, the discontinuity in discontinuous dynamical
systems is based on different vector fields and all the applications were based on
discontinuous dynamical systems without flow barriers. In practice, artificial dy-
namical systems often possess flow barriers on the separation boundary, caused by
the static friction force or the impact damping, and the lower and upper limits of
the boundary flow barriers control the existence of the boundary flow. For instance,
the static friction force is a kind of flow barrier to a discontinuous dynamical system
with dynamic friction force. The wall of the impact damper is a permanent flow
barrier to the impact ball. Once the flow barriers exist on the separation boundary,
the singularities of the flow to such a separation boundary will be changed accord-
ingly. If the G-function of flow barrier is not defined on S ⊂ ∂Ωij with the critical
values of the flow barrier, the window of the flow barrier can be formed where no
flow barriers on such a portion exist. For the permanent windows of the flow bar-
rier, the flow can always be switched from one domain into another domain via the
boundary. However, for instantaneous windows of the flow barrier, the flow may not
be switched at the boundary for the next moment. Therefore, the above mentioned
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theories for discontinuous dynamical systems cannot be used. In 2007, Luo [33]
introduced the flow barriers in discontinuous dynamical systems. In 2008, Luo and
Zwiegart [34] used the non-smooth dynamical theory to investigate dynamic behav-
iors of a periodically forced, nonlinear friction oscillator, and the studied dynamical
system has the flow barrier due to the static friction force. The force criteria for the
onset and vanishing of stick motions were developed through the input and output
flow forces, and the analytical conditions for the grazing bifurcation to the bound-
ary were also presented. In [35,36], Luo systematically presented the theory of flow
barriers in discontinuous dynamical systems. The dynamical behaviors of the flow
to the boundary with flow barriers were discussed, and a periodically forced friction
oscillator with flow barriers were studied for a better understanding of flow barri-
ers in practical problems, and this sample problem can be applied to the cutting
dynamics in manufacturing and brake system in automobile industry, which shows
the flow barrier theory provide a useful tool to design desired dynamical systems to
satisfy engineering-oriented complex systems, furthermore, the flow barrier theory
provide a theoretic base to develop control theory and stability.

The dynamics of dry friction damped systems has been studied for many years,
the early research on dry friction oscillators can be found in [11, 12]. Since then,
much work has been done in this field. Using an incremental harmonic balance
method, Pierre et al. [52] presented a multi-harmonic frequency domain analysis of
Coulomb damped systems using an incremental harmonic balance method. Feeny
and Moon [15] investigated the geometry of chaotic attractors for dry friction oscil-
lators experimentally and numerically. In [46], an analytical method of calculating
Lyapunov exponents for non-linear dynamic systems with discontinuity was pre-
sented and was applied to the analysis of a Coulomb damped oscillator. Oestreich
et al. [50] employed a one-dimensional map to discuss bifurcation and stability of a
non-smooth friction oscillator on a moving base, and the response of a dry friction
oscillator on a moving base was also analyzed by Andreaus and Casini [3], with
emphasis laid on the influence of the base speed and the friction modelling on the
system response. Van De Vrande et al. [61] computed both stable and unstable
periodic solutions for the stick-slip vibration of an autonomous system with dry
friction. Fan et al. [16] studied the dynamical behaviors of a friction induced oscil-
lator with switching control law through the flow switching theory of discontinuous
dynamical systems, and the analytical conditions of the passable motion, stick mo-
tion, sliding motion and grazing motion are presented. M. Pascal [47] considered a
system of two masses connected by linear springs and in contact with a belt moving
at a constant velocity, several periodic orbits including contact against the fixed
obstacle followed by slip and stick phases are obtained in analytical form. However,
in all of the research mentioned above, either no excitation or only a single harmonic
excitation was assumed. In practice, multi-excitations can exist in various vibration
systems with dry friction, and they may have a dramatic impact on the system’s
dynamic characteristics. In [9], a mass-spring friction oscillator subjected to two
harmonic disturbing forces with different frequencies was investigated for the first
time. The focus of this paper was to study the effect of the two-frequency excita-
tion along with Coulomb damping on dynamical behaviors of the oscillator. Due
to the two frequency excitations, the amplitude-frequency curve of system appears
different near the resonance. For the one-stop motion, the amplitude does not peak
near the natural frequency, instead it peaks at such a frequency value where both
excitation frequencies are much less than the natural frequency. Also, the one-stop
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motion exists only in the frequency range where the larger excitation frequency is
less than the natural frequency. Moreover, for the non-stop motion, there exists
a jump phenomenon at the resonance frequency for the phase angle response of
the oscillator due to the two-frequency excitation. Thus, the dynamic response of
the oscillator subjected to two frequency excitations demonstrates characteristics
significantly different from those due to a single frequency excitation. Next, in [10],
the dynamic behavior of a dry friction oscillator subjected to two harmonic excita-
tions on a moving belt with constant velocity was investigated, with focus laid on
bifurcation analysis to get the influence of the two-frequency excitation upon the
qualitative features of system dynamics. It was found that the ratio between the
two excitation frequencies has a significant impact upon the system dynamics, as
the ratio is increased, more likely periodic motions will occur than chaotic motions.
However, in [9, 10], the complex dynamical behaviors of the oscillator, such as the
local singularity of the flow, the analytical prediction of periodic motions, etc were
not discussed.

In this paper, the dynamics of the dry friction oscillator subjected to two har-
monic excitations with different frequencies on a moving belt is further investigated.
In this examined system, the kinetic friction force is a nonlinear function strongly
dependent on the relative velocity between the mass and the belt, and the maximum
static friction force is different from the kinetic friction force at the zero relative
velocity. Such a difference causes the vector fields of the dynamical system to have
the flow barrier. The flow barriers existing in the vector field of the dynamical sys-
tems will lead to more difficulty to investigate such dynamical systems. To avoid
computational errors , the nonlinear kinetic friction force is modeled by a piecewise
linear friction instead of the full nonlinear model in this paper. Different domains
and boundaries are defined in phase space for such piecewise linear friction model.
Using the flow switchability theory of the discontinuous dynamical systems, the
analytical conditions for the flow passibility and the grazing motions are developed.
Because of the flow barriers existing on the separation boundary, the force criteria
for the onset and vanishing of stick motions on the discontinuous boundary are also
developed using the flow barrier theory of the discontinuous dynamical systems.
Further, The mapping techniques are used to determine the periodic motions of
the friction oscillator. The numerical simulations of the periodic motions in such a
piecewise friction model are given to verify the analytical conditions.

2. A friction oscillator with flow barriers

Consider a periodically forced friction oscillator in Figure 1(a). The dynamical
system consists of a mass m, a damper of viscous damping coefficient c, and two
springs with the stiffness k1 and k2, respectively. The moving mass rests on the
horizontal belt surface travelling with a constant speed V . The mass is subjected to
two harmonic excitations with the same amplitude P but different frequencies ω1

and ω2. The coordinate system (x, t) is absolute with displacement x and time t.
The nonlinear friction force is approximated by a piecewise linear model, as shown
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Figure 1. (a) The friction-induced oscillator and (b) piecewise linear friction force model.

in Figure 1(b). The piecewise linear friction force is given by

F̄f (ẋ)



= µ1(ẋ− V1)− µ2(V1 − V ) + FNµk, ẋ ∈ [V1,+∞),

= −µ2(ẋ− V ) + FNµk, ẋ ∈ (V, V1),

∈ [−µsFN , µsFN ], ẋ = V,

= −µ3(ẋ− V )− FNµk, ẋ ∈ (V2, V ),

= µ4(ẋ− V2)− µ3(V2 − V )− FNµk, ẋ ∈ (−∞, V2],

(2.1)

where ẋ ≜ dx
dt .µs, µk and FN are the static and kinetic friction coefficient and a

normal force to the contact surface, respectively. The coefficients µj(j = 1, 2, 3, 4)
are the slope for friction force with velocity. For this problem, the normal force
FN = mg and g is the gravitational acceleration. The static friction force is in the
interval of [−µsFN , µsFN ]. The amplitude of the static friction force is µsFN . The
dynamic friction forces just for the beginning of the relative motion are ±µkFN .
Two boundaries for the piecewise continuity of the friction force are at ẋ = V1 and
ẋ = V2. The third boundary is at ẋ = V . For this boundary, the dynamical friction
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force for the passable motion is discontinuous. The relative motion does not exist
when the mass and the belt stick together. Only when the nonfriction force is
greater than the static friction force, the relative motion between the mass and the
belt can start. If the mass sticks on the belt surface, the nonfriction force per unit
mass in the x-direction is determined by

Fnf = Q0 cosω1t+Q0 cosω2t− 2aV − bx for ẋ = V, (2.2)

where Q0 = P/m, a = c/2m and b = (k1 + k2)/m. For the stick motion, the
nonfriction force is less than the maximum static friction force, i.e., |Fnf | ≤ Ffs

and Ffs = µsFN/m. The mass does not have any relative motion to the belt.
Therefore, no acceleration exists because the belt speed is constant, i.e.,

ẍ = 0, for ẋ = V. (2.3)

If the nonfriction force is greater than the maximum static friction force, i.e., |Fnf | >
Ffs , the non-stick motion occurs. For the non-stick motion, the total force per unit
mass is

F = Q0 cosω1t+Q0 cosω2t− Ffk − 2aẋ− bx for ẋ ̸= V, (2.4)

where Ffk = F̄f/m, for ẋ ̸= V. Therefore, the equation of the non-stick motion for
such a dynamical system with a piecewise linear friction is

ẍ+ 2aẋ+ bx = Q0 cosω1t+Q0 cosω2t− Ffk for ẋ ̸= V. (2.5)

3. Domains and boundaries
For simplicity, the state vector and the corresponding vector field for such a system
are introduced as

x ≜ (x, ẋ)T ≡ (x, y)T and F ≜ (y, F )T . (3.1)

The discontinuities in this dynamical system are caused by the jumping from the
static to dynamical friction forces and the piecewise linear dynamical friction model.
As discussed before, there are four velocity regions caused by the three velocity
boundaries. Therefore, the phase space can be partitioned into four sub-domains
by the three velocity boundaries. Such a phase space partition is sketched in Figure
2. Among the three velocity boundaries, the friction force jumping is as a main
discontinuity at ẋ = V . Thus the naming of the sub-domains in phase space starts
from the domain near the main discontinuous boundary ẋ = V . In fact , the sub-
domains can be named arbitrarily. Based on the direction of trajectories of mass
motion in phase space, the corresponding boundaries are also named, as shown in
Figure 2. The boundary with the friction force jumping is depicted by a dotted
line. The remaining boundaries are represented by two dashed lines, respectively.
The named domains and the oriented boundaries are expressed by

Ω1 = {(x, y)|y ∈ (V, V1)}, Ω2 = {(x, y)|y ∈ (V1,+∞)},
Ω3 = {(x, y)|y ∈ (V2, V )}, Ω4 = {(x, y)|y ∈ (−∞, V2)}. (3.2)

∂Ωαβ = {(x, y)|φαβ(x, y) ≡ y − Vρ = 0}, (3.3)
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Figure 2. Phase plane partition and oriented boundaries.

where ρ = 1 if α, β ∈ {1, 2}, ρ = 0 if α, β ∈ {1, 3} and ρ = 2 if α, β ∈ {3, 4}.
V0 ≡ V. The subscript (.)αβ means the boundary from Ωα to Ωβ . The domains
are accessible for a specific vector field. On the boundary ∂Ω13 or ∂Ω31, the vector
fields are C0-discontinuous, but on the boundaries ∂Ω12 and ∂Ω34 , the vector fields
are C0-continuous. Based on the definitions of the boundaries and domains in phase
space, the equations of motion in Eqs. (2.3) and (2.5) are written as

ẋ = F(j)(x, t), j ∈ {0, 1, 2, 3, 4}, (3.4)

where

F(0)(x, t) = (V, 0)T on ∂Ω13 or ∂Ω31,

F(j)(x, t) = (y, F (j)(x, t))T in Ωj , j ∈ {1, 2, 3, 4}.

 (3.5)

F (j)(x, t) = Q0 cosω1t+Q0 cosω2t− F
(j)
fk

(x, t)− 2aj ẋ− bjx. (3.6)

From Eq.(2.1), the dynamical friction forces per unit mass can be expressed by

F
(2)
fk

(x, t) = ν1(y − V1)− ν2(V1 − V ) + FNνk, y ∈ [V1,+∞),

F
(1)
fk

(x, t) = −ν2(y − V ) + FNνk, y ∈ (V, V1),

F
(3)
fk

(x, t) = −ν3(y − V )− FNνk, y ∈ (V2, V ),

F
(4)
fk

(x, t) = ν4(y − V2)− ν3(V2 − V )− FNνk, y ∈ (−∞, V2],


(3.7)

where νi = µi/m (i = 1, 2, 3, 4) and νk = µk/m are the slope coefficients of friction
forces and dynamical friction coefficient per unit mass.

4. Switchability conditions
Using the flow switchability theory and the flow barrier theory of the discontinuous
dynamical systems in [35, 43], the analytical conditions for the flow passibility, the
onset and vanishing of the stick motions on the separation boundary with flow
barriers will be developed in this section.
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4.1. Basic Theory
Before discussing the analytical switching conditions for the complex motions in
the friction oscillator, concepts of G-functions and the boundary flow barrier, the
fundamental theory on the sink flow to the boundary with flow barriers will be first
presented.

Definition 4.1. Consider a dynamical system ẋ(α) ≡ F(α)(x(α), t,pα) ∈ Rn in
domain Ωα(α ∈ {i, j}) which has a flow x(α)

t = Φ(t0,x(α)
0 ,pα, t) with an initial

condition (t0,x(α)
0 ) and on the boundary ∂Ωij = {x|φij(x, t,λλλ) = 0, φij is Cr −

continuous(r ≥ 1)} ⊂ Rn−1, there is a flow x(0)
t = Φ(t0,x(0)

0 ,λλλ, t) with an initial
condition (t0,x(0)

0 ). The 0−order G-functions of the flow x
(α)
t to the flow x

(0)
t on

the boundary in the normal direction of the boundary ∂Ωij are defined as

G
(α)
∂Ωij

(x
(0)
t , t±,x

(α)
t± ,pα,λλλ) = G

(0,α)
∂Ωij

(x
(0)
t , t±,x

(α)
t± ,pα,λλλ)

= Dt

x
(0)
t

nT
∂Ωij

.(x
(α)
t± − x

(0)
t ) +t nT

∂Ωij
.(ẋ

(α)
t± − ẋ

(0)
t ).

(4.1)

Definition 4.2. Consider a dynamical system ẋ(α) ≡ F(α)(x(α), t,pα) ∈ Rn in
domain Ωα(α ∈ {i, j}) which has a flow x(α)

t = Φ(t0,x(α)
0 ,pα, t) with an initial

condition (t0,x(α)
0 ) and on the boundary ∂Ωij = {x|φij(x, t,λλλ) = 0, φij is Cr −

continuous(r ≥ 1)} ⊂ Rn−1, there is a flow x(0)
t = Φ(t0,x(0)

0 ,λλλ, t) with an initial
condition (t0,x(0)

0 ). The 1−order G-functions of the flow x
(α)
t to the boundary flow

x
(0)
t in the normal direction of the boundary ∂Ωij are defined as

G
(1,α)
∂Ωij

(x
(0)
t , t±,x

(α)
t± ,pα,λλλ) =D2

x
(0)
t

tn
T
∂Ωij

.(x
(α)
t± − x

(0)
t ) + 2Dt

x
(0)
t

nT
∂Ωij

.(ẋ
(α)
t± − ẋ

(0)
t )

+t nT
∂Ωij

.(ẍ
(α)
t± − ẍ

(0)
t ). (4.2)

In the above definitions, the total derivative D
x
(0)
t
(·) = ∂(·)

∂x
(0)
t

ẋ
(0)
t + ∂(·)

∂t and the
normal vector of the boundary surface ∂Ωij at point x(0)(t) is given by

tn∂Ωij (x
(0), t,λλλ) = ▽φij(x

(0), t,λλλ) =

(
∂φij

∂x
(0)
1

,
∂φij

∂x
(0)
2

, · · · , ∂φij

∂x
(0)
n

)T

(t,x(0))

. (4.3)

Consider the flow contacts with the boundary at time tm, i.e., x(α)
tm = x

(0)
tm = xm,

and the boundary ∂Ωij is linear independent of time t, then

G
(0,α)
∂Ωij

(x
(0)
tm , tm±,x

(α)
tm±,pα,λλλ) = G

(0,α)
∂Ωij

(xm, tm±,pα,λλλ)

=t nT
∂Ωij

.ẋ
(α)
t |

(x
(0)
m ,tm±,x

(α)
m )

,

G
(1,α)
∂Ωij

(x
(0)
tm , tm±,x

(α)
tm±,pα,λλλ) = G

(1,α)
∂Ωij

(xm, tm±,pα,λλλ)

=t nT
∂Ωij

.ẍ
(α)
t |

(x
(0)
m ,tm±,x

(α)
m )

. (4.4)

The time tm± = tm±0 indicates responses in domains rather than on the boundaries,
and tm−, tm+ are the time before approaching and after departing the separation
boundary, respectively.
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To investigate the flow property to the boundary with flow barriers, the G-
functions for the flow barrier are given as follows.

Definition 4.3. For a discontinuous dynamical system ẋ(α) ≡ F(α)(x(α), t,pα) in
domain Ωα(α ∈ {i, j}), there is a point x(0)(tm) ≡ xm ∈ ∂Ωij = {x|φij(x, t,λλλ) = 0}
at time tm between two adjacent domains Ωα(α = i, j). There is a vector field
F(ρ≻γ)(x(λ), t,πππλ, q

(λ)) for q(λ) ∈ [q
(λ)
1 , q

(λ)
2 ] (ρ, γ ∈ {0, i, j}, λ ∈ {i, j} and ρ ̸=

γ if ρ ̸= 0) on the boundary ∂Ωij . For the point x(ρ)(tm) = xm, the G-function of
the vector field is defined as

G
(ρ≻γ)
∂Ωij

(xm, tm±,πππλ,λλλ, q
(λ)) ≡ nT

∂Ωij
(x(0), t,λλλ).[F(ρ≻γ)(x(λ), t,πππλ, q

(λ))

− F(0)(x(0), t,λλλ)] |
(x

(λ)
m ,x

(0)
m ,tm±)

. (4.5)

The higher order G-function of the vector field F(ρ≻γ)(x(λ), t,πππλ, q
(λ)) is defined for

kλ = 0, 1, 2, · · · as

G
(kλ,ρ≻γ)
∂Ωij

(xm, tm±,πππλ,λλλ, q
(λ))

=

kλ+1∑
r=1

Cr
kλ+1D

kλ+1−r
0 nT

∂Ωij
(x(0), t,λλλ).[Dr−1

λ F(ρ≻γ)(x(λ), t,πππλ, q
(λ))

−Dr−1
0 F(0)(x(0), t,λλλ)]|

(x
(λ)
m ,x

(0)
m ,tm±)

. (4.6)

For simplicity in discussion, the following notations and sign function are adopted.

G
(kα,α)
∂Ωij

(xm, tm±) ≡ G
(kα,α)
∂Ωij

(xm, tm±,Pα,λλλ),

G
(kλ,ρ≻γ)
∂Ωij

(xm, q(λ)) ≡ G
(kλ,ρ≻γ)
∂Ωij

(xm, tm±,πππλ,λλλ, q
(λ)). (4.7)

ℏα =

+1 for nT
∂Ωij

→ Ωβ ,

−1 for nT
∂Ωij

→ Ωα.
(4.8)

Definition 4.4. For a discontinuous dynamical system ẋ(α) ≡ F(α)(x(α), t,pα) in
domain Ωα(α ∈ {i, j}), there is a point x(0)(tm) ≡ xm ∈ ∂Ωij = {x|φij(x, t,λλλ) = 0}
at time tm between two adjacent domains Ωα(α = i, j). Suppose there is a vector
field of F(0≻0α)(x(α), t,πππα, q

(α)) for q(α) ∈ [q
(α)
1 , q

(α)
2 ] on the boundary ∂Ωij with

0 ∈ [ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 ), ℏαG(0≻0α)

∂Ωij
(xm, q

(α)
1 )] ⊂ R. (4.9)

The two possible leaving flows in the source flow satisfy

ℏαG(α)
∂Ωij

(xm, tm+) < 0 and

ℏαG(β)
∂Ωij

(xm, tm+) > 0, (4.10)

(α, β ∈ {i, j} and α ̸= β). The vector field of F(0≻0α)(x(α), t,πππα, q
(α)) is called the

flow barrier of the boundary flow in the source flow on the α-side if the following
conditions are satisfied. The two critical values of F(0≻0α)(x(α), t,πππα, q

(α)
σ ) for σ =

1, 2 are called the lower and upper limits of the boundary flow barriers on the α-side.
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(i) The boundary flow of x(0) cannot be switched to the leaving flow of x(α) if

x(0)(tm) = x(0≻0α)(tm±, q
(α)
σ ) = xm for σ = 1, 2;

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
1 ) > 0 and ℏαG(0≻0α)

∂Ωij
(xm, q

(α)
2 ) < 0. (4.11)

(ii) The boundary flow of x(0) cannot be switched to the leaving flow of x(α) at
the critical points of the flow barrier (i.e., q(α) = q

(α)
σ , σ ∈ {1, 2}) if

x(0)(tm) = x(0≻0α)(tm±, q
(α)
σ ) = xm for σ = 1, 2;

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 )<0 and ℏαG(sα,0≻0α)

∂Ωij
(xm, q

(α)
1 )=0 for sα=0, 1, 2, · · ·, lα−1;

ℏαnT
∂Ωij

(x(0)(tm+ϵ)).[x
(0≻0α)(tm+ϵ, q

(α)
1 )− x(0)(tm+ϵ)] > 0. (4.12)

(iii) The boundary flow of x(0) can be switched to the leaving flow of x(α) at the
critical points of the flow barrier (i.e., q(α) = q

(α)
σ , σ ∈ {1, 2}) if

x(0)(tm) = x(0≻0α)(tm±, q
(α)
σ ) = xm for σ = 1, 2;

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 )<0 and ℏαG(sα,0≻0α)

∂Ωij
(xm, q

(α)
1 )=0 for sα=0, 1, 2, · · ·, lα−1;

ℏαnT
∂Ωij

(x(0)(tm+ϵ)).[x
(0≻0α)(tm+ϵ, q

(α)
1 )− x(0)(tm+ϵ)] < 0. (4.13)

Lemma 4.1 (Theorem 10, [35]). For a discontinuous dynamical system ẋ(α) ≡
F(α)(x(α), t,pα) in domain Ωα(α ∈ {i, j}), there is a point x(0)(tm) ≡ xm ∈ ∂Ωij =
{x|φij(x, t,λλλ) = 0} at time tm between two adjacent domains Ωα(α = i, j). For
xm ∈ S ⊆ ∂Ωij , there is a source flow barrier F(0≻0α)(x(α), t,πππα, q

(α)) for q(α) ∈
[q

(α)
1 , q

(α)
2 ] on the α-side of the boundary ∂Ωij and Eqs. (4.9) and (4.10) are satisfied.

(i) The boundary flow of x(0) cannot be switched to the leaving flow of x(α) in a
source flow on the α-side if and only if

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 ) < 0 and

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
1 ) > 0. (4.14)

(ii) The boundary flow of x(0) cannot be switched to the leaving flow of x(α) in a
source flow at the critical points of the flow barrier on the α-side if and only
if

ℏαG(sα,0≻0α)
∂Ωij

(xm, q
(α)
1 ) = 0, for sα = 0, 1, 2, · · · , lα − 1

ℏαG(lα,0≻0α)
∂Ωij

(xm, q
(α)
1 ) > 0 and

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 ) < 0. (4.15)

(iii) The boundary flow of x(0) is switched to the leaving flow of x(α) in a source
flow at the critical points of the flow barrier on the α-side if and only if

ℏαG(sα,0≻0α)
∂Ωij

(xm, q
(α)
1 ) = 0, for sα = 0, 1, 2, · · · , lα − 1

ℏαG(lα,0≻0α)
∂Ωij

(xm, q
(α)
1 ) < 0 and

ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 ) < 0. (4.16)



Analytical dynamics of a friction oscillator. . . 2519

Lemma 4.2 (Theorem 16, [35]). For a discontinuous dynamical system ẋ(α) ≡
F(α)(x(α), t,pα) in domain Ωα(α ∈ {i, j}), there is a point x(0)(tm) ≡ xm ∈ ∂Ωij =
{x|φij(x, t,λλλ) = 0} at time tm between two adjacent domains Ωα(α = i, j). Sup-
pose the boundary flow in the sink flow on the boundary is formed under cer-
tain conditions. There is a boundary flow barrier of F(0≻0α)(x(α), t,πππα, q

(α)) at
q(α) ∈ [q

(α)
1 , q

(α)
2 ] on the α-side of the boundary ∂Ωij for xm ∈ S ⊆ ∂Ωij , with the

G-function

0 ∈ [ℏαG(0≻0α)
∂Ωij

(xm, q
(α)
2 ), ℏαG(0≻0α)

∂Ωij
(xm, q

(α)
1 )] ⊂ R (4.17)

and also there is a boundary flow barrier of F(0≻0β)(x(β), t,πππβ , q
(β)) at q(β) ∈

[q
(β)
1 , q

(β)
2 ] with the G-function

0 ∈ [ℏαG
(0≻0β)
∂Ωij

(xm, q
(β)
1 ), ℏαG(0≻0α)

∂Ωij
(xm, q

(β)
2 )] ⊂ R (4.18)

on the β-side of the boundary ∂Ωij (α, β ∈ {i, j} and α ̸= β). The boundary flow of
x(0) disappears on the α-side if and only if

both ℏαG(α)
∂Ωij

(xm, tm+) < 0

and
ℏαG(sα,0≻0α)

∂Ωij
(xm, q

(α)
1 ) = 0 for sα = 0, 1, 2, · · · , lα − 1;

ℏαG(lα,0≻0α)
∂Ωij

(xm, q
(α)
1 ) < 0

 (4.19)

on the α− side,

either ℏαG
(0≻0β)
∂Ωij

(xm, q
(β)
1 ) > 0 but ℏαG(β)

∂Ωij
(xm, tm+) < 0

or ℏαG
(0≻0β)
∂Ωij

(xm, q
(β)
1 ) < 0 or ℏαG

(sβ ,0≻0β)
∂Ωij

(xm, q
(β)
1 ) = 0

for sβ = 0, 1, 2, · · · , lβ − 1 and ℏαG
(lβ ,0≻0β)
∂Ωij

(xm, q
(β)
1 ) < 0

 (4.20)

on the β − side.

4.2. Main Results
In the examined systems, according to Eq.(3.7), the two force boundaries relative to
V1,2 (i.e. y = V1 or V2 ) are C0-continuous. However, the force boundary relative to
the velocity V is a discontinuous boundary. If the coming and leaving flow barriers
does not exist, the coming and leaving flow vector fields for xm ∈ ∂Ωαβ(α, β ∈
{1, 3}) are

F(α)(xm, tm±) = (ym, F (α)(xm, tm±))
T . (4.21)

The time tm reflects the moment for the motion just on the boundary and the
time tm± = tm ± 0 represents the flows in the regions instead of the boundary.
However, due to the static friction force, the boundary flow barriers on the boundary
∂Ω13 for xm ∈ ∂Ωαβ(α, β ∈ {1, 3}) are

F(0≻0α)(xm, q(α)) = (ym, F (0≻0α)(xm, tm, q(α)))T

F (0≻0α)(xm, tm, q(α)) = Q0 cosω1tm +Q0 cosω2tm − F
(α)
fs

(q(α))− 2aαym − bαxm.

(4.22)
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The static friction force per unit mass on the boundary ∂Ω13 are

F
(1)
fs

(q(1)) ∈ (−∞, FNνs] and

F
(3)
fs

(q(3)) ∈ [−FNνs,+∞). (4.23)

The lower and upper limits of the boundary flow barriers on the α-side of the
boundary ∂Ω13 for xm ∈ ∂Ωαβ(α, β ∈ {1, 3}) are

F(0≻01)(xm, q
(1)
1 ) = (ym, F (0≻01)(xm, tm+, q

(1)
1 ))T ,

F (0≻01)(xm, tm+, q
(1)
1 ) = Q0 cosω1tm +Q0 cosω2tm − FNνs − 2a1ym − b1xm,

F(0≻01)(xm, q
(1)
2 ) = (ym,+∞)T ;

F(0≻03)(xm, q
(3)
1 ) = (ym, F (0≻03)(xm, tm+, q

(3)
1 ))T ,

F (0≻03)(xm, tm+, q
(3)
1 ) = Q0 cosω1tm +Q0 cosω2tm + FNνs − 2a3ym − b3xm,

F(0≻03)(xm, q
(3)
2 ) = (ym,−∞)T .


(4.24)

Before discussing of the analytical conditions, the G-functions can be reduced for
the special boundary. From Eq. (3.3), the boundaries are straight lines in phase
space, which implies that the normal vectors are constant vectors. Using Eq. (4.3),
the normal vector for the boundary∂Ωαβ with α, β ∈ {1, 2, 3, 4} is

n∂Ωαβ
= n∂Ωβα

= (
∂φαβ

∂x
,
∂φαβ

∂y
)T = (0, 1)T . (4.25)

The normal vectors of the boundaries (∂Ω12 and ∂Ω21), (∂Ω13 and ∂Ω31) and
(∂Ω34 and ∂Ω43) point to the domains Ω2, Ω1 and Ω3, respectively. Thus

G
(α)
∂Ωαβ

(x(α), t) = nT
∂Ωαβ

.F(α)(x(α), t) = F (α)(x(α), t),

G
(1,α)
∂Ωαβ

(x(α), t) = nT
∂Ωαβ

.DF(α)(x(α), t) = DF (α)(x(α), t);

G(0≻0α)(x(α), t) = nT
∂Ωαβ

.F(0≻0α)(x(α), t) = F (0≻0α)(x(α), t),

G(1,0≻0α)(x(α), t) = nT
∂Ωαβ

.DF(0≻0α)(x(α), t) = DF (0≻0α)(x(α), t),


(4.26)

where

DF(α)(x(α), t) = (F (α)(x(α), t), DF (α)(x(α), t))T ,

DF (α)(x(α), t)) = ∇F (α)(x(α), t)).F(α)(x(α), t) + ∂tF
(α)(x(α), t);

DF(0≻0α)(x(α), t) = (F (0≻0α)(x(α), t), DF (0≻0α)(x(α), t))T ,

DF (0≻0α)(x(α), t) = ∇F (0≻0α)(x(α), t).F(0≻0α)(x(α), t) + ∂tF
(0≻0α)(x(α), t).


(4.27)

From the aforementioned definitions and lemmas, the analytical conditions for the
flow switching in the friction oscillator with flow barriers will be developed in the
following theorems.
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Theorem 4.1. For the friction oscillator described in Section 2, the force conditions
for passable motions on the boundary ∂Ωαβ are

F (α)(xm, tm−) > 0 and F (β)(xm, tm+) > 0 for (α, β) ∈ {(1, 2), (3, 1), (4, 3)};

F (α)(xm, tm−) < 0 and F (β)(xm, tm+) < 0 for (α, β) ∈ {(2, 1), (1, 3), (3, 4)}.


(4.28)

Proof. From Luo [45], the necessary and sufficient conditions for the passable
motions on the boundary ∂Ωαβ are

ℏαG(α)
∂Ωαβ

(xm, tm−) > 0,

ℏαG(β)
∂Ωαβ

(xm, tm+) > 0.

 (4.29)

From Eq. (4.26), the 0-order G-function for the boundaries are

G
(α)
∂Ωαβ

(xm, tm−) = F (α)(xm, tm−),

G
(β)
∂Ωαβ

(xm, tm+) = F (β)(xm, tm+).

 (4.30)

For (α, β)∈ {(1, 2), (3, 1), (4, 3)}, according to Eq. (4.8), the sign function ℏα = 1.
The force conditions for passable motions on the boundary ∂Ωαβ are

F (α)(xm, tm−) > 0 and F (β)(xm, tm+) > 0. (4.31)

However, for (α, β)∈ {(2, 1), (1, 3), (3, 4)}, ℏα = −1. Thus, the force conditions for
passable motions on the boundary ∂Ωαβ are

F (α)(xm, tm−) < 0 and F (β)(xm, tm+) < 0. (4.32)

Theorem 4.2. For the friction oscillator described in Section 2, the force conditions
for the stick motion between the mass and the translation belt on the corresponding
boundary ∂Ω13 are

F (1)(xm, tm−) < 0 and F (3)(xm, tm−) > 0. (4.33)

Proof. From Luo [38], the existence condition of the stick motion on the boundary
∂Ωαβ is

ℏαG(α)
∂Ωαβ

(xm, tm−) > 0,

ℏαG(β)
∂Ωαβ

(xm, tm−) < 0.

 (4.34)

Note that the normal vector of the boundary ∂Ω13 points to the domain Ω1, then
ℏα = −1. Combined with Eq. (4.30), the force conditions for the stick motion on
the boundary ∂Ω13 can be obtained as Eq. (4.33).
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Theorem 4.3. For the friction oscillator described in Section 2, the force conditions
for the onset of the stick motion on ∂Ω13 are

F (1)(xm, tm−) < 0,

F (3)(xm, tm±) = 0 with DF (3)(xm, tm±) < 0

 for Ω1 → ∂Ω13,

F (3)(xm, tm−) > 0,

F (1)(xm, tm±) = 0 with DF (1)(xm, tm±) > 0

 for Ω3 → ∂Ω13. (4.35)

Proof. From Luo [38], the switching bifurcation from the nonstick motion to the
stick motion is

ℏαG(α)
∂Ωαβ

(xm, tm−) > 0;

ℏαG(β)
∂Ωαβ

(xm, tm±) = 0,

ℏαG(1,β)
∂Ωαβ

(xm, tm±) > 0

 for Ωα → ∂Ωαβ . (4.36)

For Ω1 → ∂Ω13, ℏα = −1. However, for Ω3 → ∂Ω13, ℏα = +1. Combined with Eq.
(4.26), the force conditions for the onset of the stick motion on ∂Ω13 can be obtained
as Eq. (4.35).

Once the stick motion is formed under Eq. (4.34), the boundary flow will control
the motion on the boundary, which are independent of the vector fields except for
the conditions in Eq. (4.34). For the examined system, the boundary flow on the
boundary possesses a boundary flow barrier caused by the static friction force. To
obtain a new nonstick motion on the moving belt, the non-friction force must be
greater than the static friction force. Next, the necessary and sufficient conditions
for vanishing of the stick motion are given as follows.

Theorem 4.4. For the friction oscillator described in Section 2, the force conditions
for vanishing of the stick motion are

either F (0≻01)(xm, q
(1)
1 ) > 0 but F (1)(xm, tm+) < 0

or F (0≻01)(xm, q
(1)
1 ) < 0

or F (0≻01)(xm, q
(1)
1 ) = 0 with DF (0≻01)(xm, q

(1)
1 ) < 0;

 (4.37)

F (3)(xm, tm+) < 0

F (0≻03)(xm, q
(3)
1 ) = 0 with DF (0≻03)(xm, q

(3)
1 ) < 0

 (4.38)

from ∂Ω13 → Ω3, and

either F (0≻03)(xm, q
(3)
1 ) < 0 but F (3)(xm, tm+) > 0

or F (0≻03)(xm, q
(3)
1 ) > 0

or F (0≻03)(xm, q
(3)
1 ) = 0 with DF (0≻03)(xm, q

(3)
1 ) > 0;

 (4.39)
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F (1)(xm, tm+) > 0

F (0≻01)(xm, q
(1)
1 ) = 0 with DF (0≻01)(xm, q

(1)
1 ) > 0

 (4.40)

from ∂Ω13 → Ω1.

Proof. From Lemma 4.1 and 4.2, the necessary and sufficient conditions for van-
ishing of the stick motions on the α-side are

both ℏαG(α)
∂Ωαβ

(xm, tm+) < 0,

and ℏαG(0≻0α)
∂Ωαβ

(xm, q
(α)
1 ) = 0 with ℏαG(1,0≻0α)

∂Ωαβ
(xm, q

(α)
1 ) < 0;

 (4.41)

either ℏαG
(0≻0β)
∂Ωαβ

(xm, q
(β)
1 ) > 0 but ℏαG(β)

∂Ωαβ
(xm, tm+) < 0

or ℏαG
(0≻0β)
∂Ωαβ

(xm, q
(β)
1 ) < 0

or ℏαG
(0≻0β)
∂Ωαβ

(xm, q
(β)
1 ) = 0 with ℏαG

(1,0≻0β)
∂Ωαβ

(xm, q
(β)
1 ) < 0.

 (4.42)

For ∂Ω13 → Ω3, ℏα = +1. Combined with Eq. (4.26), the force conditions for
vanishing of the stick motion are obtained as Eqs. (4.37) and (4.38).
For ∂Ω13 → Ω1, ℏα = −1. Similarly, one can obtain the force conditions as Eqs.
(4.39) and (4.40).

Theorem 4.5. For the friction oscillator described in Section 2, the force conditions
for grazing motions to the boundary are

F (α)(xm, tm±) = 0;

DF (α)(xm, tm±) > 0 for α = 2, 1, 3 on ∂Ωαβ ∈ {∂Ω21, ∂Ω13 and ∂Ω34},

DF (α)(xm, tm±) < 0 for α = 1, 3, 4 on ∂Ωαβ ∈ {∂Ω12, ∂Ω31 and ∂Ω43}.

 (4.43)

Proof. From Luo [45], the necessary and sufficient conditions for grazing motion
to the boundary in Eq. (3.3) are

G
(α)
∂Ωαβ

(xm, tm±) = 0 for α ̸= β;

G
(1,α)
∂Ωαβ

(xm, tm±) > 0 for α = 2, 1, 3 at ∂Ωαβ ∈ {∂Ω21, ∂Ω13 and ∂Ω34},

G
(1,α)
∂Ωαβ

(xm, tm±) < 0 for α = 1, 3, 4 at ∂Ωαβ ∈ {∂Ω12, ∂Ω31 and ∂Ω43}.

 (4.44)

Using the Eq. (4.26), the force conditions for the grazing motions are easily obtained
as Eq. (4.43).

4.3. Generic Mappings and Numerical Simulations
To illustrate the motion with flow barriers in discontinuous dynamical systems, the
basic mappings are introduced as in [34]. The mappings are determined by the
close-form solution of the differential equation in the corresponding domain. With
the initial condition (tk, xk, V ), the direct integration of Eq. (2.3) yields

x = V (t− tk)− xk. (4.45)
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Substitution of Eq. (4.45) into Eq. (3.6) gives the forces for the very small neigh-
borhood of the stick motion in the domains Ωj (j ∈ {1, 3}). Because of the static
friction jumping, the forces at (xm, tm) for the coming and leaving flows and the
boundary flow barriers on the boundary ∂Ω13 are:

F (j)(xm, tm±) = Q0 cosω1tm± +Q0 cosω2tm± − 2ajV − bjxm − dj , (4.46)

F (0≻0j)(xm, q
(j)
1 ) = Q0 cosω1tm± +Q0 cosω2tm± − 2ajV − bjxm − d

(0≻0j)
j ,

(4.47)

where d1 = −d3 = νkFN and d
(0≻01)
1 = −d

(0≻03)
3 = νsFN .

To develop generic mappings, the switching sets on the boundary should be
numbered first. The switching set for the discontinuous force boundary is repre-
sented by Σ1, and the other separation boundaries are Σ2 and Σ3. The switching
sets for the three boundaries are

Σα = Σ0
α ∪ Σ+

α ∪ Σ−
α for α = 1, 2, 3. (4.48)

The corresponding switching subsets are defined as

Σ0
α = {(xi,Ωti)|ẋi = Vρ} and

Σ±
α = {(xi,Ωti)|ẋi = V ±

ρ },

 (4.49)

where V ±
ρ = lim

δ→0
(Vρ ± δ) for an arbitrary small δ > 0 and ρ = 0, 1, 2 for α = 1, 2, 3.

In phase space, the trajectories in Ωj starting and ending at the separation
boundaries are sketched in Figure 3. The starting and ending points for mapping
Pjβα

in Ωj are (xk, ẋk, tk) on Σα and (xk+1, ˙xk+1, tk+1) on Σβ , respectively. Notice
that the indices j = 1, 2, 3, 4 and α, β = 1, 2, 3 are for domains and boundaries,
respectively. The stick mapping is P011 . Thus, from the switching sets, the mappings
are defined as

P111 : Σ+
1

Ω1−−→ Σ+
1 , P122 : Σ−

2
Ω1−−→ Σ−

2 ,

P222 : Σ+
2

Ω2−−→ Σ+
2 , P311 : Σ−

1
Ω3−−→ Σ−

1 ,

P333 : Σ+
3

Ω3−−→ Σ+
3 , P433 : Σ−

3
Ω4−−→ Σ−

3

 (4.50)

for the local mappings,

P121 : Σ+
1

Ω1−−→ Σ−
2 , P112 : Σ−

2
Ω1−−→ Σ+

1 ,

P331 : Σ−
1

Ω3−−→ Σ+
3 , P313 : Σ+

3
Ω3−−→ Σ−

1

 (4.51)

for the global mappings and

P011 : Σ0
1

∂Ω13−−−→ Σ0
1 (4.52)

for the stick mapping.
The governing equations of P011 for a sink flow to leave for Ωj with j ∈ {1, 3}

are

−xk+1 + V (tk+1 − tk) + xk = 0,

Q0 cosω1tk+1 +Q0 cosω2tk+1 − 2ajV − bj [V (tk+1 − tk) + xk]− d
(0≻0j)
j = 0.


(4.53)
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Figure 3. Regular and stick mappings: (a) local and stick mappings, (b) global mappings.

Since the differential equation in each domain is linear, the closed form solution for
such a linear differential equation can be obtained [34]. For the non-stick motion,
the governing equations for mapping Pjβα

(j = 1, 2, 3, 4 and α, β = 1, 2, 3) are

f
(jβα)
1 (xk,Ωtk, xk+1,Ωtk+1) = 0,

f
(jβα)
2 (xk,Ωtk, xk+1,Ωtk+1) = 0.

 (4.54)

From the foregoing relations, the periodic motions for such a periodically forced,
frictional oscillator can be obtained. The details can be referred to [34].

The parameters (m = 5, a1,2,3,4 = 0.1, b1,2,3,4 = 30, µs = 0.5, µk = 0.4, µ1,3 =
0.1, µ2,4 = 0.5 and g = 9.8) are considered for numerical illustrations. First, con-
sider the non-stick periodic motion pertaining to P433331112222121313 = P433 ◦ P331 ◦
P112 ◦P222 ◦P121 ◦P313 . As in [34], the periodic motions in such an oscillator can be
obtained using above conditions. The responses of displacement, velocity, the phase
plane and force distributions are presented respectively in Figs. 4(a)-(f) for the pe-
riodic motion of mapping P433331112222121313 with ω1 = 5, ω2 = 15, V = 3, V1 = 4.5,
V2=1.5, and Q0=70 and the initial condition (tk, xk, ẋk)≈(2.0389,−2.2792, 1.50).
The responses in different domains are depicted through different colour curves,
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accordingly. The red filled cycle is the starting points of the periodic motion and
the other circles are switching points. The arrows give the direction of the peri-
odic motion. In addition, the corresponding mappings are labeled in plots. The
displacement and velocity responses are illustrated in Figure 4(a) and Figure 4(b).
The periodic trajectory in phase plane is clearly shown in Figure 4(c). This periodic
motion intersects with the boundaries ∂Ω13, ∂Ω12 and ∂Ω34. Consider the force in
Ωα (α = 1, 3) as

F (1) ≡ F (1)(x, t) = Q0 cosω1t+Q0 cosω2t− 2a1ẋ− b1x+ ν2(ẋ− V )− µkg,

F (3) ≡ F (3)(x, t) = Q0 cosω1t+Q0 cosω2t− 2a3ẋ− b3x+ ν3(ẋ− V ) + µkg.


(4.55)

Therefore, with ẋm = V , the force conditions on the boundary ∂Ω31 from domain
Ω3 to Ω1 are from Eq. (4.28) at time tm− and tm+

F
(3)
− ≡ F (3)(xm, tm−)=Q0 cosω1tm−+Q0 cosω2tm−−2a3V −b3xm + µkg > 0,

F
(1)
+ ≡ F (1)(xm, tm+)=Q0 cosω1tm++Q0 cosω2tm+−2a1V −b1xm − µkg > 0;


(4.56)

and the force conditions on the boundary ∂Ω13 from domain Ω1 to Ω3 are at time
tm− and tm+

F
(1)
− ≡F (1)(xm, tm−)=Q0 cosω1tm−+Q0 cosω2tm−−2a1V − b1xm − µkg<0,

F
(3)
+ ≡F (3)(xm, tm+)=Q0 cosω1tm++Q0 cosω2tm+−2a3V − b3xm + µkg<0.


(4.57)

Because a1 = a3 and b1 = b3, the total force on the boundary ∂Ω13 is discontinuous.
But the total force on the boundary ∂Ω34 and ∂Ω12 is continuous. Such force
characteristics of the periodic motion can be observed in Figure 4(d). The force
distributions along both displacement and velocity are plotted in Figs. 4(e)-(f).
Next, consider a stick periodic motion relative to mapping P433331011313 with ω1 =
1, ω2 = 3, Q0 = 10, V = 1.96, V1 = 2.42, V2 = 1.5. The other parameters are the
same as in the first example. The equation of motion for the discussed oscillator is

mẍ+ cẋ+ (k1 + k2)x = P cosω1t+ P cosω2t− F̄f . (4.58)

By introducing the notations

ω0 =

√
k1 + k2

m
, τ = ω0t, λ =

c

mω0
, u0 =

P

mω2
0

, xf =
F̄f

(k1 + k2)
, η =

ω1

ω0
, (4.59)

Eq. (4.58) can be normalized as

x
′′
+ λx

′
+ x = u0cos(ητ) + u0cos(ω2

ω1
ητ)− xf , (4.60)

where the prime x
′ indicates differentiation with respect to the non-dimensional

time τ . The responses of displacement, velocity, the phase plane and force distribu-
tions are presented respectively in Figs. 5(a)-(f) for the periodic motion of mapping
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P433331011313 with the initial condition (τk, xk, x
′

k) ≈ (30.9346,−0.0684, 0.2739). The
response in different domains are depicted through different colour curves, accord-
ingly. The red filled cycle is the starting points of the periodic motion and the other
circles are switching points. The arrows give the direction of the periodic motion.
In addition, the corresponding mappings are labeled in plots.
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Figure 4. Periodical responses of mapping P433
◦P331

◦P112
◦P222

◦P121
◦P313

: (a)displacement time
history, (b) velocity time history, (c) phase plane, (d) forces time history, (e) force distribution along
displacement, (f) force distribution along velocity for ω1 = 5, ω2 = 15 and Q0 = 70 with the initial
conditions (tk, xk, ẋk) = (2.0389,−2.2792, 1.50).

In Figure 5(a), the displacement is continuous because the velocity is C0-continu-
ous. The nonsmoothness of the velocity response is observed in Figure 5(b) because
the force is C0-discontinuous. The stick motion in the velocity response is clearly
observed. The stick motion in phase plane is a straight line along the discontinuous
boundary, as shown in Figure 5(c). The trajectory of this periodic motion exists in
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domains Ω3 and Ω4. The force description in domains Ω3 and Ω4 is given as
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Figure 5. Periodical responses of mapping P433 ◦P331 ◦P011 ◦P313 : (a)displacement time history, (b)
velocity time history, (c) phase plane, (d) forces time history, (e) force distribution along displacement, (f)
force distribution along velocity for ω1 = 1, ω2 = 3 and Q0 = 10 with the initial conditions (τk, xk, xk

′
) =

(30.9346,−0.0684, 0.2739).

F (3)≡F (3)(x, τ) =
1

ω2
0

F (3)(x, t)

=
1

ω2
0

(Q0 cosω1t+Q0 cosω2t− 2a3ẋ− b3x+ ν3(ẋ− V ) + µkg),

F (4)≡F (4)(x, τ) =
1

ω2
0

F (4)(x, t)

=
1

ω2
0

(Q0 cosω1t+Q0 cosω2t−2a4ẋ−b4x−ν4(ẋ−V2)+ν3(V2 − V )+µkg).


(4.61)

The force conditions on the boundary ∂Ω34 from domain Ω3 to Ω4 are at time
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tm− and tm+

F
(3)
− ≡ F (3)(xm, τm−)=

1

ω2
0

F (3)(xm, tm−)

=
1

ω2
0

(Q0 cosω1tm−+Q0 cosω2tm−−2a3V2−b3xm+ν3(V2−V )+µkg)<0,

F
(4)
+ ≡ F (4)(xm, τm+)=

1

ω2
0

F (4)(xm, tm+)

=
1

ω2
0

(Q0 cosω1tm++Q0 cosω2tm+−2a4V2−b4xm+ν3(V2−V )+µkg)<0;


(4.62)

and the force conditions on the boundary ∂Ω43 from domain Ω4 to Ω3 are at time
tm− and tm+

F
(4)
− ≡ F (4)(xm, τm−) =

1

ω2
0

F (4)(xm, tm−)

=
1

ω2
0

(Q0 cosω1tm−+Q0 cosω2tm−−2a4V2−b4xm+ν3(V2−V )+µkg)>0,

F
(3)
+ ≡ F (3)(xm, τm+) =

1

ω2
0

F (3)(xm, tm+)

=
1

ω2
0

(Q0 cosω1tm++Q0 cosω2tm+−2a3V2−b3xm+ν3(V2−V )+µkg)>0.


(4.63)

Since the friction force on ∂Ω13 is C0-discontinuous, such a force discontinuity causes
the existence of the stick motion along the boundary ∂Ω13. From Eq. (4.33), the
condition for the stick motion on ∂Ω13 is

F
(1)
− ≡ F (1)(xm, τm−) =

1

ω2
0

F (1)(xm, tm−)

=
1

ω2
0

(Q0 cosω1tm− +Q0 cosω2tm− − 2a1V − b1xm − µkg) < 0,

F
(3)
− ≡ F (3)(xm, τm−) =

1

ω2
0

F (3)(xm, tm−)

=
1

ω2
0

(Q0 cosω1tm− +Q0 cosω2tm− − 2a3V − b3xm + µkg) > 0.


(4.64)

Because the static and kinetic friction forces are different, the flow barriers exist in
this dynamical system. Therefore, once the stick motion appears between the mass
and the translation belt, the stick motion disappearance requires

F (0≻01)≡F (0≻01)(xm, q
(1)
1 )

=
1

ω2
0

(Q0 cosω1tm−+Q0 cosω2tm−−2a1V −b1xm−µsg)<0;

F (0≻03)≡F (0≻03)(xm, q
(3)
1 )

=
1

ω2
0

(Q0 cosω1tm±+Q0 cosω2tm±−2a3V −b3xm+µsg)=0,

DF (0≻03)≡DF (0≻03)(xm, q
(3)
1 )

=
1

ω2
0

(−c3V −Q0ω1 sin(ω1tm±)−Q0ω2 sin(ω2tm±))<0,



for ∂Ω13→Ω3

(4.65)
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F (0≻03) ≡ F (0≻03)(xm, q
(3)
1 )

=
1

ω2
0

(Q0 cosω1tm− +Q0 cosω2tm− − 2a3V − b3xm + µsg) > 0;

F (0≻01) ≡ F (0≻01)(xm, q
(1)
1 )

=
1

ω2
0

(Q0 cosω1tm± +Q0 cosω2tm± − 2a1V − b1xm − µsg) = 0,

DF (0≻01)≡ DF (0≻01)(xm, q
(1)
1 )

=
1

ω2
0

(−c1V −Q0ω1 sin(ω1tm±)−Q0ω2 sin(ω2tm±)) > 0.


for ∂Ω13 → Ω1 (4.66)

For simplicity, F (0≻0α) ≜ F (0≻0α)(xm, q
(α)
1 ) is depicted to observe the force criteria

for the disappearance of the stick motion. Since F
(3)
− > 0 and F

(1)
− < 0, the stick

motion appears on the boundary ∂Ω13 because the conditions in Eq. (4.33) are
satisfied. The stick motion disappears at F (0≻03) = 0 and DF (0≻03) < 0, which
satisfies the conditions in Eq. (4.65). Such a condition indicates that the nonfriction
force must be greater than the static friction force (i.e. flow barrier). Once the
relative motion starts between the oscillator and the belt, the kinetic friction force
will control the motion in domain Ω3. So the corresponding force jumps from zero
to the negative one (i.e. F

(3)
+ < 0). Such force characteristics of stick motion and

switching are presented in Figs. 5(d)-(f). The forces at the switching points on
the boundary ∂Ω34 and ∂Ω43 are labeled by F

(3)
± and F

(4)
∓ . In addition, such force

distributions in domains Ω3 and Ω4 are labeled by F (3) and F (4).

5. Conclusion
A periodically forced, friction oscillator under two-frequency excitations is investi-
gated in this paper. The nonlinear friction force is approximated by a piecewise
linear, kinetic friction model with the static force. The necessary and sufficient
conditions for the passibility of the flow and the grazing motions to the separa-
tion boundary are developed. Because of the flow barriers existing on the separa-
tion boundary, the singularities of the flow on such a separation boundary will be
changed accordingly. Thus, the necessary and sufficient conditions for the onset
and vanishing of the stick motions are also developed using the flow barrier theory.
The periodic motions of such an oscillator are analytically predicted through the
corresponding mapping structures. Illustrations of the periodic motions in such a
piecewise friction model are presented to verify the analytical conditions. It is noted
that the present analysis provided an effective way to design desired dynamical sys-
tems to satisfy engineering-oriented complex systems and the ideas can be extended
for control system design.
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