A NEW GENERALIZATION OF *F*-METRIC SPACES AND SOME FIXED POINT THEOREMS AND AN APPLICATION*

Chuanxi Zhu^{1,†}, Jing Chen^{1,2,†}, Jianhua Chen¹, Chunfang Chen¹ and Huaping Huang³

Abstract In this paper, we extend \mathcal{F} -metric spaces to more general spaces, named generalized \mathcal{F} -metric spaces and establish some fixed point theorems via comparison function, F-contraction, Geraghty contraction and JS-contraction in the setting of generalized \mathcal{F} -metric spaces. Our results generalize many present theorems.

 $\textbf{Keywords} \quad \mathcal{F}\text{-metric space, fixed point, Geraghty contraction, } F\text{-contraction.}$

MSC(2010) 47H10, 54H25.

1. Introduction

In recent years, the notions of metric spaces have been extended in many directions [10,12,23-26] for example controlled metric spaces [14] and double controlled metric spaces [1]. Recently Jleli and Samet [10] introduced a new generalization of metric space named \mathcal{F} -metric space, and soon many scholars considered the \mathcal{F} -metric space [8,13,15,17,20]. Inspired by [10], we extend it to a more general space.

Let \mathcal{F} be the set of functions $f: (0, +\infty) \to \mathbf{R}$ satisfying the following conditions:

- (\mathcal{F}_1) f is non-decreasing, i. e. $0 < s < t \Rightarrow f(s) \leq f(t);$
- (\mathcal{F}_2) for every sequence $\{t_n\} \subset (0, +\infty)$, we have

$$\lim_{n \to \infty} t_n = 0 \Leftrightarrow \lim_{n \to \infty} f(t_n) = -\infty.$$

For example, $f_1(t) = \ln t$, $f_2(t) = \frac{-1}{t}$, $f_1, f_2 \in \mathcal{F}$.

Definition 1.1 ([10]). Let X be a nonempty set and $D: X \times X \to [0, +\infty)$ be a given mapping. If there exist a constant $\alpha \geq 0$ and a function $f \in \mathcal{F}$ such that, for all $x, y \in X$, the following conditions hold:

[†]The corresponding author. Email: chuanxizhu@126.com(C. Zhu), chenjing @jxau.edu.cn(J. Chen)

¹Department of Mathematics, Nanchang University, 330031 Nanchang, China ²School of Computer and Information Technology, Jiangxi Agricultural University, 330045 Nanchang, China

³School of Mathematics and Statistics, Chongqing Three Gorges University, 404020 Wanzhou, China

^{*}The authors were supported by National Natural Science Foundation of China (11771198, 11661053) and Science and Technology Program of Department of Education of Jiangxi Province (GJJ190183).

- $(D_1) D(x,y) = 0$ iff x = y;
- $(D_2) D(x,y) = D(y,x);$
- (D_3) for every $N \in \{2, 3, 4, \dots\}$ and for every $(x_i)_{i=1}^N \subset X$ with $(x_1, x_N) = (x, y)$, we have

$$D(x,y) > 0 \Rightarrow f(D(x,y)) \le f\left(\sum_{i=1}^{N-1} D(x_i, x_{i+1})\right) + \alpha,$$

then D is said to be an \mathcal{F} -metric on X, and the pair (X, D) is said to be an \mathcal{F} -metric space.

We introduce the following definition which generalizes the \mathcal{F} -metric space.

Definition 1.2. Let X be a nonempty set and $D: X \times X \to [0, +\infty)$ be a given mapping. If there exist a constant $\alpha \geq 0$ and a function $f \in \mathcal{F}$ such that, for all $x, y, z \in X$, the following conditions hold:

- $(D_1) D(x, y) = 0$ iff x = y;
- $(D_2) D(x,y) = D(y,x);$
- $(D_3^*) \ D(x,y) > 0 \Rightarrow f(D(x,y)) \le f(D(x,z) + D(z,y)) + \alpha,$

then D is said to be a generalized \mathcal{F} -metric on X, and the pair (X, D) is said to be a generalized \mathcal{F} -metric space.

Every \mathcal{F} -metric on X is a generalized \mathcal{F} -metric on X, because from (D_3) we get

$$D(x,y) > 0 \Rightarrow f(D(x,y)) \le f(D(x,z) + D(z,y)) + \alpha.$$

Then D satisfies (D_3^*) .

Every metric is a generalized \mathcal{F} -metric, because that $d(x, y) \leq d(x, z) + d(z, y)$ yields to $\ln(d(x, y)) \leq \ln(d(x, z) + d(z, y)) + 0$ for d(x, y) > 0. Then d satisfies (D_3^*) with $f(t) = \ln t$ and $\alpha = 0$.

To show the range of generalized \mathcal{F} -metric spaces are really larger than \mathcal{F} -metric spaces, we recall the definitions of *s*-relaxed_{*p*} metric space and *b*-metric space as follows.

Definition 1.3 ([6]). Let X be a nonempty set and $D: X \times X \to [0, +\infty)$ be a given mapping satisfying $(D_1), (D_2)$, and

(S) there exists $s \ge 1$ such that for every $(x, y) \in X \times X$, $N \in \{2, 3, 4, \dots\}$, and for every $(x_i)_{i=1}^N \subset X$ with $(x_1, x_N) = (x, y)$, we have $D(x, y) \le s \left(\sum_{i=1}^{N-1} D(x_i, x_{i+1})\right)$.

Then D is said to be an s-relaxed_p metric on X, and the pair (X, D) is said to be an s-relaxed_p metric space.

Every s-relaxed_p metric space is an \mathcal{F} -metric space with $f = \ln x$ and $\alpha = \ln s$. **Definition 1.4** ([4]). Let X be a nonempty set and $D: X \times X \to [0, +\infty)$ be a given mapping satisfying $(D_1), (D_2)$, and

(G) there exists $s \ge 1$ such that for every $(x, y, z) \in X \times X \times X$, we have $D(x, y) \le s(D(x, z) + D(z, y))$.

2650

Then D is said to be a b-metric on X, and the pair (X, D) is said to be a b-metric space.

Every b-metric is a generalized \mathcal{F} -metric with $f(t) = \ln t$ and $\alpha = \ln s$. Every s-relaxed_p-metric on X is a b-metric on X, because from (S) we get

$$D(x,y)) \le D(x,z) + D(z,y),$$

which shows that D satisfies (G).

The following examples show that there are *b*-metric spaces that are not *s*-relaxed_p metric spaces. So there are generalized \mathcal{F} -metric spaces (for example, some *b*-metric spaces) that are not \mathcal{F} -metric spaces (for example, some *s*-relaxed_p metric spaces).

Example 1.1 (Proposition 2.1 in [10]). Let X = [0, 1], and let $d : X \times X \to [0, +\infty)$ be a mapping defined by $d(x, y) = (x - y)^2, (x, y) \in X \times X$. It is well known that d is a *b*-metric on X with coefficient K = 2. But d is not an *s*-relaxed_p metric, because

$$d(0,1) > K(d(0,\frac{1}{n}) + d(\frac{1}{n},\frac{2}{n}) + \dots + d(\frac{n-1}{n},\frac{n}{n})) = \frac{K}{n} \to 0, \text{ as } n \to \infty.$$

From (\mathcal{F}_2) we get

$$f(d(0,\frac{1}{n}) + d(\frac{1}{n},\frac{2}{n}) + \dots + d(\frac{n-1}{n},\frac{n}{n})) + \alpha = f(\frac{1}{n}) + \alpha \to -\infty, \text{ as } n \to \infty.$$

Thus, d on X is not an \mathcal{F} -metric, but a generalized \mathcal{F} -metric.

Example 1.2 (a case of Example 11 in [18]). Let $X = \{\log_2 2, \log_2 3, \log_2 4, \cdots\}, n \in \mathbb{N}, K \in (1, \infty), a_n = \frac{1}{(2K)^n}, f(n) = -[-\log_2 n], g(n) = (2n - 2^{f(n)})K^{f(n)} + (2^{f(n)} - n)K^{f(n)-1},$

$$d(\log_2 n, \log_2 m) = \begin{cases} 0, & n = m; \\ g(n - m)a_k, & 2^k \le m < n \le 2^{k+1}; \\ d(\log_2 m, \log_2 2^{j+1}) + & \sum_{i=j+1}^{k-1} d(i, i+1) + d(\log_2 2^k, \log_2 n), \\ & 2^j \le m < 2^{j+1} \le 2^k < n \le 2^{k+1}; \\ d(\log_2 m, \log_2 n), & n < m. \end{cases}$$

It was proved in [18] that d is a b-metric on X, $\sum_{i=2}^{\infty} d(\log_2 i, \log_2(i+1)) < \infty$ and d(n, n+1) = 1. It implies $\sum_{i=2^n}^{2^{n+1}-1} d(\log_2 i, \log_2(i+1)) \to 0$, as $n \to \infty$. We get

$$d(n, n+1) = 1 > K\left(\sum_{i=2^n}^{2^n-1} d(\log_2 i, \log_2(i+1))\right) \to 0, \text{ as } n \to \infty.$$

Then, d is not an s-relaxed_p metric. It is easy to get d on X is a generalized \mathcal{F} -metric, not an \mathcal{F} -metric.

The following example shows that the generalized \mathcal{F} -metric spaces are really more extensive than *b*-metric spaces.

Example 1.3. Let $X = \mathbb{R}$, a > 0, b > 0, $D: X \times X \to [0, +\infty)$ given by

$$D(x,y) = \begin{cases} ae^{b(|x-y|)}, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

Then, $D(3n,0) = ae^{3nb}$, $D(3n,n) = ae^{2nb}$, and $D(0,n) = ae^{nb}$. If $D(3n,0) \leq s(D(3n,n) + D(n,0))$, i. e. $ae^{3nb} \leq s(ae^{2nb} + ae^{nb})$, then $e^{nb} \leq s(1 + \frac{1}{e^{nb}})$. It is a contradiction if we take $n \to \infty$. Therefore, D is not a *b*-metric.

Next, we show that D is a generalized \mathcal{F} -metric. Let $f(t) = \frac{-1}{t}$. For given $(x, y) \in X \times X$ with D(x, y) > 0, for every $z \in X$ we have

$$\begin{aligned} \frac{1}{a} + f(D(x,z) + D(z,y)) - f(D(x,y)) &= \frac{1}{a} - \frac{1}{D(x,z) + D(z,y)} + \frac{1}{ae^{b(|x-y|)}} \\ &\geq \frac{1}{a} - \frac{1}{a} + \frac{1}{ae^{b(|x-y|)}} \ge 0. \end{aligned}$$

Therefore, we have

$$f(D(x,y)) \le f(D(x,z) + D(z,y)) + \frac{1}{a}.$$

Then D is a generalized \mathcal{F} -metric on X with $f(t) = \frac{-1}{t}$ and $\alpha = \frac{1}{a}$.

In [3,10], a natural topology defined on \mathcal{F} -metric spaces was discussed. However we think that they actually discussed a natural topology on generalized \mathcal{F} -metric spaces. In [17], Som, Petrusel et al. proved the metrizability of \mathcal{F} -metric spaces, and actually proved the metrizability of generalized \mathcal{F} -metric spaces.

Definition 1.5. Let (X, D) be a generalized \mathcal{F} -metric space. For every $x_0 \in X$ and r > 0, the ball with centre x_0 and radius r is defined by

$$B(x_0, r) = \{ y \in X : D(x_0, y) < r \}$$

Definition 1.6. Let (X, D) be a generalized \mathcal{F} -metric space. A subset \mathcal{O} of X is said to be \mathcal{F} -open if for every $x \in \mathcal{O}$, there is some r > 0 such that $B(x, r) \subset \mathcal{O}$. We say that a subset \mathcal{C} of X is \mathcal{F} -closed if $X \setminus \mathcal{C}$ is \mathcal{F} -open. We denote the family of all \mathcal{F} -open subsets of X by $\tau_{\mathcal{F}}$.

Proposition 1.1. Let (X, D) be a generalized \mathcal{F} -metric space. Then $\tau_{\mathcal{F}}$ is a topology on X.

Definition 1.7. Let (X, D) be a generalized \mathcal{F} -metric space.

- 1. A sequence $\{x_n\}$ is said to be \mathcal{F} -Cauchy if, for any $\epsilon > 0$, there exists a positive integer n_0 such that, for all $m, n \ge n_0$, $D(x_n, x_m) < \epsilon$;
- 2. A sequence $\{x_n\}$ is said to be \mathcal{F} -convergent to a point $x \in X$ if, for any $\epsilon > 0$, there exists a positive integer n_0 such that, for all $n \ge n_0$, $D(x, x_n) < \epsilon$;
- 3. A \mathcal{F} -metric space is called \mathcal{F} -complete if every \mathcal{F} -Cauchy sequence is \mathcal{F} convergent in X.

2. Fixed point results in generalized \mathcal{F} -metric spaces

Lemma 2.1. Let (X, D) be a generalized \mathcal{F} -metric space. If a sequence $\{x_n\} \subset X$ has a limit in X, then the limit is unique.

Proof. We assume $x, y \in X$ are both limits of $\{x_n\}$ as $n \to \infty$. If $D(x, y) \neq 0$, from the definition of generalized \mathcal{F} -metric space, we get

$$f(D(x,y)) \le f(D(x,x_n) + D(x_n,y)) + \alpha.$$

By virtue of (\mathcal{F}_2) , we derive that $\lim_{n \to \infty} f(D(x, y)) = -\infty$. This contradicts $f(D(x, y)) < +\infty$. Hence we get D(x, y) = 0, i.e. x = y.

2.1. Fixed point results via comparison functions

Let $\phi^n(x)$ denote the *n*-th iteration of ϕ in the follows.

Let Φ_1 be the family of functions $\phi: [0, +\infty) \to [0, +\infty)$ satisfying:

- 1. $s < t \Rightarrow \phi(s) \le \phi(t);$
- 2. $\sum_{n=1}^{\infty} \phi^n(x) < \infty$, for all x > 0.

Let Φ_2 be the family of functions $\phi: [0, +\infty) \to [0, +\infty)$ satisfying:

1.
$$s < t \Rightarrow \phi(s) \le \phi(t);$$

2*. $\lim_{n \to \infty} \phi^n(x) = 0$, for all x > 0.

Remark 2.1. If $\sum_{n=1}^{\infty} \phi^n(x) < \infty$, for all x > 0, then $\lim_{n \to \infty} \phi^n(x) = 0$, for every x > 0. Thus, $\Phi_1 \subset \Phi_2$, i.e., the class of Φ_2 is larger than the class of Φ_1 . In what follows, a function $\phi \in \Phi_2$ is called a comparison function.

For example, $\phi_1(t) = kt, k \in (0, 1), \ \phi_2(t) = \frac{t}{1+t}, \ \phi_1^n(t) = k^n t \to 0, \ \phi_2^n(t) =$ $\begin{array}{l} \frac{t}{1+nt} \to 0, \mbox{ as } n \to \infty. \\ \mbox{ It is easy to check that the following lemma holds.} \end{array}$

Lemma 2.2. If $\phi \in \Phi_2$, then the following are satisfied:

1. $\phi(t) < t$, for all t > 0; 2. $\phi(0) = 0$.

Lemma 2.3. Let (X, D) be a generalized \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. If there exists a function $\phi \in \Phi_2$, such that a sequence $\{x_n\}$ satisfies

$$D(x_n, x_{n+1}) \le \phi(D(x_{n-1}, x_n)), \tag{2.1}$$

then $\{x_n\}$ is an \mathcal{F} -Cauchy sequence.

Proof. From

$$D(x_n, x_{n+1}) \le \phi(D(x_{n-1}, x_n)) \le \phi^{n-1}(D(x_0, x_1)),$$

we get $\lim_{n \to \infty} D(x_n, x_{n+1}) = 0$. We want to show by induction in *m* that, for all $m\in\{1,2,3,\cdots\}$

$$\lim_{n \to \infty} D(x_n, x_{n+m}) = 0.$$
(2.2)

It is obvious that (2.2) holds for m = 1. Assume that (2.2) is satisfied for some $m \in \{1, 2, 3, \dots\}$. Since

$$D(x_n, x_{n+m+1}) > 0 \Rightarrow f(D(x_n, x_{n+m+1})) \le f(D(x_n, x_{n+m}) + D(x_{n+m}, x_{n+m+1})) + \alpha,$$

and

$$D(x_n, x_{n+m}) + D(x_{n+m}, x_{n+m+1}) \to 0$$
, as $n \to \infty$,

we have

$$f(D(x_n, x_{n+m}) + D(x_{n+m}, x_{n+m+1})) \to -\infty, \text{ as } n \to \infty$$

From (\mathcal{F}_2) we get

1

$$\lim_{n \to \infty} f(D(x_n, x_{n+m+1})) = -\infty,$$

i.e.,

$$\lim_{n \to \infty} D(x_n, x_{n+m+1}) = 0.$$

Hence, (2.2) holds for all $m \ge 1$. Thus, the sequence $\{x_n\}$ is an \mathcal{F} -Cauchy sequence.

Theorem 2.1. Let (X, D) be an \mathcal{F} -complete generalized \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. Let $T: X \to X$ be a mapping. If there exists a function $\phi \in \Phi_2$ such that

$$D(Tx, Ty) \le \phi(D(x, y)), \tag{2.3}$$

for all $x, y \in X$, then T has a unique fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary element. Let $\{x_n\}$ be the sequence defined by $x_n = T^n x_0, n = 1, 2, \cdots$. If there exists some $N \in \{0, 1, 2, \cdots\}$ such that $T^N x_0 = T^{N+1} x_0$, then T has a fixed point $T^N x_0$. Next we assume that for every $n \in \{0, 1, 2, \cdots\}, T^n x_0 \neq T^{n+1} x_0$. From (2.3), we obtain

$$D(x_n, x_{n+1}) = D(Tx_{n-1}, Tx_n) \le \phi(D(x_{n-1}, x_n)),$$

which implies that $\{x_n\}$ is an \mathcal{F} -Cauchy sequence. Since the generalized \mathcal{F} -metric space is \mathcal{F} -complete then there exists an $x \in X$ such that $\lim D(x_n, x) = 0$. From

$$D(Tx_n, Tx) \le \phi(D(x_n, x)) \le D(x_n, x) \to 0$$
, as $n \to \infty$,

we see that Tx is also a limit of sequence $\{x_n\}$. From the uniqueness of limit of sequence in generalized \mathcal{F} -metric space, we have Tx = x. If T has another fixed point y, then

$$D(Tx, Ty) \le \phi(D(x, y)) < D(x, y),$$

which is a contradiction.

Corollary 2.1. Let (X, D) be an \mathcal{F} -complete generalized \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. Let $T : X \to X$ be a mapping. If there exists $k \in [0, 1)$ such that for all $x, y \in X$,

$$D(Tx, Ty) \le kD(x, y),$$

then T has a unique fixed point in X.

Proof. Let $\phi(t) = kt$ in Theorem 2.1.

Corollary 2.2 ([10]). Let (X, D) be an \mathcal{F} -complete \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. Let $T : X \to X$ be a mapping. If there exists $k \in [0, 1)$ such that for all $x, y \in X$,

$$D(Tx, Ty) \le kD(x, y),$$

then T has a unique fixed point in X.

Proof. \mathcal{F} -metric space is a generalized \mathcal{F} -metric space, thus the conditions of Theorem 2.1 are satisfied.

Corollary 2.3 ([2]). Let (X, D) be a complete b-metric space. Let $T : X \to X$ be a mapping. If there exists $k \in [0, 1)$ such that for all $x, y \in X$,

$$D(Tx, Ty) \le kD(x, y),$$

then T has a unique fixed point in X.

Proof. Because *b*-metric space is a generalized \mathcal{F} -metric space, the conditions of Theorem 2.1 are satisfied.

Corollary 2.4 (Banach type contraction). Let (X, D) be a complete metric space. Let $T: X \to X$ be a mapping. If there exists $k \in [0, 1)$ such that for all $x, y \in X$,

$$D(Tx, Ty) \le kD(x, y),$$

then T has a unique fixed point in X.

Proof. Metric space is a generalized \mathcal{F} -metric space, then the conditions of Theorem 2.1 are satisfied.

Corollary 2.5. Let (X, D) be a \mathcal{F} -complete \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. Let $T : X \to X$ be a mapping. If there exists $\phi \in \Phi_1$ such that for all $x, y \in X$,

$$D(Tx, Ty) \le \phi(D(x, y)),$$

then T has a unique fixed point in X.

Proof. Because $\Phi_1 \subset \Phi_2$ and \mathcal{F} -metric space is a generalized \mathcal{F} -metric space, the conditions of Theorem 2.1 are satisfied.

2.2. Fixed point results using *F*-contractions

In this section we use the theorems of semimetric to get some fixed point theorems on \mathcal{F} -metric spaces. Now, we need to recall the concept of semimetric space.

Definition 2.1. Let X be a nonempty set and $d: X \times X \to [0, +\infty)$ be a given mapping. Suppose that for all $x, y \in X$, (D_1) and (D_2) are satisfied. Then d is said to be a semimetric on X, and the pair (X, d) is said to be a semimetric space.

Definition 2.2. Let (X, d) be a semimetric space.

- 1. A sequence $\{x_n\}$ is said to be Cauchy if $\lim_{n \to \infty} \sup\{d(x_m, x_n) : m > n\} = 0;$
- 2. A sequence $\{x_n\}$ is said to converge to a point $x \in X$ if $\lim_{n \to \infty} d(x, x_n) = 0$;
- 3. X is said to be complete if every Cauchy sequence converges in X.

Lemma 2.4. Let (X, D) be a generalized \mathcal{F} -metric space. Then the following holds: (D_4) For any $\varepsilon > 0$, there exists $\delta > 0$ such that $D(x, z) < \delta$ and $D(z, y) < \delta$ imply $D(x, y) < \varepsilon$.

Proof. Let $\varepsilon > 0$. By (\mathcal{F}_2) , for $f(\varepsilon) - \alpha$, there exists $\delta > 0$ such that $0 < t < \delta$ implies $f(t) < f(\varepsilon) - \alpha$. By (D_3^*) , $D(x, z) < \frac{\delta}{2}$ and $D(z, y) < \frac{\delta}{2}$ imply

$$f(D(x,y)) \le f(D(x,z) + D(z,y)) + \alpha < f(\varepsilon),$$

From (\mathcal{F}_1) , we get $D(x, y) < \varepsilon$.

Lemma 2.5 ([19]). Let (X, d) be a complete semimetric space. Assume (D_4) is satisfied. Let $T : X \to X$ be a mapping. Assume that there exists a function $F : (0, \infty) \to \mathbb{R}$ and a real number $\tau \in (0, \infty)$ satisfying (\mathcal{F}_2) and

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

Then T has a unique fixed point z. Moreover, $\{T^nx\}$ converges to z for all $x \in X$.

Theorem 2.2. Let (X, d) be an \mathcal{F} -complete generalized \mathcal{F} -metric space. Let $T : X \to X$ be a mapping. Assume that there exists a function $F : (0, \infty) \to \mathbb{R}$ and a real number $\tau \in (0, \infty)$ satisfying (\mathcal{F}_2) and

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

Then T has a unique fixed point z. Moreover, $\{T^nx\}$ converges to z for all $x \in X$.

Proof. Firstly generalized \mathcal{F} -metric spaces are semimetric spaces. Secondly from Lemma 2.4 (D_4) holds. By Lemma 2.5 we obtain the desired result.

2.3. Fixed Point Results Using Geraphty Contractions

The Geraghty contraction was originated from Geraghty [7], and was advanced in many aspects [11, 21, 22]. Now we apply it to generalized \mathcal{F} -metric spaces.

Let Γ be the family of functions $\gamma: [0, +\infty) \to (-\infty, 0]$ such that:

$$\limsup_{n \to \infty} \gamma(t_n) = 0 \Rightarrow \lim_{n \to \infty} t_n = 0.$$

For example $\gamma_1(x) = -x$, $\gamma_2(x) = -x^3$, $\gamma_1, \gamma_2 \in \Gamma$.

Definition 2.3. Let (X, D) be a generalized \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. Let $T: X \to X$ be a mapping. If for all $x, y, z \in X$ there exists a function $\gamma \in \Gamma$ satisfying

$$D(Tx, Ty) > 0 \Rightarrow f(D(Tx, Ty)) \le \gamma(D(x, y)) + f(D(x, y)) - \alpha, \qquad (2.4)$$

then the mapping T is called an \mathcal{F} -Geraghty contraction.

Theorem 2.3. Let (X, D) be an \mathcal{F} -complete generalized \mathcal{F} -metric space with $(f, \alpha) \in \mathcal{F} \times [0, +\infty)$. The mapping $T: X \to X$ is an \mathcal{F} -Geraphty contraction and f is increasing and continuous. Then T has a unique fixed point p, and for all $x \in X$, the sequence $\{T^nx\}$ converges to p.

Proof. Let $x_0 \in X$ be an arbitrary element. Let $\{x_n\}$ be the sequence defined by $x_n = T^n x_0, n \in \{0, 1, 2, \cdots\}$. If there exists some $N \in \{0, 1, 2, \cdots\}$ such that $T^N x_0 = T^{N+1} x_0$ then T has a fixed point. Next we assume for every $n \in \{0, 1, 2, \cdots\}$, $T^n x_0 \neq T^{n+1} x_0$. From (2.4) we get

$$f(D(x_{n+1}, x_{n+2})) \le \gamma(D(x_n, x_{n+1})) + f(D(x_n, x_{n+1})) - \alpha \le f(D(x_n, x_{n+1})).$$
(2.5)

From the increasing property of f, we have $D(x_n, x_{n+1}) \leq D(x_{n-1}, x_n)$. There exists a $r \geq 0$ such that $\lim_{n \to \infty} D(x_n, x_{n+1}) = r$. If r > 0 from (2.5) and the continuity of f we get

$$f(r) \le \limsup_{n \to \infty} \gamma(D(x_n, x_{n+1})) + f(r) - \alpha.$$

From $0 \le \alpha \le \limsup_{n \to \infty} \gamma(D(x_n, x_{n+1})) \le 0$, we get $\lim_{n \to \infty} D(x_n, x_{n+1}) = 0$, which is a contradiction. So r = 0.

Next, we prove that the sequence $\{x_n\}$ is an \mathcal{F} -Cauthy sequence. Suppose the contrary, i.e., there exists $\epsilon > 0$ for which we can find two subsequences $\{x_{n_i}\}$ and $\{x_{m_i}\}$ such that m_i is the smallest index for which

$$i \leq n_i \leq m_i$$
 and $D(x_{n_i}, x_{m_i}) \geq \epsilon$.

This means that

$$D(x_{n_i}, x_{m_i-1}) < \epsilon.$$

On the one hand, from the increasing property of f we get

$$f(\epsilon) \le f(D(x_{n_i}, x_{m_i})) \le f(D(x_{n_i}, x_{n_i+1}) + D(x_{n_i+1}, x_{m_i})) + \alpha,$$

then

$$f^{-1}(f(\epsilon) - \alpha) \le \limsup_{i \to \infty} D(x_{n_i+1}, x_{m_i}).$$

From the increasing property of f, we get

$$f(\epsilon) - \alpha \leq f(\limsup_{i \to \infty} D(x_{n_i+1}, x_{m_i}))$$

=
$$\limsup_{i \to \infty} f(D(x_{n_i+1}, x_{m_i})).$$
 (2.6)

On the other hand,

$$f(D(x_{n_i+1}, x_{m_i})) \le \gamma(D(x_{n_i}, x_{m_i-1})) + f(D(x_{n_i}, x_{m_i-1})) - \alpha \le \gamma(D(x_{n_i}, x_{m_i-1})) + f(\epsilon) - \alpha.$$
(2.7)

Combining (2.6) and (2.7) we get

$$0 \le \limsup_{i \to \infty} \gamma(D(x_{n_i}, x_{m_i-1})),$$

which implies $\limsup_{i \to \infty} \gamma(D(x_{n_i}, x_{m_i-1})) = 0$, i.e. $\lim_{i \to \infty} D(x_{n_i}, x_{m_i-1}) = 0$. From

$$f(D(x_{n_i}, x_{m_i})) \le f(D(x_{n_i}, x_{m_i-1}) + D(x_{m_i-1}, x_{m_i})) + \alpha,$$

we get $\lim_{i\to\infty} D(x_{n_i}, x_{m_i}) = 0$, a contradiction. So $\{T^n x\}$ is an \mathcal{F} -Cauthy sequence. From the \mathcal{F} -complete of the generalized \mathcal{F} -metric space, there exists an $x \in X$ such that $\lim_{x\to\infty} D(x_n, x) = 0$.

From

$$f(D(Tx_n, Tx)) \le \gamma(D(x_n, x)) + f(D(x_n, x)) - \alpha,$$

we get $f(D(Tx_n, Tx)) \to -\infty$, i.e. $D(Tx_n, Tx) \to 0$ as $n \to \infty$. Tx is also a limit of sequence $\{x_n\}$. From the uniqueness of limit of sequence in generalized \mathcal{F} -metric space, we have Tx = x.

If T has another fixed point $y \in X$, and D(x, y) > 0, then

$$f(D(Tx,Ty)) \le \gamma(D(x,y)) + f(D(x,y)) - \alpha,$$

which implies $\alpha \leq \gamma(D(x, y))$. If $\alpha > 0$, a contradiction. If $\alpha = 0$, from the proposition of γ we have D(x, y) = 0, x = y, a contradiction.

Let \mathcal{B} be the family of functions $\beta : [0, +\infty) \to [0, 1)$ such that:

$$\limsup_{n \to \infty} \beta(t_n) = 1 \Rightarrow \lim_{n \to \infty} t_n = 0$$

For example, $\beta_1(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x = 0. \end{cases}$, $\beta_2(x) = \begin{cases} \frac{1}{1 + \frac{1}{100}x}, & x > 0, \\ 0, & x = 0. \end{cases}$, $\beta_1(x), \beta_2(x) \in \mathcal{B}$.

Corollary 2.6 ([7]). If (X, D) is a complete metric space and a mapping $T : X \to X$ satisfies

$$D(Tx,Ty) \le \beta(D(x,y))D(x,y), \text{ for all } x, y \in X,$$
(2.8)

where $\beta \in \mathcal{B}$, then T has a unique fixed point p and for any $x \in X$, the sequence $\{T^n x\}$ converges to p.

Proof. Because the metric space is a generalized \mathcal{F} -metric space with $f(x) = \ln x$ and $\alpha = 0$. From (2.8) we get

$$D(Tx, Ty) > 0 \Rightarrow \ln(D(Tx, Ty)) \le \ln(\beta(D(x, y))) + \ln(D(x, y)).$$

Form $\lim_{n \to \infty} \ln(\beta(x_n)) = 0 \Rightarrow \lim_{n \to \infty} \beta(x_n) = 1 \Rightarrow \lim_{n \to \infty} x_n = 0$, we obtain $\gamma(x) = \ln \beta(x) \in \Gamma$. So it can be concluded that

$$D(Tx,Ty) > 0 \Rightarrow f(D(Tx,Ty)) \le \gamma(D(x,y)) + f(D(x,y)) - 0.$$

All the conditions of Theorem 2.3 are satisfied.

Corollary 2.7 ([5]). If (X, D) is a complete b-metric space with coefficient $s \ge 1$ and a mapping $T: X \to X$ satisfies

$$D(Tx,Ty) \le \frac{\beta(D(x,y))}{s} D(x,y), \text{ for all } x, y \in X,$$
(2.9)

where $\beta \in \mathcal{B}$, then T has a unique fixed point p and for any $x \in X$, the sequence $\{T^nx\}$ converges to p.

Proof. Because b-metric space is a generalized \mathcal{F} -metric space with $f(x) = \ln x$ and $\alpha = \ln s$. From (2.9) we get

$$D(Tx,Ty) > 0 \Rightarrow \ln(D(Tx,Ty)) \le \ln(\beta(D(x,y))) + \ln(D(x,y)) - \ln(s).$$

 $\lim_{n \to \infty} \ln(\beta(x_n)) = 0 \Rightarrow \lim_{n \to \infty} \beta(x_n) = 1 \Rightarrow \lim_{n \to \infty} x_n = 0. \text{ So } \gamma(x) = \ln \beta(x) \in \Gamma.$ All the conditions of Theorem 2.3 are satisfied.

Example 2.1. Let X = [0,1] and $D : X \times X \to [0,\infty]$ be defined by $D(x,y) = (x-y)^2$, for all $x, y \in [0,1]$. It is easy to check that (X,D) is a *b*-metric space with parameter s = 2. So (X,D) is also a generalized \mathcal{F} -metric space with $f(x) = \ln x$ and $\alpha = \ln 2$. Set $Tx = \frac{x^2}{8}$ for all $x \in X$, $\beta(t) = \frac{1}{16}$ and $\gamma(t) = \ln(\beta(t)) = -\ln 16$, for all t > 0. We get

$$D(Tx,Ty) = \frac{1}{64}(x+y)^2(x-y)^2 \le \frac{1}{32}(x-y)^2 = \frac{\frac{1}{16}}{2}D(x,y),$$

then

$$\ln(D(Tx, Ty)) \le \ln \frac{1}{16} + \ln(D(x, y)) - \ln 2.$$

It is easy to know the conditions of Theorem 2.3 are satisfied. Hence T has a fixed point 0.

2.4. Fixed point results related to JS-contractions

The JS-contraction was originated from Jleli et al. [9], and was advanced [16]. Now we use the same principle in generalized \mathcal{F} -metric spaces.

Let Θ be the family of functions $\theta : \mathbf{R} \to (\mathbf{1}, \infty)$ satisfying:

- increasing;
- $\lim_{n \to \infty} \theta(t_n) = 1 \Leftrightarrow \lim_{n \to \infty} t_n = -\infty.$

For example, $\theta(t) = 1 + e^t \in \Theta$.

Theorem 2.4. Let (X, D) be an \mathcal{F} -complete generalized \mathcal{F} -metric space with $f \in \mathcal{F}$, $\alpha \geq 0$ and let $T : X \to X$ be a given mapping. Suppose that f is increasing and there exist $\theta \in \Theta$ and $k \in (0, 1)$ such that

$$\theta(f(D(Tx,Ty))) \le [\theta(f(D(x,y)) - \alpha)]^k, \text{ for all } x, y \in X.$$
(2.10)

Then T has a unique fixed point.

Proof. Let $x_0 \in X$ be an arbitrary element. Let $\{x_n\}$ be a sequence defined by $x_n = T^n x_0$, $n \in \{0, 1, 2, ...\}$. If there exists some $N \in \{0, 1, 2, ...\}$ such that $T^N x_0 = T^{N+1} x_0$, then T has a fixed point. Next we assume for every $n \in \{0, 1, 2, ...\}$, $T^n x_0 \neq T^{n+1} x_0$.

Step 1. We will show that $\lim_{n\to\infty} D(x_n, x_{n+1}) = 0$. By (2.10) we get

$$\theta(f(D(x_n, x_{n+1}))) \le \theta(f(D(x_{n-1}, x_n)) - \alpha)^k$$
$$\le \theta(f(D(x_{n-1}, x_n)))^k$$
$$\le \theta(f(D(x_0, x_1))^{k^n}.$$

With $\lim_{n\to\infty} k^n = 1$, we have $\lim_{n\to\infty} \theta(f(D(x_n, x_{n+1}))) = 1$, $\lim_{n\to\infty} f(D(x_n, x_{n+1})) = -\infty$, i.e. $\lim_{n\to\infty} D(x_n, x_{n+1}) = 0$.

Step 2. Next, we prove that the sequence $\{x_n\}$ is an \mathcal{F} -Cauthy sequence. Suppose the contrary, i.e., there exists $\epsilon > 0$ for which we can find two subsequences $\{x_{n_i}\}$ and $\{x_{m_i}\}$ such that m_i is the smallest index for which

$$i \leq n_i \leq m_i$$
 and $D(x_{n_i}, x_{m_i}) \geq \epsilon$.

These mean that

$$D(x_{n_i}, x_{m_i-1}) < \epsilon.$$

On the one hand, from the increasing property of f we get

$$f(\epsilon) \le f(D(x_{n_i}, x_{m_i})) \le f(D(x_{n_i}, x_{n_i+1}) + D(x_{n_i+1}, x_{m_i})) + \alpha.$$

So we get

$$f^{-1}(f(\epsilon) - \alpha) \le \limsup_{i \to \infty} D(x_{n_i+1}, x_{m_i}),$$

then

$$f(\epsilon) - \alpha \leq f(\limsup_{i \to \infty} D(x_{n_i+1}, x_{m_i}))$$

=
$$\limsup_{i \to \infty} f(D(x_{n_i+1}, x_{m_i})).$$
 (2.11)

On the other hand,

$$\theta(f(D(x_{n_i+1}, x_{m_i}))) \leq \theta(f(D(x_{n_i}, x_{m_i-1})) - \alpha)^k$$

$$\leq \theta(f(\epsilon) - \alpha)^k.$$
(2.12)

Combining (2.11) and (2.12) we get

$$\theta(f(\epsilon) - \alpha) \le \theta(f(\epsilon) - \alpha)^k.$$

It is in contradiction with $k \in (0, 1)$. So the sequence $\{T^n x\}$ is an \mathcal{F} -Cauthy sequence. From the completeness of generalized \mathcal{F} -metric space, there exists a point, assuming $p \in X$ is the limit of $\{x_n\}$. From

$$\theta(f(D(Tx_n, Tp))) \le \theta(f(D(x_n, p)) - \alpha)^k,$$
(2.13)

we get Tp is also a limit of $\{x_n\}$. From the uniqueness of the limit in generalized \mathcal{F} -metric space, we get Tp = p.

Example 2.2. Let X = [0,4], $D(x,y) = (x-y)^2$. The (X,D) is a *b*-metric with coefficient s = 2. Let $Tx = \frac{x}{2\sqrt{2}}$. There exist $f(t) = \ln t$, $\theta(t) = 1 + e^t$, $\alpha = \ln 2$, $k = \frac{1}{2}$ such that

$$\theta(f(D(Tx, Ty))) \le \theta(f(D(x, y)) - \alpha)^k,$$

i.e.,

$$\begin{aligned} D(x,y) &\leq 16 \Rightarrow 1 + \frac{1}{4}D(x,y) + \frac{1}{64}D(x,y)^2 \leq 1 + \frac{D(x,y)}{2} \\ &\Rightarrow (1 + \frac{1}{8}D(x,y))^2 \leq 1 + \frac{D(x,y)}{2} \\ &\Rightarrow 1 + e^{\ln(D(Tx,Ty))} \leq (1 + e^{\ln(D(x,y)) - \ln 2})^{\frac{1}{2}}. \end{aligned}$$

Thus, the conditions of Theorem 2.4 are satisfied, T has a fixed point 0.

3. Application

In this section, we apply our results to solve the first order periodic boundary value problem:

$$\begin{cases} x'(t) = f(t, x(t)), & t \in [0, T], \\ x(0) = x(T). \end{cases}$$
(3.1)

where $f:[0,T] \times \mathbb{R} \to \mathbb{R}$ is a continuous function on [0,T]. Problem (3.1) can be rewritten as

$$\begin{cases} x'(t) + \lambda x(t) = f(t, x(t)) + \lambda x(t), \\ x(0) = x(T). \end{cases}$$

It is equivalent to the integral equation

$$x(t) = \int_0^T G(t,s)(f(s,x(s)) + \lambda x(s))ds,$$

where G is the Green's function given as

$$G(t,s) = \begin{cases} \frac{e^{\lambda(T+s-t)}}{e^{\lambda T}-1}, & 0 \leq s \leq t \leq T, \\ \frac{e^{\lambda(s-t)}}{e^{\lambda T}-1}, & 0 \leq t \leq s \leq T. \end{cases}$$

It is easy to see that

$$\int_0^T G(t,s)ds = \frac{1}{\lambda}$$

Let C(I) denote the set of continuous functions on I:=[0,T]. We define an operator $T:C(I)\to C(I)$ as

$$Tx(t) = \int_0^T G(t,s)(f(s,x(s)) + \lambda x(s))ds.$$
 (3.2)

Theorem 3.1. If there exists $\lambda > 0$ such that, for every $x, y \in C(I)$ and $s \in I$,

$$|f(s,x(s)) + \lambda x(s) - f(s,y(s)) - \lambda y(s)| \le \lambda \sqrt{\frac{|x(s) - y(s)|^2}{1 + |x(s) - y(s)|^2}},$$
(3.3)

then Problem (3.1) has a unique solution in C(I).

Proof. Let $D(x,y) = \max_{t \in [0,T]} \{|x(t) - y(t)|^2\}$. Then (C(I), D) is an \mathcal{F} -complete generalized \mathcal{F} -metric space.

$$\begin{split} D(Tx,Ty) &= \max_{t \in [0,T]} \left\{ |Tx(t) - Ty(t)|^2 \right\} \\ &\leq \max_{t \in [0,T]} \left\{ \left(\int_0^T G(t,s) |f(s,x(s)) + \lambda x(s) - f(s,y(s)) - \lambda y(s)| ds \right)^2 \right\} \\ &\leq \max_{t \in [0,T]} \left\{ \left(\int_0^T G(t,s) \lambda \sqrt{\frac{|x(s) - y(s)|^2}{1 + |x(s) - y(s)|^2}} ds \right)^2 \right\} \\ &\leq \max_{t \in [0,T]} \left\{ \left(\int_0^T G(t,s) ds \right)^2 \cdot \max_{s \in [0,T]} \left\{ \lambda \sqrt{\frac{|x(s) - y(s)|^2}{1 + |x(s) - y(s)|^2}} \right\}^2 \right\} \\ &\leq \max_{t \in [0,T]} \left\{ \frac{1}{\lambda^2} \cdot \lambda^2 \cdot \max_{s \in [0,T]} \left\{ \frac{|x(s) - y(s)|^2}{1 + |x(s) - y(s)|^2} \right\} \right\} \\ &\leq \max_{s \in [0,T]} \frac{|x(s) - y(s)|^2}{1 + \max_{s \in [0,T]} |x(s) - y(s)|^2} \leq \frac{D(x,y)}{1 + D(x,y)}. \end{split}$$

The conditions of Theorem 2.1 are satisfied with $\phi(t) = \frac{t}{1+t}$. T has a fixed point in C(I), i.e. Question (3.1) has a unique solution in C(I).

Conclusion

We introduce a generalized \mathcal{F} -metric space and prove the existence of fixed point theorems via comparison function, F-contraction, Geraghty contraction and JScontraction in generalized \mathcal{F} -metric space. Our results improve and generalize some results in metric space and *b*-metric space. Generalized \mathcal{F} -metric spaces may be further considered.

Acknowledgements

The authors would like to thank the editor and the reviewers for their helpful comments to revise the paper.

References

- T. Abdeljawad, N. Mlaiki, H. Aydi and N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 2018, 6(12).
- [2] S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl., 2018, 20(4), 1–17.
- [3] A. Bera, H. Garai, B. Damjanović and A. Chanda, Some interesting results on F-metric spaces, Filomat, 2019, 33(10), 3257–3268.
- [4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 1998, 46(2), 263–276.
- [5] D. Dukić, Z. Kadelburg and S. Radenović, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., 2011. DOI: 10.1155/2011/561245.
- [6] R. Fagin, R. Kumar and D. Sivakumar, *Comparing top k lists*, SIAM J. Discret. Math., 2003, 17(1), 134–160.
- [7] M. Geraghty, On contractive mappings, Proc. Am. Math. Soc., 1973, 40, 604– 608.
- [8] A. Hussain and T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Ins., 2018, 172(3), 481–490.
- [9] M. Jleli, E. Karapınar and B. Samet, Further generalizations of the Banach contraction principle, J. Ineq. Appl., 2014, 2014(1), 1–9.
- [10] M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl., 2018. DOI: 10.1007/s11784-018-0606-6.
- [11] E. Karapinar, $\alpha \psi$ -Geraghty contraction type mappings and some related fixed point results, Filomat, 2014, 28(1), 37–48.
- [12] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Cham: Springer International Publishing, 2014.
- [13] Z. D. Mitrović, H. Aydi, N. Hussain and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on *F*-metric spaces and an application, Mathematics, 2019, 7(5).

- [14] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad Controlled metric type spaces and the related contraction principle, Mathematics, 2018, 6(10).
- [15] Z. Ma, A. Asif, H. Aydi, S. U. Khan and M. Arshad, Analysis of F-contractions in function weighted metric spaces with an application, Open Math., 2020, 18(1), 582–594.
- [16] Z. Mustafa, R. J. Shahkoohi, V. Parvaneh, Z. Kadelburg and M. M. M. Jaradat, Ordered S_p-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems, Fixed Point Theory Appl., 2019, 2019, 1–20.
- [17] S. Som, A. Bera and L. K. Dey, Some remarks on the metrizability of *F*-metric spaces, J. Fixed Point Theory Appl., 2020, 22(1), 1–7.
- [18] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 2017, 2017(1), 1–11. DOI: 10.1186/s13660-017-1528-3.
- [19] T. Suzuki, Fixed point theorems for single-and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 2018, 20(1), 1–12. DOI: 10.1007/s11784-018-0519-4.
- [20] J. Vujaković, S. Mitrović, M. Pavlović and S. Radenović, On recent results concerning F-contraction in generalized metric spaces, Mathematics, 2020,8(5).
- [21] Y. Wang and C. Chen, Two new Geraghty type contractions in G_b-metric spaces, J. Func. Spaces, 2019. DOI: 10.1155/2019/7916486.
- [22] D. Yu, C. Chen and H. Wang, Common fixed point theorems for (T,g) Fcontraction in b-metric-like spaces, J. Inequal. Appl., 2018, 2018(222). DOI: 10.1186/s13660-018-1802-z.
- [23] C. Zhu, C. Chen and X. Zhang, Some results in quasi-b-metric-like spaces, J. Inequal. Appl., 2014, 2014(1), 1–8. DOI: 10.1186/1029-242X-2014-437.
- [24] L. Zhu, C. Zhu, C. Chen and Z. Stojanović, Multidimensional fixed points for generalized Φ-quasi-contractions in quasi-metric-like spaces, J. Inequal. Appl., 2014, 2014(27). DOI: 1-15.10.11 86/1029-242X-2014-27.
- [25] C. Zhu and Z. Xu, Inequalities and solution of an operator equation, Appl. Math. Lett., 2008, 21(6), 607–611.
- [26] C. Zhu, Research on some problems for nonlinear operators, Nonlinear Anal. Theory Methods Appl., 2009, 71(10), 4568–4571.