A NEW GENERALIZATION OF \mathcal{F}-METRIC SPACES AND SOME FIXED POINT THEOREMS AND AN APPLICATION*

Chuanxi Zhu ${ }^{1, \dagger}$, Jing Chen ${ }^{1,2, \dagger}$, Jianhua Chen ${ }^{1}$, Chunfang Chen ${ }^{1}$ and Huaping Huang ${ }^{3}$

Abstract

In this paper, we extend \mathcal{F}-metric spaces to more general spaces, named generalized \mathcal{F}-metric spaces and establish some fixed point theorems via comparison function, F-contraction, Geraghty contraction and JS-contraction in the setting of generalized \mathcal{F}-metric spaces. Our results generalize many present theorems.

Keywords \mathcal{F}-metric space, fixed point, Geraghty contraction, F-contraction.
MSC(2010) $47 \mathrm{H} 10,54 \mathrm{H} 25$.

1. Introduction

In recent years, the notions of metric spaces have been extended in many directions [10, 12,23-26] for example controlled metric spaces [14] and doulbe controlled metric spaces [1]. Recently Jleli and Samet [10] introduced a new generalization of metric space named \mathcal{F}-metric space, and soon many scholars considered the \mathcal{F}-metric space $[8,13,15,17,20]$. Inspired by [10], we extend it to a more general space.

Let \mathcal{F} be the set of functions $f:(0,+\infty) \rightarrow \mathbf{R}$ satisfying the following conditions:
$\left(\mathcal{F}_{1}\right) f$ is non-decreasing, i. e. $0<s<t \Rightarrow f(s) \leq f(t) ;$
$\left(\mathcal{F}_{2}\right)$ for every sequence $\left\{t_{n}\right\} \subset(0,+\infty)$, we have

$$
\lim _{n \rightarrow \infty} t_{n}=0 \Leftrightarrow \lim _{n \rightarrow \infty} f\left(t_{n}\right)=-\infty
$$

For example, $f_{1}(t)=\ln t, f_{2}(t)=\frac{-1}{t}, f_{1}, f_{2} \in \mathcal{F}$.
Definition 1.1 ([10]). Let X be a nonempty set and $D: X \times X \rightarrow[0,+\infty)$ be a given mapping. If there exist a constant $\alpha \geq 0$ and a function $f \in \mathcal{F}$ such that, for all $x, y \in X$, the following conditions hold:

[^0]$\left(D_{1}\right) D(x, y)=0$ iff $x=y$;
$\left(D_{2}\right) D(x, y)=D(y, x)$;
$\left(D_{3}\right)$ for every $N \in\{2,3,4, \cdots\}$ and for every $\left(x_{i}\right)_{i=1}^{N} \subset X$ with $\left(x_{1}, x_{N}\right)=(x, y)$, we have
$$
D(x, y)>0 \Rightarrow f(D(x, y)) \leq f\left(\sum_{i=1}^{N-1} D\left(x_{i}, x_{i+1}\right)\right)+\alpha
$$
then D is said to be an \mathcal{F}-metric on X, and the pair (X, D) is said to be an \mathcal{F}-metric space.

We introduce the following definition which generalizes the \mathcal{F}-metric space.
Definition 1.2. Let X be a nonempty set and $D: X \times X \rightarrow[0,+\infty)$ be a given mapping. If there exist a constant $\alpha \geq 0$ and a function $f \in \mathcal{F}$ such that, for all $x, y, z \in X$, the following conditions hold:
$\left(D_{1}\right) D(x, y)=0$ iff $x=y ;$
$\left(D_{2}\right) D(x, y)=D(y, x) ;$
$\left(D_{3}^{*}\right) D(x, y)>0 \Rightarrow f(D(x, y)) \leq f(D(x, z)+D(z, y))+\alpha$,
then D is said to be a generalized \mathcal{F}-metric on X, and the pair (X, D) is said to be a generalized \mathcal{F}-metric space.

Every \mathcal{F}-metric on X is a generalized \mathcal{F}-metric on X, because from $\left(D_{3}\right)$ we get

$$
D(x, y)>0 \Rightarrow f(D(x, y)) \leq f(D(x, z)+D(z, y))+\alpha
$$

Then D satisfies $\left(D_{3}^{*}\right)$.
Every metric is a generalized \mathcal{F}-metric, because that $d(x, y) \leq d(x, z)+d(z, y)$ yields to $\ln (d(x, y)) \leq \ln (d(x, z)+d(z, y))+0$ for $d(x, y)>0$. Then d satisfies $\left(D_{3}^{*}\right)$ with $f(t)=\ln t$ and $\alpha=0$.

To show the range of generalized \mathcal{F}-metric spaces are really larger than \mathcal{F}-metric spaces, we recall the definitions of s-relaxed ${ }_{p}$ metric space and b-metric space as follows.

Definition 1.3 ([6]). Let X be a nonempty set and $D: X \times X \rightarrow[0,+\infty)$ be a given mapping satisfying $\left(D_{1}\right),\left(D_{2}\right)$, and
(S) there exists $s \geq 1$ such that for every $(x, y) \in X \times X, N \in\{2,3,4, \cdots\}$, and for every $\left(x_{i}\right)_{i=1}^{N} \subset X$ with $\left(x_{1}, x_{N}\right)=(x, y)$, we have $D(x, y) \leq s\left(\sum_{i=1}^{N-1} D\left(x_{i}, x_{i+1}\right)\right)$.

Then D is said to be an s-relaxed ${ }_{p}$ metric on X, and the pair (X, D) is said to be an s-relaxed ${ }_{p}$ metric space.

Every s-relaxed ${ }_{p}$ metric space is an \mathcal{F}-metric space with $f=\ln x$ and $\alpha=\ln s$.
Definition $1.4([4])$. Let X be a nonempty set and $D: X \times X \rightarrow[0,+\infty)$ be a given mapping satisfying $\left(D_{1}\right),\left(D_{2}\right)$, and
(G) there exists $s \geq 1$ such that for every $(x, y, z) \in X \times X \times X$, we have $D(x, y) \leq$ $s(D(x, z)+D(z, y))$.

Then D is said to be a b-metric on X, and the pair (X, D) is said to be a b-metric space.

Every b-metric is a generalized \mathcal{F}-metric with $f(t)=\ln t$ and $\alpha=\ln s$.
Every s-relaxed ${ }_{p}$-metric on X is a b-metric on X, because from (S) we get

$$
D(x, y)) \leq D(x, z)+D(z, y)
$$

which shows that D satisfies (G).
The following examples show that there are b-metric spaces that are not s $\operatorname{relaxed}_{p}$ metric spaces. So there are generalized \mathcal{F}-metric spaces (for example, some b-metric spaces) that are not \mathcal{F}-metric spaces (for example, some s-relaxed ${ }_{p}$ metric spaces).
Example 1.1 (Proposition 2.1 in [10]). Let $X=[0,1]$, and let $d: X \times X \rightarrow[0,+\infty)$ be a mapping defined by $d(x, y)=(x-y)^{2},(x, y) \in X \times X$. It is well known that d is a b-metric on X with coefficient $K=2$. But d is not an s-relaxed ${ }_{p}$ metric, because

$$
d(0,1)>K\left(d\left(0, \frac{1}{n}\right)+d\left(\frac{1}{n}, \frac{2}{n}\right)+\cdots+d\left(\frac{n-1}{n}, \frac{n}{n}\right)\right)=\frac{K}{n} \rightarrow 0, \text { as } n \rightarrow \infty
$$

From $\left(\mathcal{F}_{2}\right)$ we get

$$
f\left(d\left(0, \frac{1}{n}\right)+d\left(\frac{1}{n}, \frac{2}{n}\right)+\cdots+d\left(\frac{n-1}{n}, \frac{n}{n}\right)\right)+\alpha=f\left(\frac{1}{n}\right)+\alpha \rightarrow-\infty, \text { as } n \rightarrow \infty .
$$

Thus, d on X is not an \mathcal{F}-metric, but a generalized \mathcal{F}-metric.
Example 1.2 (a case of Example 11 in [18]). Let $X=\left\{\log _{2} 2, \log _{2} 3, \log _{2} 4, \cdots\right\}$, $n \in \mathbb{N}, K \in(1, \infty), a_{n}=\frac{1}{(2 K)^{n}}, f(n)=-\left[-\log _{2} n\right], g(n)=\left(2 n-2^{f(n)}\right) K^{f(n)}+$ $\left(2^{f(n)}-n\right) K^{f(n)-1}$,

$$
d\left(\log _{2} n, \log _{2} m\right)= \begin{cases}0, & n=m \\ g(n-m) a_{k}, & 2^{k} \leq m<n \leq 2^{k+1} \\ d\left(\log _{2} m, \log _{2} 2^{j+1}\right)+ & \sum_{i=j+1}^{k-1} d(i, i+1)+d\left(\log _{2} 2^{k}, \log _{2} n\right) \\ & 2^{j} \leq m<2^{j+1} \leq 2^{k}<n \leq 2^{k+1} \\ d\left(\log _{2} m, \log _{2} n\right), & n<m\end{cases}
$$

It was proved in [18] that d is a b-metric on $X, \sum_{i=2}^{\infty} d\left(\log _{2} i, \log _{2}(i+1)\right)<\infty$ and $d(n, n+1)=1$. It implies $\sum_{i=2^{n}}^{2^{n+1}-1} d\left(\log _{2} i, \log _{2}(i+1)\right) \rightarrow 0$, as $n \rightarrow \infty$. We get

$$
d(n, n+1)=1>K\left(\sum_{i=2^{n}}^{2^{n+1}-1} d\left(\log _{2} i, \log _{2}(i+1)\right)\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

Then, d is not an s-relaxed ${ }_{p}$ metric. It is easy to get d on X is a generalized \mathcal{F}-metric, not an \mathcal{F}-metric.

The following example shows that the generalized \mathcal{F}-metric spaces are really more extensive than b-metric spaces.

Example 1.3. Let $X=\mathbb{R}, a>0, b>0, D: X \times X \rightarrow[0,+\infty)$ given by

$$
D(x, y)= \begin{cases}a e^{b(|x-y|)}, & \text { if } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

Then, $D(3 n, 0)=a e^{3 n b}, D(3 n, n)=a e^{2 n b}$, and $D(0, n)=a e^{n b}$. If $D(3 n, 0) \leq$ $s(D(3 n, n)+D(n, 0))$, i. e. $a e^{3 n b} \leq s\left(a e^{2 n b}+a e^{n b}\right)$, then $e^{n b} \leq s\left(1+\frac{1}{e^{n b}}\right)$. It is a contradiction if we take $n \rightarrow \infty$. Therefore, D is not a b-metric.

Next, we show that D is a generalized \mathcal{F}-metric. Let $f(t)=\frac{-1}{t}$. For given $(x, y) \in X \times X$ with $D(x, y)>0$, for every $z \in X$ we have

$$
\begin{aligned}
\frac{1}{a}+f(D(x, z)+D(z, y))-f(D(x, y)) & =\frac{1}{a}-\frac{1}{D(x, z)+D(z, y)}+\frac{1}{a e^{b(|x-y|)}} \\
& \geq \frac{1}{a}-\frac{1}{a}+\frac{1}{a e^{b(|x-y|)}} \geq 0
\end{aligned}
$$

Therefore, we have

$$
f(D(x, y)) \leq f(D(x, z)+D(z, y))+\frac{1}{a}
$$

Then D is a generalized \mathcal{F}-metric on X with $f(t)=\frac{-1}{t}$ and $\alpha=\frac{1}{a}$.
In $[3,10]$, a natural topology defined on \mathcal{F}-metric spaces was discussed. However we think that they actually discussed a natural topology on generalized \mathcal{F}-metric spaces. In [17], Som, Petrusel et al. proved the metrizability of \mathcal{F}-metric spaces, and actually proved the metrizability of generalized \mathcal{F}-metric spaces.

Definition 1.5. Let (X, D) be a generalized \mathcal{F}-metric space. For every $x_{0} \in X$ and $r>0$, the ball with centre x_{0} and radius r is defined by

$$
B\left(x_{0}, r\right)=\left\{y \in X: D\left(x_{0}, y\right)<r\right\}
$$

Definition 1.6. Let (X, D) be a generalized \mathcal{F}-metric space. A subset \mathcal{O} of X is said to be \mathcal{F}-open if for every $x \in \mathcal{O}$, there is some $r>0$ such that $B(x, r) \subset \mathcal{O}$. We say that a subset \mathcal{C} of X is \mathcal{F}-closed if $X \backslash \mathcal{C}$ is \mathcal{F}-open. We denote the family of all \mathcal{F}-open subsets of X by $\tau_{\mathcal{F}}$.

Proposition 1.1. Let (X, D) be a generalized \mathcal{F}-metric space. Then $\tau_{\mathcal{F}}$ is a topology on X.
Definition 1.7. Let (X, D) be a generalized \mathcal{F}-metric space.

1. A sequence $\left\{x_{n}\right\}$ is said to be \mathcal{F}-Cauchy if, for any $\epsilon>0$, there exists a positive integer n_{0} such that, for all $m, n \geq n_{0}, D\left(x_{n}, x_{m}\right)<\epsilon$;
2. A sequence $\left\{x_{n}\right\}$ is said to be \mathcal{F}-convergent to a point $x \in X$ if, for any $\epsilon>0$, there exists a positive integer n_{0} such that, for all $n \geq n_{0}, D\left(x, x_{n}\right)<\epsilon$;
3. A \mathcal{F}-metric space is called \mathcal{F}-complete if every \mathcal{F}-Cauchy sequence is \mathcal{F} convergent in X.

2. Fixed point results in generalized \mathcal{F}-metric spaces

Lemma 2.1. Let (X, D) be a generalized \mathcal{F}-metric space. If a sequence $\left\{x_{n}\right\} \subset X$ has a limit in X, then the limit is unique.

Proof. We assume $x, y \in X$ are both limits of $\left\{x_{n}\right\}$ as $n \rightarrow \infty$. If $D(x, y) \neq 0$, from the definition of generalized \mathcal{F}-metric space, we get

$$
f(D(x, y)) \leq f\left(D\left(x, x_{n}\right)+D\left(x_{n}, y\right)\right)+\alpha
$$

By virtue of $\left(\mathcal{F}_{2}\right)$, we derive that $\lim _{n \rightarrow \infty} f(D(x, y))=-\infty$. This contradicts $f(D(x, y))<+\infty$. Hence we get $D(x, y)=0$, i.e. $x=y$.

2.1. Fixed point results via comparison functions

Let $\phi^{n}(x)$ denote the n-th iteration of ϕ in the follows.
Let Φ_{1} be the family of functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying:

1. $s<t \Rightarrow \phi(s) \leq \phi(t)$;
2. $\sum_{n=1}^{\infty} \phi^{n}(x)<\infty$, for all $x>0$.

Let Φ_{2} be the family of functions $\phi:[0,+\infty) \rightarrow[0,+\infty)$ satisfying:

1. $s<t \Rightarrow \phi(s) \leq \phi(t)$;
2^{*}. $\lim _{n \rightarrow \infty} \phi^{n}(x)=0$, for all $x>0$.
Remark 2.1. If $\sum_{n=1}^{\infty} \phi^{n}(x)<\infty$, for all $x>0$, then $\lim _{n \rightarrow \infty} \phi^{n}(x)=0$, for every $x>0$. Thus, $\Phi_{1} \subset \Phi_{2}$, i.e., the class of Φ_{2} is larger than the class of Φ_{1}. In what follows, a function $\phi \in \Phi_{2}$ is called a comparison function.

For example, $\phi_{1}(t)=k t, k \in(0,1), \phi_{2}(t)=\frac{t}{1+t} . \phi_{1}^{n}(t)=k^{n} t \rightarrow 0, \phi_{2}^{n}(t)=$ $\frac{t}{1+n t} \rightarrow 0$, as $n \rightarrow \infty$.

It is easy to check that the following lemma holds.
Lemma 2.2. If $\phi \in \Phi_{2}$, then the following are satisfied:

1. $\phi(t)<t$, for all $t>0$;
2. $\phi(0)=0$.

Lemma 2.3. Let (X, D) be a generalized \mathcal{F}-metric space with $(f, \alpha) \in \mathcal{F} \times[0,+\infty)$. If there exists a functioin $\phi \in \Phi_{2}$, such that a sequence $\left\{x_{n}\right\}$ satisfies

$$
\begin{equation*}
D\left(x_{n}, x_{n+1}\right) \leq \phi\left(D\left(x_{n-1}, x_{n}\right)\right) \tag{2.1}
\end{equation*}
$$

then $\left\{x_{n}\right\}$ is an \mathcal{F}-Cauchy sequence.
Proof. From

$$
D\left(x_{n}, x_{n+1}\right) \leq \phi\left(D\left(x_{n-1}, x_{n}\right)\right) \leq \phi^{n-1}\left(D\left(x_{0}, x_{1}\right)\right)
$$

we get $\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+1}\right)=0$. We want to show by induction in m that, for all $m \in\{1,2,3, \cdots\}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+m}\right)=0 \tag{2.2}
\end{equation*}
$$

It is obvious that (2.2) holds for $m=1$. Assume that (2.2) is satisfied for some $m \in\{1,2,3, \cdots\}$. Since
$D\left(x_{n}, x_{n+m+1}\right)>0 \Rightarrow f\left(D\left(x_{n}, x_{n+m+1}\right)\right) \leq f\left(D\left(x_{n}, x_{n+m}\right)+D\left(x_{n+m}, x_{n+m+1}\right)\right)+\alpha$,
and

$$
D\left(x_{n}, x_{n+m}\right)+D\left(x_{n+m}, x_{n+m+1}\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

we have

$$
f\left(D\left(x_{n}, x_{n+m}\right)+D\left(x_{n+m}, x_{n+m+1}\right)\right) \rightarrow-\infty, \text { as } n \rightarrow \infty
$$

From $\left(\mathcal{F}_{2}\right)$ we get

$$
\lim _{n \rightarrow \infty} f\left(D\left(x_{n}, x_{n+m+1}\right)\right)=-\infty
$$

i.e.,

$$
\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+m+1}\right)=0
$$

Hence, (2.2) holds for all $m \geq 1$. Thus, the sequence $\left\{x_{n}\right\}$ is an \mathcal{F}-Cauchy sequence.

Theorem 2.1. Let (X, D) be an \mathcal{F}-complete generalized \mathcal{F}-metric space with $(f, \alpha) \in$ $\mathcal{F} \times[0,+\infty)$. Let $T: X \rightarrow X$ be a mapping. If there exists a function $\phi \in \Phi_{2}$ such that

$$
\begin{equation*}
D(T x, T y) \leq \phi(D(x, y)) \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$, then T has a unique fixed point in X.
Proof. Let $x_{0} \in X$ be an arbitrary element. Let $\left\{x_{n}\right\}$ be the sequence defined by $x_{n}=T^{n} x_{0}, n=1,2, \cdots$. If there exists some $N \in\{0,1,2, \cdots\}$ such that $T^{N} x_{0}=T^{N+1} x_{0}$, then T has a fixed point $T^{N} x_{0}$. Next we assume that for every $n \in\{0,1,2, \cdots\}, T^{n} x_{0} \neq T^{n+1} x_{0}$. From (2.3), we obtain

$$
D\left(x_{n}, x_{n+1}\right)=D\left(T x_{n-1}, T x_{n}\right) \leq \phi\left(D\left(x_{n-1}, x_{n}\right)\right)
$$

which implies that $\left\{x_{n}\right\}$ is an \mathcal{F}-Cauchy sequence. Since the generalized \mathcal{F}-metric space is \mathcal{F}-complete then there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} D\left(x_{n}, x\right)=0$. From

$$
D\left(T x_{n}, T x\right) \leq \phi\left(D\left(x_{n}, x\right)\right) \leq D\left(x_{n}, x\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

we see that $T x$ is also a limit of sequence $\left\{x_{n}\right\}$. From the uniqueness of limit of sequence in generalized \mathcal{F}-metric space, we have $T x=x$. If T has another fixed point y, then

$$
D(T x, T y) \leq \phi(D(x, y))<D(x, y)
$$

which is a contradiction.
Corollary 2.1. Let (X, D) be an \mathcal{F}-complete generalized \mathcal{F}-metric space with $(f, \alpha) \in \mathcal{F} \times[0,+\infty)$. Let $T: X \rightarrow X$ be a mapping. If there exists $k \in[0,1)$ such that for all $x, y \in X$,

$$
D(T x, T y) \leq k D(x, y)
$$

then T has a unique fixed point in X.
Proof. Let $\phi(t)=k t$ in Theorem 2.1.
Corollary $2.2([10])$. Let (X, D) be an \mathcal{F}-complete \mathcal{F}-metric space with $(f, \alpha) \in$ $\mathcal{F} \times[0,+\infty)$. Let $T: X \rightarrow X$ be a mapping. If there exists $k \in[0,1)$ such that for all $x, y \in X$,

$$
D(T x, T y) \leq k D(x, y)
$$

then T has a unique fixed point in X.

Proof. \mathcal{F}-metric space is a generalized \mathcal{F}-metric space, thus the conditions of Theorem 2.1 are satisfied.

Corollary 2.3 ([2]). Let (X, D) be a complete b-metric space. Let $T: X \rightarrow X$ be a mapping. If there exists $k \in[0,1)$ such that for all $x, y \in X$,

$$
D(T x, T y) \leq k D(x, y)
$$

then T has a unique fixed point in X.
Proof. Because b-metric space is a generalized \mathcal{F}-metric space, the conditions of Theorem 2.1 are satisfied.

Corollary 2.4 (Banach type contraction). Let (X, D) be a complete metric space. Let $T: X \rightarrow X$ be a mapping. If there exists $k \in[0,1)$ such that for all $x, y \in X$,

$$
D(T x, T y) \leq k D(x, y)
$$

then T has a unique fixed point in X.
Proof. Metric space is a generalized \mathcal{F}-metric space, then the conditions of Theorem 2.1 are satisfied.

Corollary 2.5. Let (X, D) be a \mathcal{F}-complete \mathcal{F}-metric space with $(f, \alpha) \in \mathcal{F} \times$ $[0,+\infty)$. Let $T: X \rightarrow X$ be a mapping. If there exists $\phi \in \Phi_{1}$ such that for all $x, y \in X$,

$$
D(T x, T y) \leq \phi(D(x, y))
$$

then T has a unique fixed point in X.
Proof. Because $\Phi_{1} \subset \Phi_{2}$ and \mathcal{F}-metric space is a generalized \mathcal{F}-metric space, the conditions of Theorem 2.1 are satisfied.

2.2. Fixed point results using F-contractions

In this section we use the theorems of semimetric to get some fixed point theorems on \mathcal{F}-metric spaces. Now, we need to recall the concept of semimetric space.

Definition 2.1. Let X be a nonempty set and $d: X \times X \rightarrow[0,+\infty)$ be a given mapping. Suppose that for all $x, y \in X,\left(D_{1}\right)$ and $\left(D_{2}\right)$ are satisfied. Then d is said to be a semimetric on X, and the pair (X, d) is said to be a semimetric space.

Definition 2.2. Let (X, d) be a semimetric space.

1. A sequence $\left\{x_{n}\right\}$ is said to be Cauchy if $\lim _{n \rightarrow \infty} \sup \left\{d\left(x_{m}, x_{n}\right): m>n\right\}=0$;
2. A sequence $\left\{x_{n}\right\}$ is said to converge to a point $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$;
3. X is said to be complete if every Cauchy sequence converges in X.

Lemma 2.4. Let (X, D) be a generalized \mathcal{F}-metric space. Then the following holds:
$\left(D_{4}\right)$ For any $\varepsilon>0$, there exists $\delta>0$ such that $D(x, z)<\delta$ and $D(z, y)<\delta$ imply $D(x, y)<\varepsilon$.

Proof. Let $\varepsilon>0$. By $\left(\mathcal{F}_{2}\right)$, for $f(\varepsilon)-\alpha$, there exists $\delta>0$ such that $0<t<\delta$ implies $f(t)<f(\varepsilon)-\alpha$. By $\left(D_{3}^{*}\right), D(x, z)<\frac{\delta}{2}$ and $D(z, y)<\frac{\delta}{2}$ imply

$$
f(D(x, y)) \leq f(D(x, z)+D(z, y))+\alpha<f(\varepsilon)
$$

From $\left(\mathcal{F}_{1}\right)$, we get $D(x, y)<\varepsilon$.

Lemma 2.5 ([19]). Let (X, d) be a complete semimetric space. Assume $\left(D_{4}\right)$ is satisfied. Let $T: X \rightarrow X$ be a mapping. Assume that there exists a function $F:(0, \infty) \rightarrow \mathbb{R}$ and a real number $\tau \in(0, \infty)$ satisfying $\left(\mathcal{F}_{2}\right)$ and

$$
\tau+F(d(T x, T y)) \leq F(d(x, y))
$$

Then T has a unique fixed point z. Moreover, $\left\{T^{n} x\right\}$ converges to z for all $x \in X$.
Theorem 2.2. Let (X, d) be an \mathcal{F}-complete generalized \mathcal{F}-metric space. Let T : $X \rightarrow X$ be a mapping. Assume that there exists a function $F:(0, \infty) \rightarrow \mathbb{R}$ and a real number $\tau \in(0, \infty)$ satisfying $\left(\mathcal{F}_{2}\right)$ and

$$
\tau+F(d(T x, T y)) \leq F(d(x, y))
$$

Then T has a unique fixed point z. Moreover, $\left\{T^{n} x\right\}$ converges to z for all $x \in X$.
Proof. Firstly generalized \mathcal{F}-metric spaces are semimetric spaces. Secondly from Lemma $2.4\left(D_{4}\right)$ holds. By Lemma 2.5 we obtain the desired result.

2.3. Fixed Point Results Using Geraghty Contractions

The Geraghty contraction was originated from Geraghty [7], and was advanced in many aspects $[11,21,22]$. Now we apply it to generalized \mathcal{F}-metric spaces.

Let Γ be the family of functions $\gamma:[0,+\infty) \rightarrow(-\infty, 0]$ such that:

$$
\limsup _{n \rightarrow \infty} \gamma\left(t_{n}\right)=0 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0
$$

For example $\gamma_{1}(x)=-x, \gamma_{2}(x)=-x^{3}, \gamma_{1}, \gamma_{2} \in \Gamma$.
Definition 2.3. Let (X, D) be a generalized \mathcal{F}-metric space with $(f, \alpha) \in \mathcal{F} \times$ $[0,+\infty)$. Let $T: X \rightarrow X$ be a mapping. If for all $x, y, z \in X$ there exists a function $\gamma \in \Gamma$ satisfying

$$
\begin{equation*}
D(T x, T y)>0 \Rightarrow f(D(T x, T y)) \leq \gamma(D(x, y))+f(D(x, y))-\alpha \tag{2.4}
\end{equation*}
$$

then the mapping T is called an \mathcal{F}-Geraghty contraction.
Theorem 2.3. Let (X, D) be an \mathcal{F}-complete generalized \mathcal{F}-metric space with $(f, \alpha) \in$ $\mathcal{F} \times[0,+\infty)$. The mapping $T: X \rightarrow X$ is an \mathcal{F}-Geraghty contraction and f is increasing and continuous. Then T has a unique fixed point p, and for all $x \in X$, the sequence $\left\{T^{n} x\right\}$ converges to p.

Proof. Let $x_{0} \in X$ be an arbitrary element. Let $\left\{x_{n}\right\}$ be the sequence defined by $x_{n}=T^{n} x_{0}, n \in\{0,1,2, \cdots\}$. If there exists some $N \in\{0,1,2, \cdots\}$ such that $T^{N} x_{0}=T^{N+1} x_{0}$ then T has a fixed point. Next we assume for every $n \in$ $\{0,1,2, \ldots\}, T^{n} x_{0} \neq T^{n+1} x_{0}$. From (2.4) we get

$$
\begin{align*}
f\left(D\left(x_{n+1}, x_{n+2}\right)\right) & \leq \gamma\left(D\left(x_{n}, x_{n+1}\right)\right)+f\left(D\left(x_{n}, x_{n+1}\right)\right)-\alpha \\
& \leq f\left(D\left(x_{n}, x_{n+1}\right)\right) . \tag{2.5}
\end{align*}
$$

From the increasing property of f, we have $D\left(x_{n}, x_{n+1}\right) \leq D\left(x_{n-1}, x_{n}\right)$. There exists a $r \geq 0$ such that $\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+1}\right)=r$. If $r>0$ from (2.5) and the continuity of f we get

$$
f(r) \leq \limsup _{n \rightarrow \infty} \gamma\left(D\left(x_{n}, x_{n+1}\right)\right)+f(r)-\alpha
$$

From $0 \leq \alpha \leq \limsup _{n \rightarrow \infty} \gamma\left(D\left(x_{n}, x_{n+1}\right)\right) \leq 0$, we get $\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+1}\right)=0$, which is a contradiction. So $r=0$.

Next, we prove that the sequence $\left\{x_{n}\right\}$ is an \mathcal{F}-Cauthy sequence. Suppose the contrary, i.e., there exists $\epsilon>0$ for which we can find two subsequences $\left\{x_{n_{i}}\right\}$ and $\left\{x_{m_{i}}\right\}$ such that m_{i} is the smallest index for which

$$
i \leq n_{i} \leq m_{i} \text { and } D\left(x_{n_{i}}, x_{m_{i}}\right) \geq \epsilon
$$

This means that

$$
D\left(x_{n_{i}}, x_{m_{i}-1}\right)<\epsilon
$$

On the one hand, from the increasing property of f we get

$$
f(\epsilon) \leq f\left(D\left(x_{n_{i}}, x_{m_{i}}\right)\right) \leq f\left(D\left(x_{n_{i}}, x_{n_{i}+1}\right)+D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right)+\alpha
$$

then

$$
f^{-1}(f(\epsilon)-\alpha) \leq \limsup _{i \rightarrow \infty} D\left(x_{n_{i}+1}, x_{m_{i}}\right)
$$

From the increasing property of f, we get

$$
\begin{align*}
f(\epsilon)-\alpha & \leq f\left(\limsup _{i \rightarrow \infty} D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right) \\
& =\limsup _{i \rightarrow \infty} f\left(D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right) \tag{2.6}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
f\left(D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right) & \leq \gamma\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)+f\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)-\alpha \tag{2.7}\\
& \leq \gamma\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)+f(\epsilon)-\alpha
\end{align*}
$$

Combining (2.6) and (2.7) we get

$$
0 \leq \limsup _{i \rightarrow \infty} \gamma\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)
$$

which implies $\limsup _{i \rightarrow \infty} \gamma\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)=0$, i.e. $\lim _{i \rightarrow \infty} D\left(x_{n_{i}}, x_{m_{i}-1}\right)=0$. From

$$
f\left(D\left(x_{n_{i}}, x_{m_{i}}\right)\right) \leq f\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)+D\left(x_{m_{i}-1}, x_{m_{i}}\right)\right)+\alpha
$$

we get $\lim _{i \rightarrow \infty} D\left(x_{n_{i}}, x_{m_{i}}\right)=0$, a contradiction. So $\left\{T^{n} x\right\}$ is an \mathcal{F}-Cauthy sequence. From the \mathcal{F}-complete of the generalized \mathcal{F}-metric space, there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} D\left(x_{n}, x\right)=0$.

From

$$
f\left(D\left(T x_{n}, T x\right)\right) \leq \gamma\left(D\left(x_{n}, x\right)\right)+f\left(D\left(x_{n}, x\right)\right)-\alpha
$$

we get $f\left(D\left(T x_{n}, T x\right)\right) \rightarrow-\infty$, i.e. $D\left(T x_{n}, T x\right) \rightarrow 0$ as $n \rightarrow \infty$. $T x$ is also a limit of sequence $\left\{x_{n}\right\}$. From the uniqueness of limit of sequence in generalized \mathcal{F}-metric space, we have $T x=x$.

If T has another fixed point $y \in X$, and $D(x, y)>0$, then

$$
f(D(T x, T y)) \leq \gamma(D(x, y))+f(D(x, y))-\alpha
$$

which implies $\alpha \leq \gamma(D(x, y))$. If $\alpha>0$, a contradiction. If $\alpha=0$, from the proposition of γ we have $D(x, y)=0, x=y$, a contradiction.

Let \mathcal{B} be the family of functions $\beta:[0,+\infty) \rightarrow[0,1)$ such that:

$$
\limsup _{n \rightarrow \infty} \beta\left(t_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0
$$

For example, $\beta_{1}(x)=\left\{\begin{array}{ll}e^{-x}, & x>0, \\ 0, & x=0 .\end{array}, \beta_{2}(x)=\left\{\begin{array}{ll}\frac{1}{1+\frac{1}{100} x}, & x>0, \\ 0, & x=0 .\end{array}, \beta_{1}(x), \beta_{2}(x) \in \mathcal{B}\right.\right.$.
Corollary 2.6 ([7]). If (X, D) is a complete metric space and a mapping $T: X \rightarrow$ X satisfies

$$
\begin{equation*}
D(T x, T y) \leq \beta(D(x, y)) D(x, y), \text { for all } x, y \in X \tag{2.8}
\end{equation*}
$$

where $\beta \in \mathcal{B}$, then T has a unique fixed point p and for any $x \in X$, the sequence $\left\{T^{n} x\right\}$ converges to p.

Proof. Because the metric space is a generalized \mathcal{F}-metric space with $f(x)=\ln x$ and $\alpha=0$. From (2.8) we get

$$
D(T x, T y)>0 \Rightarrow \ln (D(T x, T y)) \leq \ln (\beta(D(x, y)))+\ln (D(x, y))
$$

Form $\lim _{n \rightarrow \infty} \ln \left(\beta\left(x_{n}\right)\right)=0 \Rightarrow \lim _{n \rightarrow \infty} \beta\left(x_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=0$, we obtain $\gamma(x)=$ $\ln \beta(x) \in \Gamma$. So it can be concluded that

$$
D(T x, T y)>0 \Rightarrow f(D(T x, T y)) \leq \gamma(D(x, y))+f(D(x, y))-0
$$

All the conditions of Theorem 2.3 are satisfied.
Corollary 2.7 ([5]). If (X, D) is a complete b-metric space with coefficient $s \geq 1$ and a mapping $T: X \rightarrow X$ satisfies

$$
\begin{equation*}
D(T x, T y) \leq \frac{\beta(D(x, y))}{s} D(x, y), \text { for all } x, y \in X \tag{2.9}
\end{equation*}
$$

where $\beta \in \mathcal{B}$, then T has a unique fixed point p and for any $x \in X$, the sequence $\left\{T^{n} x\right\}$ converges to p.
Proof. Because b-metric space is a generalized \mathcal{F}-metric space with $f(x)=\ln x$ and $\alpha=\ln s$. From (2.9) we get

$$
D(T x, T y)>0 \Rightarrow \ln (D(T x, T y)) \leq \ln (\beta(D(x, y)))+\ln (D(x, y))-\ln (s)
$$

$$
\lim _{n \rightarrow \infty} \ln \left(\beta\left(x_{n}\right)\right)=0 \Rightarrow \lim _{n \rightarrow \infty} \beta\left(x_{n}\right)=1 \Rightarrow \lim _{n \rightarrow \infty} x_{n}=0 . \text { So } \gamma(x)=\ln \beta(x) \in \Gamma
$$

All the conditions of Theorem 2.3 are satisfied.
Example 2.1. Let $X=[0,1]$ and $D: X \times X \rightarrow[0, \infty]$ be defined by $D(x, y)=$ $(x-y)^{2}$, for all $x, y \in[0,1]$. It is easy to check that (X, D) is a b-metric space with parameter $s=2$. So (X, D) is also a generalized \mathcal{F}-metric space with $f(x)=\ln x$ and $\alpha=\ln 2$. Set $T x=\frac{x^{2}}{8}$ for all $x \in X, \beta(t)=\frac{1}{16}$ and $\gamma(t)=\ln (\beta(t))=-\ln 16$, for all $t>0$. We get

$$
D(T x, T y)=\frac{1}{64}(x+y)^{2}(x-y)^{2} \leq \frac{1}{32}(x-y)^{2}=\frac{\frac{1}{16}}{2} D(x, y)
$$

then

$$
\ln (D(T x, T y)) \leq \ln \frac{1}{16}+\ln (D(x, y))-\ln 2
$$

It is easy to know the conditions of Theorem 2.3 are satisfied. Hence T has a fixed point 0 .

2.4. Fixed point results related to JS-contractions

The JS-contraction was originated from Jleli et al. [9], and was advanced [16]. Now we use the same principle in generalized \mathcal{F}-metric spaces.

Let Θ be the family of functions $\theta: \mathbf{R} \rightarrow(\mathbf{1}, \infty)$ satisfying:

- increasing;
- $\lim _{n \rightarrow \infty} \theta\left(t_{n}\right)=1 \Leftrightarrow \lim _{n \rightarrow \infty} t_{n}=-\infty$.

For example, $\theta(t)=1+e^{t} \in \Theta$.
Theorem 2.4. Let (X, D) be an \mathcal{F}-complete generalized \mathcal{F}-metric space with $f \in \mathcal{F}$, $\alpha \geq 0$ and let $T: X \rightarrow X$ be a given mapping. Suppose that f is increasing and there exist $\theta \in \Theta$ and $k \in(0,1)$ such that

$$
\begin{equation*}
\theta(f(D(T x, T y))) \leq[\theta(f(D(x, y))-\alpha)]^{k}, \text { for all } x, y \in X \tag{2.10}
\end{equation*}
$$

Then T has a unique fixed point.
Proof. Let $x_{0} \in X$ be an arbitrary element. Let $\left\{x_{n}\right\}$ be a sequence defined by $x_{n}=T^{n} x_{0}, n=\in\{0,1,2, \ldots\}$. If there exists some $N \in\{0,1,2, \ldots\}$ such that $T^{N} x_{0}=T^{N+1} x_{0}$, then T has a fixed point. Next we assume for every $n \in$ $\{0,1,2, \ldots\}, T^{n} x_{0} \neq T^{n+1} x_{0}$.

Step 1. We will show that $\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+1}\right)=0$. By (2.10) we get

$$
\begin{aligned}
\theta\left(f\left(D\left(x_{n}, x_{n+1}\right)\right)\right) & \leq \theta\left(f\left(D\left(x_{n-1}, x_{n}\right)\right)-\alpha\right)^{k} \\
& \leq \theta\left(f\left(D\left(x_{n-1}, x_{n}\right)\right)\right)^{k} \\
& \leq \theta\left(f\left(D\left(x_{0}, x_{1}\right)\right)^{k^{n}} .\right.
\end{aligned}
$$

With $\lim _{n \rightarrow \infty} k^{n}=1$, we have $\lim _{n \rightarrow \infty} \theta\left(f\left(D\left(x_{n}, x_{n+1}\right)\right)\right)=1, \lim _{n \rightarrow \infty} f\left(D\left(x_{n}, x_{n+1}\right)\right)=$ $-\infty$, i.e. $\lim _{n \rightarrow \infty} D\left(x_{n}, x_{n+1}\right)=0$.

Step 2. Next, we prove that the sequence $\left\{x_{n}\right\}$ is an \mathcal{F}-Cauthy sequence. Suppose the contrary, i.e., there exists $\epsilon>0$ for which we can find two subsequences $\left\{x_{n_{i}}\right\}$ and $\left\{x_{m_{i}}\right\}$ such that m_{i} is the smallest index for which

$$
i \leq n_{i} \leq m_{i} \text { and } D\left(x_{n_{i}}, x_{m_{i}}\right) \geq \epsilon
$$

These mean that

$$
D\left(x_{n_{i}}, x_{m_{i}-1}\right)<\epsilon
$$

On the one hand, from the increasing property of f we get

$$
f(\epsilon) \leq f\left(D\left(x_{n_{i}}, x_{m_{i}}\right)\right) \leq f\left(D\left(x_{n_{i}}, x_{n_{i}+1}\right)+D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right)+\alpha
$$

So we get

$$
f^{-1}(f(\epsilon)-\alpha) \leq \limsup _{i \rightarrow \infty} D\left(x_{n_{i}+1}, x_{m_{i}}\right),
$$

then

$$
\begin{align*}
f(\epsilon)-\alpha & \leq f\left(\limsup _{i \rightarrow \infty} D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right) \\
& =\underset{i \rightarrow \infty}{\lim \sup } f\left(D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right) . \tag{2.11}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\theta\left(f\left(D\left(x_{n_{i}+1}, x_{m_{i}}\right)\right)\right) & \leq \theta\left(f\left(D\left(x_{n_{i}}, x_{m_{i}-1}\right)\right)-\alpha\right)^{k} \tag{2.12}\\
& \leq \theta(f(\epsilon)-\alpha)^{k} .
\end{align*}
$$

Combining (2.11) and (2.12) we get

$$
\theta(f(\epsilon)-\alpha) \leq \theta(f(\epsilon)-\alpha)^{k} .
$$

It is in contradiction with $k \in(0,1)$. So the sequence $\left\{T^{n} x\right\}$ is an \mathcal{F}-Cauthy sequence. From the completeness of generalized \mathcal{F}-metric space, there exists a point, assuming $p \in X$ is the limit of $\left\{x_{n}\right\}$. From

$$
\begin{equation*}
\theta\left(f\left(D\left(T x_{n}, T p\right)\right)\right) \leq \theta\left(f\left(D\left(x_{n}, p\right)\right)-\alpha\right)^{k}, \tag{2.13}
\end{equation*}
$$

we get $T p$ is also a limit of $\left\{x_{n}\right\}$. From the uniqueness of the limit in generalized \mathcal{F}-metric space, we get $T p=p$.

Example 2.2. Let $X=[0,4], D(x, y)=(x-y)^{2}$. The (X, D) is a b-metric with coefficient $s=2$. Let $T x=\frac{x}{2 \sqrt{2}}$. There exist $f(t)=\ln t, \theta(t)=1+e^{t}, \alpha=\ln 2$, $k=\frac{1}{2}$ such that

$$
\theta(f(D(T x, T y))) \leq \theta(f(D(x, y))-\alpha)^{k},
$$

i.e.,

$$
\begin{aligned}
D(x, y) \leq 16 & \Rightarrow 1+\frac{1}{4} D(x, y)+\frac{1}{64} D(x, y)^{2} \leq 1+\frac{D(x, y)}{2} \\
& \Rightarrow\left(1+\frac{1}{8} D(x, y)\right)^{2} \leq 1+\frac{D(x, y)}{2} \\
& \Rightarrow 1+e^{\ln (D(T x, T y))} \leq\left(1+e^{\ln (D(x, y))-\ln 2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Thus, the conditions of Theorem 2.4 are satisfied, T has a fixed point 0 .

3. Application

In this section, we apply our results to solve the first order periodic boundary value problem:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t)), \quad t \in[0, T], \tag{3.1}\\
x(0)=x(T) .
\end{array}\right.
$$

where $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on $[0, T]$. Problem (3.1) can be rewritten as

$$
\left\{\begin{array}{l}
x^{\prime}(t)+\lambda x(t)=f(t, x(t))+\lambda x(t) \\
x(0)=x(T)
\end{array}\right.
$$

It is equivalent to the integral equation

$$
x(t)=\int_{0}^{T} G(t, s)(f(s, x(s))+\lambda x(s)) d s
$$

where G is the Green's function given as

$$
G(t, s)= \begin{cases}\frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1}, & 0 \leq s \leq t \leq T \\ \frac{e^{\lambda(s-t)}}{e^{\lambda T}-1}, & 0 \leq t \leq s \leq T\end{cases}
$$

It is easy to see that

$$
\int_{0}^{T} G(t, s) d s=\frac{1}{\lambda}
$$

Let $C(I)$ denote the set of continuous functions on $I:=[0, T]$. We define an operator $T: C(I) \rightarrow C(I)$ as

$$
\begin{equation*}
T x(t)=\int_{0}^{T} G(t, s)(f(s, x(s))+\lambda x(s)) d s \tag{3.2}
\end{equation*}
$$

Theorem 3.1. If there exists $\lambda>0$ such that, for every $x, y \in C(I)$ and $s \in I$,

$$
\begin{equation*}
|f(s, x(s))+\lambda x(s)-f(s, y(s))-\lambda y(s)| \leq \lambda \sqrt{\frac{|x(s)-y(s)|^{2}}{1+|x(s)-y(s)|^{2}}} \tag{3.3}
\end{equation*}
$$

then Problem (3.1) has a unique solution in $C(I)$.
Proof. Let $D(x, y)=\max _{t \in[0, T]}\left\{|x(t)-y(t)|^{2}\right\}$. Then $(C(I), D)$ is an \mathcal{F}-complete generalized \mathcal{F}-metric space.

$$
\begin{aligned}
D(T x, T y) & =\max _{t \in[0, T]}\left\{|T x(t)-T y(t)|^{2}\right\} \\
& \leq \max _{t \in[0, T]}\left\{\left(\int_{0}^{T} G(t, s)|f(s, x(s))+\lambda x(s)-f(s, y(s))-\lambda y(s)| d s\right)^{2}\right\} \\
& \leq \max _{t \in[0, T]}\left\{\left(\int_{0}^{T} G(t, s) \lambda \sqrt{\frac{|x(s)-y(s)|^{2}}{1+|x(s)-y(s)|^{2}}} d s\right)^{2}\right\} \\
& \leq \max _{t \in[0, T]}\left\{\left(\int_{0}^{T} G(t, s) d s\right)^{2} \cdot \max _{s \in[0, T]}\left\{\lambda \sqrt{\frac{|x(s)-y(s)|^{2}}{1+|x(s)-y(s)|^{2}}}\right\}^{2}\right\} \\
& \leq \max _{t \in[0, T]}\left\{\frac{1}{\lambda^{2}} \cdot \lambda^{2} \cdot \max _{s \in[0, T]}\left\{\frac{|x(s)-y(s)|^{2}}{1+|x(s)-y(s)|^{2}}\right\}\right\} \\
& \leq \frac{\max _{s \in[0, T]}|x(s)-y(s)|^{2}}{1+\max _{s \in[0, T]}|x(s)-y(s)|^{2}} \leq \frac{D(x, y)}{1+D(x, y)}
\end{aligned}
$$

The conditions of Theorem 2.1 are satisfied with $\phi(t)=\frac{t}{1+t}$. Thas a fixed point in $C(I)$, i.e. Question (3.1) has a unique solution in $C(I)$.

Conclusion

We introduce a generalized \mathcal{F}-metric space and prove the existence of fixed point theorems via comparison function, F-contraction, Geraghty contraction and JScontraction in generalized \mathcal{F}-metric space. Our results improve and generalize some results in metric space and b-metric space. Generalized \mathcal{F}-metric spaces may be further considered.

Acknowledgements

The authors would like to thank the editor and the reviewers for their helpful comments to revise the paper.

References

[1] T. Abdeljawad, N. Mlaiki, H. Aydi and N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 2018, 6(12).
[2] S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl., 2018, 20(4), 1-17.
[3] A. Bera, H. Garai, B. Damjanović and A. Chanda, Some interesting results on F-metric spaces, Filomat, 2019, 33(10), 3257-3268.
[4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 1998, 46(2), 263-276.
[5] D. Dukić, Z. Kadelburg and S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011. DOI: 10.1155/2011/561245.
[6] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discret. Math., 2003, 17(1), 134-160.
[7] M. Geraghty, On contractive mappings, Proc. Am. Math. Soc., 1973, 40, 604608.
[8] A. Hussain and T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Ins., 2018, 172(3), 481-490.
[9] M. Jleli, E. Karapınar and B. Samet, Further generalizations of the Banach contraction principle, J. Ineq. Appl., 2014, 2014(1), 1-9.
[10] M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl., 2018. DOI: 10.1007/s11784-018-0606-6.
 fixed point results, Filomat, 2014, 28(1), 37-48.
[12] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Cham: Springer International Publishing, 2014.
[13] Z. D. Mitrović, H. Aydi, N. Hussain and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on \mathcal{F}-metric spaces and an application, Mathematics, 2019, 7(5).
[14] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad Controlled metric type spaces and the related contraction principle, Mathematics, 2018, 6(10).
[15] Z. Ma, A. Asif, H. Aydi, S. U. Khan and M. Arshad, Analysis of F-contractions in function weighted metric spaces with an application, Open Math., 2020, 18(1), 582-594.
[16] Z. Mustafa, R. J. Shahkoohi, V. Parvaneh, Z. Kadelburg and M. M. M. Jaradat, Ordered S_{p}-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems, Fixed Point Theory Appl., 2019, 2019, 1-20.
[17] S. Som, A. Bera and L. K. Dey, Some remarks on the metrizability of \mathcal{F}-metric spaces, J. Fixed Point Theory Appl., 2020, 22(1), 1-7.
[18] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 2017, 2017(1), 1-11. DOI: 10.1186/s13660-017-1528-3.
[19] T. Suzuki, Fixed point theorems for single-and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 2018, 20(1), 1-12. DOI: 10.1007/s11784-018-0519-4.
[20] J. Vujaković, S. Mitrović, M. Pavlović and S. Radenović, On recent results concerning F-contraction in generalized metric spaces, Mathematics, 2020,8(5).
[21] Y. Wang and C. Chen, Two new Geraghty type contractions in G_{b}-metric spaces, J. Func. Spaces, 2019. DOI: 10.1155/2019/7916486.
$[22]$ D. Yu, C. Chen and H. Wang, Common fixed point theorems for (T,g) Fcontraction in b-metric-like spaces, J. Inequal. Appl., 2018, 2018(222). DOI: 10.1186/s13660-018-1802-z.
[23] C. Zhu, C. Chen and X. Zhang, Some results in quasi-b-metric-like spaces, J. Inequal. Appl., 2014, 2014(1), 1-8. DOI: 10.1186/1029-242X-2014-437.
[24] L. Zhu, C. Zhu, C. Chen and Z. Stojanović, Multidimensional fixed points for generalized Φ-quasi-contractions in quasi-metric-like spaces, J. Inequal. Appl., 2014, 2014(27). DOI: 1-15.10.11 86/1029-242X-2014-27.
[25] C. Zhu and Z. Xu, Inequalities and solution of an operator equation, Appl. Math. Lett., 2008, 21(6), 607-611.
[26] C. Zhu, Research on some problems for nonlinear operators, Nonlinear Anal. Theory Methods Appl., 2009, 71(10), 4568-4571.

[^0]: ${ }^{\dagger}$ The corresponding author. Email: chuanxizhu@126.com(C. Zhu), chenjing @jxau.edu.cn(J. Chen)
 ${ }^{1}$ Department of Mathematics, Nanchang University, 330031 Nanchang, China
 ${ }^{2}$ School of Computer and Information Technology, Jiangxi Agricultural University, 330045 Nanchang, China
 ${ }^{3}$ School of Mathematics and Statistics, Chongqing Three Gorges University, 404020 Wanzhou, China
 *The authors were supported by National Natural Science Foundation of China (11771198, 11661053) and Science and Technology Program of Department of Education of Jiangxi Province (GJJ190183).

