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Abstract In this paper, we extend F-metric spaces to more general spaces,
named generalized F-metric spaces and establish some fixed point theorems via
comparison function, F -contraction, Geraghty contraction and JS-contraction
in the setting of generalized F-metric spaces. Our results generalize many
present theorems.
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1. Introduction
In recent years, the notions of metric spaces have been extended in many directions
[10,12,23–26] for example controlled metric spaces [14] and doulbe controlled metric
spaces [1]. Recently Jleli and Samet [10] introduced a new generalization of metric
space named F-metric space, and soon many scholars considered the F-metric space
[8, 13,15,17,20]. Inspired by [10], we extend it to a more general space.

Let F be the set of functions f : (0,+∞) → R satisfying the following conditions:

(F1) f is non-decreasing, i. e. 0 < s < t⇒ f(s) ≤ f(t);
(F2) for every sequence {tn} ⊂ (0,+∞), we have

lim
n→∞

tn = 0 ⇔ lim
n→∞

f(tn) = −∞.

For example, f1(t) = ln t, f2(t) = −1
t , f1, f2 ∈ F .

Definition 1.1 ( [10]). Let X be a nonempty set and D : X ×X → [0,+∞) be a
given mapping. If there exist a constant α ≥ 0 and a function f ∈ F such that, for
all x, y ∈ X, the following conditions hold:
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(D1) D(x, y) = 0 iff x = y;
(D2) D(x, y) = D(y, x);
(D3) for every N ∈ {2, 3, 4, · · · } and for every (xi)

N
i=1 ⊂ X with (x1, xN ) = (x, y),

we have

D(x, y) > 0 ⇒ f(D(x, y)) ≤ f

(
N−1∑
i=1

D(xi, xi+1)

)
+ α,

then D is said to be an F-metric on X, and the pair (X,D) is said to be an F-metric
space.

We introduce the following definition which generalizes the F-metric space.

Definition 1.2. Let X be a nonempty set and D : X ×X → [0,+∞) be a given
mapping. If there exist a constant α ≥ 0 and a function f ∈ F such that, for all
x, y, z ∈ X, the following conditions hold:

(D1) D(x, y) = 0 iff x = y;
(D2) D(x, y) = D(y, x);
(D∗

3) D(x, y) > 0 ⇒ f(D(x, y)) ≤ f(D(x, z) +D(z, y)) + α,

then D is said to be a generalized F-metric on X, and the pair (X,D) is said to be
a generalized F-metric space.

Every F-metric on X is a generalized F-metric on X, because from (D3) we get

D(x, y) > 0 ⇒ f(D(x, y)) ≤ f(D(x, z) +D(z, y)) + α.

Then D satisfies (D∗
3).

Every metric is a generalized F-metric, because that d(x, y) ≤ d(x, z) + d(z, y)
yields to ln(d(x, y)) ≤ ln(d(x, z) + d(z, y)) + 0 for d(x, y) > 0. Then d satisfies (D∗

3)
with f(t) = ln t and α = 0.

To show the range of generalized F-metric spaces are really larger than F-metric
spaces, we recall the definitions of s-relaxedp metric space and b-metric space as
follows.

Definition 1.3 ( [6]). Let X be a nonempty set and D : X ×X → [0,+∞) be a
given mapping satisfying (D1),(D2), and

(S) there exists s ≥ 1 such that for every (x, y) ∈ X×X, N ∈{2, 3, 4, · · · }, and for

every (xi)
N
i=1⊂X with (x1, xN )=(x, y), we have D(x, y)≤s

(
N−1∑
i=1

D(xi, xi+1)

)
.

Then D is said to be an s-relaxedp metric on X, and the pair (X,D) is said to be
an s-relaxedp metric space.

Every s-relaxedp metric space is an F-metric space with f = lnx and α = ln s.

Definition 1.4 ( [4]). Let X be a nonempty set and D : X ×X → [0,+∞) be a
given mapping satisfying (D1), (D2), and

(G) there exists s ≥ 1 such that for every (x, y, z) ∈ X×X×X, we have D(x, y) ≤
s(D(x, z) +D(z, y)).
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Then D is said to be a b-metric on X, and the pair (X,D) is said to be a b-metric
space.

Every b-metric is a generalized F-metric with f(t) = ln t and α = ln s.
Every s-relaxedp-metric on X is a b-metric on X, because from (S) we get

D(x, y)) ≤ D(x, z) +D(z, y),

which shows that D satisfies (G).
The following examples show that there are b-metric spaces that are not s-

relaxedp metric spaces. So there are generalized F-metric spaces ( for example,
some b−metric spaces ) that are not F-metric spaces (for example, some s-relaxedp

metric spaces ).

Example 1.1 (Proposition 2.1 in [10]). Let X = [0, 1], and let d : X×X → [0,+∞)
be a mapping defined by d(x, y) = (x − y)2, (x, y) ∈ X ×X. It is well known that
d is a b-metric on X with coefficient K = 2. But d is not an s-relaxedp metric,
because

d(0, 1) > K(d(0,
1

n
) + d(

1

n
,
2

n
) + · · ·+ d(

n− 1

n
,
n

n
)) =

K

n
→ 0, as n→ ∞.

From (F2) we get

f(d(0,
1

n
) + d(

1

n
,
2

n
) + · · ·+ d(

n− 1

n
,
n

n
)) + α = f(

1

n
) + α→ −∞, as n→ ∞.

Thus, d on X is not an F-metric, but a generalized F-metric.

Example 1.2 (a case of Example 11 in [18]). Let X = {log2 2, log2 3, log2 4, · · · },
n ∈ N, K ∈ (1,∞), an = 1

(2K)n , f(n) = −[− log2 n], g(n) = (2n − 2f(n))Kf(n) +

(2f(n) − n)Kf(n)−1,

d(log2 n, log2m) =



0, n = m;

g(n−m)ak, 2k ≤ m < n ≤ 2k+1;

d(log2m, log2 2
j+1)+

k−1∑
i=j+1

d(i, i+ 1) + d(log2 2
k, log2 n),

2j ≤ m < 2j+1 ≤ 2k < n ≤ 2k+1;

d(log2m, log2 n), n < m.

It was proved in [18] that d is a b-metric on X,
∞∑
i=2

d(log2 i, log2(i+1)) <∞ and

d(n, n+ 1) = 1. It implies
2n+1−1∑
i=2n

d(log2 i, log2(i+ 1)) → 0, as n→ ∞. We get

d(n, n+ 1) = 1 > K

2n+1−1∑
i=2n

d(log2 i, log2(i+ 1))

→ 0, as n→ ∞.

Then, d is not an s-relaxedp metric. It is easy to get d on X is a generalized
F-metric, not an F-metric.

The following example shows that the generalized F-metric spaces are really
more extensive than b-metric spaces.
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Example 1.3. Let X = R, a > 0, b > 0, D : X ×X → [0,+∞) given by

D(x, y) =

{
aeb(|x−y|), if x ̸= y,

0, if x = y.

Then, D(3n, 0) = ae3nb, D(3n, n) = ae2nb, and D(0, n) = aenb. If D(3n, 0) ≤
s(D(3n, n) +D(n, 0)), i. e. ae3nb ≤ s(ae2nb + aenb), then enb ≤ s(1 + 1

enb ). It is a
contradiction if we take n→ ∞. Therefore, D is not a b-metric.

Next, we show that D is a generalized F-metric. Let f(t) = −1
t . For given

(x, y) ∈ X ×X with D(x, y) > 0, for every z ∈ X we have
1

a
+ f(D(x, z) +D(z, y))− f(D(x, y)) =

1

a
− 1

D(x, z) +D(z, y)
+

1

aeb(|x−y|)

≥ 1

a
− 1

a
+

1

aeb(|x−y|) ≥ 0.

Therefore, we have

f(D(x, y)) ≤ f(D(x, z) +D(z, y)) +
1

a
.

Then D is a generalized F-metric on X with f(t) = −1
t and α = 1

a .

In [3,10], a natural topology defined on F-metric spaces was discussed. However
we think that they actually discussed a natural topology on generalized F-metric
spaces. In [17], Som, Petrusel et al. proved the metrizability of F-metric spaces,
and actually proved the metrizability of generalized F-metric spaces.

Definition 1.5. Let (X,D) be a generalized F-metric space. For every x0 ∈ X
and r > 0, the ball with centre x0 and radius r is defined by

B(x0, r) = {y ∈ X : D(x0, y) < r}.

Definition 1.6. Let (X,D) be a generalized F-metric space. A subset O of X is
said to be F-open if for every x ∈ O, there is some r > 0 such that B(x, r) ⊂ O.
We say that a subset C of X is F-closed if X \ C is F-open. We denote the family
of all F-open subsets of X by τF .

Proposition 1.1. Let (X,D) be a generalized F-metric space. Then τF is a topol-
ogy on X.

Definition 1.7. Let (X,D) be a generalized F-metric space.

1. A sequence {xn} is said to be F-Cauchy if, for any ϵ > 0, there exists a
positive integer n0 such that, for all m,n ≥ n0, D(xn, xm) < ϵ;

2. A sequence {xn} is said to be F-convergent to a point x ∈ X if, for any ϵ > 0,
there exists a positive integer n0 such that, for all n ≥ n0, D(x, xn) < ϵ;

3. A F-metric space is called F-complete if every F-Cauchy sequence is F-
convergent in X.

2. Fixed point results in generalized F-metric spaces
Lemma 2.1. Let (X,D) be a generalized F-metric space. If a sequence {xn} ⊂ X
has a limit in X, then the limit is unique.
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Proof. We assume x, y ∈ X are both limits of {xn} as n → ∞. If D(x, y) ̸= 0,
from the definition of generalized F-metric space, we get

f(D(x, y)) ≤ f(D(x, xn) +D(xn, y)) + α.

By virtue of (F2), we derive that lim
n→∞

f(D(x, y)) = −∞. This contradicts
f(D(x, y)) < +∞. Hence we get D(x, y) = 0, i.e. x = y.

2.1. Fixed point results via comparison functions
Let ϕn(x) denote the n-th iteration of ϕ in the follows.

Let Φ1 be the family of functions ϕ : [0,+∞) → [0,+∞) satisfying:

1. s < t⇒ ϕ(s) ≤ ϕ(t);

2.
∞∑

n=1
ϕn(x) <∞, for all x > 0.

Let Φ2 be the family of functions ϕ : [0,+∞) → [0,+∞) satisfying:

1. s < t⇒ ϕ(s) ≤ ϕ(t);
2∗. lim

n→∞
ϕn(x) = 0, for all x > 0.

Remark 2.1. If
∞∑

n=1
ϕn(x) < ∞, for all x > 0, then lim

n→∞
ϕn(x) = 0, for every

x > 0. Thus, Φ1 ⊂ Φ2, i.e., the class of Φ2 is larger than the class of Φ1. In what
follows, a function ϕ ∈ Φ2 is called a comparison function.

For example, ϕ1(t) = kt, k ∈ (0, 1), ϕ2(t) = t
1+t . ϕn1 (t) = knt → 0 , ϕn2 (t) =

t
1+nt → 0, as n→ ∞.

It is easy to check that the following lemma holds.

Lemma 2.2. If ϕ ∈ Φ2, then the following are satisfied:

1. ϕ(t) < t, for all t > 0;
2. ϕ(0) = 0.

Lemma 2.3. Let (X,D) be a generalized F-metric space with (f, α) ∈ F× [0,+∞).
If there exists a functioin ϕ ∈ Φ2, such that a sequence {xn} satisfies

D(xn, xn+1) ≤ ϕ(D(xn−1, xn)), (2.1)

then {xn} is an F-Cauchy sequence.

Proof. From

D(xn, xn+1) ≤ ϕ(D(xn−1, xn)) ≤ ϕn−1(D(x0, x1)),

we get lim
n→∞

D(xn, xn+1) = 0. We want to show by induction in m that, for all
m ∈ {1, 2, 3, · · · }

lim
n→∞

D(xn, xn+m) = 0. (2.2)

It is obvious that (2.2) holds for m = 1. Assume that (2.2) is satisfied for some
m ∈ {1, 2, 3, · · · }. Since

D(xn, xn+m+1)>0⇒f(D(xn, xn+m+1))≤f(D(xn, xn+m)+D(xn+m, xn+m+1))+α,
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and
D(xn, xn+m) +D(xn+m, xn+m+1) → 0, as n→ ∞,

we have
f(D(xn, xn+m) +D(xn+m, xn+m+1)) → −∞, as n→ ∞.

From (F2) we get
lim

n→∞
f(D(xn, xn+m+1)) = −∞,

i.e.,
lim
n→∞

D(xn, xn+m+1) = 0.

Hence, (2.2) holds for all m ≥ 1. Thus, the sequence {xn} is an F-Cauchy sequence.

Theorem 2.1. Let (X,D) be an F-complete generalized F-metric space with (f, α) ∈
F × [0,+∞). Let T : X → X be a mapping. If there exists a function ϕ ∈ Φ2 such
that

D(Tx, Ty) ≤ ϕ(D(x, y)), (2.3)
for all x, y ∈ X, then T has a unique fixed point in X.

Proof. Let x0 ∈ X be an arbitrary element. Let {xn} be the sequence defined
by xn = Tnx0,n = 1, 2, · · · . If there exists some N ∈ {0, 1, 2, · · · } such that
TNx0 = TN+1x0, then T has a fixed point TNx0. Next we assume that for every
n ∈ {0, 1, 2, · · · }, Tnx0 ̸= Tn+1x0. From (2.3), we obtain

D(xn, xn+1) = D(Txn−1, Txn) ≤ ϕ(D(xn−1, xn)),

which implies that {xn} is an F-Cauchy sequence. Since the generalized F-metric
space is F-complete then there exists an x ∈ X such that lim

n→∞
D(xn, x) = 0. From

D(Txn, Tx) ≤ ϕ(D(xn, x)) ≤ D(xn, x) → 0, as n→ ∞,

we see that Tx is also a limit of sequence {xn}. From the uniqueness of limit of
sequence in generalized F-metric space, we have Tx = x. If T has another fixed
point y, then

D(Tx, Ty) ≤ ϕ(D(x, y)) < D(x, y),

which is a contradiction.

Corollary 2.1. Let (X,D) be an F-complete generalized F-metric space with
(f, α) ∈ F × [0,+∞). Let T : X → X be a mapping. If there exists k ∈ [0, 1)
such that for all x, y ∈ X,

D(Tx, Ty) ≤ kD(x, y),

then T has a unique fixed point in X.

Proof. Let ϕ(t) = kt in Theorem 2.1.

Corollary 2.2 ( [10]). Let (X,D) be an F-complete F-metric space with (f, α) ∈
F × [0,+∞). Let T : X → X be a mapping. If there exists k ∈ [0, 1) such that for
all x, y ∈ X,

D(Tx, Ty) ≤ kD(x, y),

then T has a unique fixed point in X.
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Proof. F-metric space is a generalized F-metric space, thus the conditions of
Theorem 2.1 are satisfied.

Corollary 2.3 ( [2]). Let (X,D) be a complete b-metric space. Let T : X → X be
a mapping. If there exists k ∈ [0, 1) such that for all x, y ∈ X,

D(Tx, Ty) ≤ kD(x, y),

then T has a unique fixed point in X.

Proof. Because b-metric space is a generalized F-metric space, the conditions of
Theorem 2.1 are satisfied.

Corollary 2.4 (Banach type contraction). Let (X,D) be a complete metric space.
Let T : X → X be a mapping. If there exists k ∈ [0, 1) such that for all x, y ∈ X,

D(Tx, Ty) ≤ kD(x, y),

then T has a unique fixed point in X.

Proof. Metric space is a generalized F-metric space, then the conditions of The-
orem 2.1 are satisfied.

Corollary 2.5. Let (X,D) be a F-complete F-metric space with (f, α) ∈ F ×
[0,+∞). Let T : X → X be a mapping. If there exists ϕ ∈ Φ1 such that for all
x, y ∈ X,

D(Tx, Ty) ≤ ϕ(D(x, y)),

then T has a unique fixed point in X.

Proof. Because Φ1 ⊂ Φ2 and F-metric space is a generalized F-metric space, the
conditions of Theorem 2.1 are satisfied.

2.2. Fixed point results using F -contractions
In this section we use the theorems of semimetric to get some fixed point theorems
on F-metric spaces. Now, we need to recall the concept of semimetric space.

Definition 2.1. Let X be a nonempty set and d : X × X → [0,+∞) be a given
mapping. Suppose that for all x, y ∈ X, (D1) and (D2) are satisfied. Then d is said
to be a semimetric on X, and the pair (X, d) is said to be a semimetric space.

Definition 2.2. Let (X, d) be a semimetric space.
1. A sequence {xn} is said to be Cauchy if lim

n→∞
sup{d(xm, xn) : m > n} = 0;

2. A sequence {xn} is said to converge to a point x ∈ X if lim
n→∞

d(x, xn) = 0;

3. X is said to be complete if every Cauchy sequence converges in X.
Lemma 2.4. Let (X,D) be a generalized F-metric space. Then the following holds:

(D4) For any ε > 0, there exists δ > 0 such that D(x, z) < δ and D(z, y) < δ
imply D(x, y) < ε.

Proof. Let ε > 0. By (F2), for f(ε) − α, there exists δ > 0 such that 0 < t < δ
implies f(t) < f(ε)− α. By (D∗

3), D(x, z) < δ
2 and D(z, y) < δ

2 imply

f(D(x, y)) ≤f(D(x, z) +D(z, y)) + α < f(ε),

From (F1), we get D(x, y) < ε.
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Lemma 2.5 ( [19]). Let (X, d) be a complete semimetric space. Assume (D4) is
satisfied. Let T : X → X be a mapping. Assume that there exists a function
F : (0,∞) → R and a real number τ ∈ (0,∞) satisfying (F2) and

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Then T has a unique fixed point z. Moreover, {Tnx} converges to z for all x ∈ X.

Theorem 2.2. Let (X, d) be an F-complete generalized F-metric space. Let T :
X → X be a mapping. Assume that there exists a function F : (0,∞) → R and a
real number τ ∈ (0,∞) satisfying (F2) and

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Then T has a unique fixed point z. Moreover, {Tnx} converges to z for all x ∈ X.

Proof. Firstly generalized F-metric spaces are semimetric spaces. Secondly from
Lemma 2.4 (D4) holds. By Lemma 2.5 we obtain the desired result.

2.3. Fixed Point Results Using Geraghty Contractions
The Geraghty contraction was originated from Geraghty [7], and was advanced in
many aspects [11,21,22]. Now we apply it to generalized F-metric spaces.

Let Γ be the family of functions γ : [0,+∞) → (−∞, 0] such that:

lim sup
n→∞

γ(tn) = 0 ⇒ lim
n→∞

tn = 0.

For example γ1(x) = −x, γ2(x) = −x3, γ1, γ2 ∈ Γ.

Definition 2.3. Let (X,D) be a generalized F-metric space with (f, α) ∈ F ×
[0,+∞). Let T : X → X be a mapping. If for all x, y, z ∈ X there exists a function
γ ∈ Γ satisfying

D(Tx, Ty) > 0 ⇒ f(D(Tx, Ty)) ≤ γ(D(x, y)) + f(D(x, y))− α, (2.4)

then the mapping T is called an F-Geraghty contraction.

Theorem 2.3. Let (X,D) be an F-complete generalized F-metric space with (f, α) ∈
F × [0,+∞). The mapping T : X → X is an F-Geraghty contraction and f is in-
creasing and continuous. Then T has a unique fixed point p, and for all x ∈ X, the
sequence {Tnx} converges to p.

Proof. Let x0 ∈ X be an arbitrary element. Let {xn} be the sequence defined
by xn = Tnx0, n ∈ {0, 1, 2, · · · }. If there exists some N ∈ {0, 1, 2, · · · } such
that TNx0 = TN+1x0 then T has a fixed point. Next we assume for every n ∈
{0, 1, 2, . . . }, Tnx0 ̸= Tn+1x0. From (2.4) we get

f(D(xn+1, xn+2)) ≤γ(D(xn, xn+1)) + f(D(xn, xn+1))− α

≤f(D(xn, xn+1)).
(2.5)

From the increasing property of f , we have D(xn, xn+1) ≤ D(xn−1, xn). There
exists a r ≥ 0 such that lim

n→∞
D(xn, xn+1) = r. If r > 0 from (2.5) and the continuity

of f we get
f(r) ≤ lim sup

n→∞
γ(D(xn, xn+1)) + f(r)− α.
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From 0 ≤ α ≤ lim sup
n→∞

γ(D(xn, xn+1)) ≤ 0, we get lim
n→∞

D(xn, xn+1) = 0, which is a
contradiction. So r = 0.

Next, we prove that the sequence {xn} is an F-Cauthy sequence. Suppose the
contrary, i.e., there exists ϵ > 0 for which we can find two subsequences {xni

} and
{xmi

} such that mi is the smallest index for which

i ≤ ni ≤ mi and D(xni
, xmi

) ≥ ϵ.

This means that
D(xni

, xmi−1) < ϵ.

On the one hand, from the increasing property of f we get

f(ϵ) ≤ f(D(xni , xmi)) ≤ f(D(xni , xni+1) +D(xni+1, xmi)) + α,

then

f−1(f(ϵ)− α) ≤ lim sup
i→∞

D(xni+1, xmi
).

From the increasing property of f , we get

f(ϵ)− α ≤f(lim sup
i→∞

D(xni+1, xmi
))

= lim sup
i→∞

f(D(xni+1, xmi
)).

(2.6)

On the other hand,

f(D(xni+1, xmi
)) ≤ γ(D(xni

, xmi−1)) + f(D(xni
, xmi−1))− α

≤ γ(D(xni
, xmi−1)) + f(ϵ)− α.

(2.7)

Combining (2.6) and (2.7) we get

0 ≤ lim sup
i→∞

γ(D(xni , xmi−1)),

which implies lim sup
i→∞

γ(D(xni
, xmi−1)) = 0, i.e. lim

i→∞
D(xni

, xmi−1) = 0. From

f(D(xni
, xmi

)) ≤ f(D(xni
, xmi−1) +D(xmi−1, xmi

)) + α,

we get lim
i→∞

D(xni
, xmi

) = 0, a contradiction. So {Tnx} is an F-Cauthy sequence.
From the F-complete of the generalized F-metric space, there exists an x ∈ X such
that lim

n→∞
D(xn, x) = 0.

From
f(D(Txn, Tx)) ≤ γ(D(xn, x)) + f(D(xn, x))− α,

we get f(D(Txn, Tx)) → −∞, i.e. D(Txn, Tx) → 0 as n → ∞. Tx is also a limit
of sequence {xn}. From the uniqueness of limit of sequence in generalized F-metric
space, we have Tx = x.

If T has another fixed point y ∈ X, and D(x, y) > 0, then

f(D(Tx, Ty)) ≤ γ(D(x, y)) + f(D(x, y))− α,
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which implies α ≤ γ(D(x, y)). If α > 0, a contradiction. If α = 0, from the
proposition of γ we have D(x, y) = 0, x = y, a contradiction.

Let B be the family of functions β : [0,+∞) → [0, 1) such that:

lim sup
n→∞

β(tn) = 1 ⇒ lim
n→∞

tn = 0.

For example, β1(x) =
{
e−x, x > 0,

0, x = 0.
, β2(x) =

{
1

1+ 1
100x

, x > 0,

0, x = 0.
, β1(x), β2(x) ∈ B.

Corollary 2.6 ( [7]). If (X,D) is a complete metric space and a mapping T : X →
X satisfies

D(Tx, Ty) ≤ β(D(x, y))D(x, y), for all x, y ∈ X, (2.8)

where β ∈ B, then T has a unique fixed point p and for any x ∈ X, the sequence
{Tnx} converges to p.

Proof. Because the metric space is a generalized F-metric space with f(x) = lnx
and α = 0. From (2.8) we get

D(Tx, Ty) > 0 ⇒ ln(D(Tx, Ty)) ≤ ln(β(D(x, y))) + ln(D(x, y)).

Form lim
n→∞

ln(β(xn)) = 0 ⇒ lim
n→∞

β(xn) = 1 ⇒ lim
n→∞

xn = 0, we obtain γ(x) =

lnβ(x) ∈ Γ. So it can be concluded that

D(Tx, Ty) > 0 ⇒ f(D(Tx, Ty)) ≤ γ(D(x, y)) + f(D(x, y))− 0.

All the conditions of Theorem 2.3 are satisfied.

Corollary 2.7 ( [5]). If (X,D) is a complete b-metric space with coefficient s ≥ 1
and a mapping T : X → X satisfies

D(Tx, Ty) ≤ β(D(x, y))

s
D(x, y), for all x, y ∈ X, (2.9)

where β ∈ B, then T has a unique fixed point p and for any x ∈ X, the sequence
{Tnx} converges to p.

Proof. Because b-metric space is a generalized F-metric space with f(x) = lnx
and α = ln s. From (2.9) we get

D(Tx, Ty) > 0 ⇒ ln(D(Tx, Ty)) ≤ ln(β(D(x, y))) + ln(D(x, y))− ln(s).

lim
n→∞

ln(β(xn)) = 0 ⇒ lim
n→∞

β(xn) = 1 ⇒ lim
n→∞

xn = 0. So γ(x) = lnβ(x) ∈ Γ.
All the conditions of Theorem 2.3 are satisfied.

Example 2.1. Let X = [0, 1] and D : X × X → [0,∞] be defined by D(x, y) =
(x− y)2, for all x, y ∈ [0, 1]. It is easy to check that (X,D) is a b-metric space with
parameter s = 2. So (X,D) is also a generalized F-metric space with f(x) = lnx

and α = ln 2. Set Tx = x2

8 for all x ∈ X, β(t) = 1
16 and γ(t) = ln(β(t)) = − ln 16,

for all t > 0. We get

D(Tx, Ty) =
1

64
(x+ y)2(x− y)2 ≤ 1

32
(x− y)2 =

1
16

2
D(x, y),
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then
ln(D(Tx, Ty)) ≤ ln

1

16
+ ln(D(x, y))− ln 2.

It is easy to know the conditions of Theorem 2.3 are satisfied. Hence T has a fixed
point 0.

2.4. Fixed point results related to JS-contractions
The JS-contraction was originated from Jleli et al. [9], and was advanced [16]. Now
we use the same principle in generalized F-metric spaces.

Let Θ be the family of functions θ : R → (1,∞) satisfying:

• increasing;
• lim

n→∞
θ(tn) = 1 ⇔ lim

n→∞
tn = −∞.

For example, θ(t) = 1 + et ∈ Θ.

Theorem 2.4. Let (X,D) be an F-complete generalized F-metric space with f ∈ F ,
α ≥ 0 and let T : X → X be a given mapping. Suppose that f is increasing and
there exist θ ∈ Θ and k ∈ (0, 1) such that

θ(f(D(Tx, Ty))) ≤ [θ(f(D(x, y))− α)]k, for all x, y ∈ X. (2.10)

Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary element. Let {xn} be a sequence defined
by xn = Tnx0, n =∈ {0, 1, 2, . . . }. If there exists some N ∈ {0, 1, 2, . . . } such
that TNx0 = TN+1x0, then T has a fixed point. Next we assume for every n ∈
{0, 1, 2, . . . }, Tnx0 ̸= Tn+1x0.

Step 1. We will show that lim
n→∞

D(xn, xn+1) = 0. By (2.10) we get

θ(f(D(xn, xn+1))) ≤ θ(f(D(xn−1, xn))− α)k

≤ θ(f(D(xn−1, xn)))
k

≤ θ(f(D(x0, x1))
kn

.

With lim
n→∞

kn = 1, we have lim
n→∞

θ(f(D(xn, xn+1))) = 1, lim
n→∞

f(D(xn, xn+1)) =

−∞, i.e. lim
n→∞

D(xn, xn+1) = 0.

Step 2. Next, we prove that the sequence {xn} is an F-Cauthy sequence. Sup-
pose the contrary, i.e., there exists ϵ > 0 for which we can find two subsequences
{xni} and {xmi} such that mi is the smallest index for which

i ≤ ni ≤ mi and D(xni
, xmi

) ≥ ϵ.

These mean that
D(xni

, xmi−1) < ϵ.

On the one hand, from the increasing property of f we get

f(ϵ) ≤ f(D(xni
, xmi

)) ≤ f(D(xni
, xni+1) +D(xni+1, xmi

)) + α.
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So we get

f−1(f(ϵ)− α) ≤ lim sup
i→∞

D(xni+1, xmi
),

then

f(ϵ)− α ≤f(lim sup
i→∞

D(xni+1, xmi
))

= lim sup
i→∞

f(D(xni+1, xmi
)).

(2.11)

On the other hand,

θ(f(D(xni+1, xmi))) ≤θ(f(D(xni , xmi−1))− α)k

≤θ(f(ϵ)− α)k.
(2.12)

Combining (2.11) and (2.12) we get

θ(f(ϵ)− α) ≤ θ(f(ϵ)− α)k.

It is in contradiction with k ∈ (0, 1). So the sequence {Tnx} is an F-Cauthy
sequence. From the completeness of generalized F-metric space, there exists a
point, assuming p ∈ X is the limit of {xn}. From

θ(f(D(Txn, Tp))) ≤ θ(f(D(xn, p))− α)k, (2.13)

we get Tp is also a limit of {xn}. From the uniqueness of the limit in generalized
F-metric space, we get Tp = p.

Example 2.2. Let X = [0, 4], D(x, y) = (x − y)2. The (X,D) is a b-metric with
coefficient s = 2. Let Tx = x

2
√
2
. There exist f(t) = ln t, θ(t) = 1 + et, α = ln 2,

k = 1
2 such that

θ(f(D(Tx, Ty))) ≤ θ(f(D(x, y))− α)k,

i.e.,

D(x, y) ≤ 16 ⇒1 +
1

4
D(x, y) +

1

64
D(x, y)2 ≤ 1 +

D(x, y)

2

⇒(1 +
1

8
D(x, y))2 ≤ 1 +

D(x, y)

2

⇒1 + eln(D(Tx,Ty)) ≤ (1 + eln(D(x,y))−ln 2)
1
2 .

Thus, the conditions of Theorem 2.4 are satisfied, T has a fixed point 0.

3. Application
In this section, we apply our results to solve the first order periodic boundary value
problem: {

x′(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = x(T ).
(3.1)
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where f : [0, T ] × R → R is a continuous function on [0, T ]. Problem (3.1) can be
rewritten as {

x′(t) + λx(t) = f(t, x(t)) + λx(t),

x(0) = x(T ).

It is equivalent to the integral equation

x(t) =

∫ T

0

G(t, s)(f(s, x(s)) + λx(s))ds,

where G is the Green’s function given as

G(t, s) =

{
eλ(T+s−t)

eλT−1
, 0 ≤ s ≤ t ≤ T,

eλ(s−t)

eλT−1
, 0 ≤ t ≤ s ≤ T.

It is easy to see that ∫ T

0

G(t, s)ds =
1

λ
.

Let C(I) denote the set of continuous functions on I := [0, T ]. We define an operator
T : C(I) → C(I) as

Tx(t) =

∫ T

0

G(t, s)(f(s, x(s)) + λx(s))ds. (3.2)

Theorem 3.1. If there exists λ > 0 such that, for every x, y ∈ C(I) and s ∈ I,

|f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)| ≤ λ

√
|x(s)− y(s)|2

1 + |x(s)− y(s)|2
, (3.3)

then Problem (3.1) has a unique solution in C(I).

Proof. Let D(x, y) = max
t∈[0,T ]

{|x(t) − y(t)|2}. Then (C(I), D) is an F-complete
generalized F-metric space.
D(Tx, Ty) = max

t∈[0,T ]
{|Tx(t)− Ty(t)|2}

≤ max
t∈[0,T ]


(∫ T

0

G(t, s)|f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)|ds

)2


≤ max
t∈[0,T ]


(∫ T

0

G(t, s)λ

√
|x(s)− y(s)|2

1 + |x(s)− y(s)|2
ds

)2


≤ max
t∈[0,T ]


(∫ T

0

G(t, s)ds

)2

· max
s∈[0,T ]

{
λ

√
|x(s)− y(s)|2

1 + |x(s)− y(s)|2

}2


≤ max
t∈[0,T ]

{
1

λ2
· λ2 · max

s∈[0,T ]

{
|x(s)− y(s)|2

1 + |x(s)− y(s)|2

}}

≤
max

s∈[0,T ]
|x(s)− y(s)|2

1 + max
s∈[0,T ]

|x(s)− y(s)|2
≤ D(x, y)

1 +D(x, y)
.

The conditions of Theorem 2.1 are satisfied with ϕ(t) = t
1+t . T has a fixed point in

C(I), i.e. Question (3.1) has a unique solution in C(I).
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Conclusion
We introduce a generalized F-metric space and prove the existence of fixed point
theorems via comparison function, F -contraction, Geraghty contraction and JS-
contraction in generalized F-metric space. Our results improve and generalize some
results in metric space and b-metric space. Generalized F-metric spaces may be
further considered.
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