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Abstract This paper presents a Crank-Nicolson partially-updated projection
finite element scheme for the numerical approximation of the Landau-Lifshitz
equation which describes the dynamics of magnetization in ferromagnetic ma-
terials and is a strongly nonlinear parabolic problem with the non-convex con-
straint. The proposed scheme is a semi-implicit scheme by using the extrap-
olation technique and the implicit-explicit method to linearize the nonlinear
terms. Furthermore, the sphere projection is used to preserve the unit length
such that numerical solutions satisfy the non-convex constraint exactly. The
optimal second-order convergence rate in time and space is derived under the
reasonable time step condition. Finally, the numerical experiment is presented
to confirm the theoretical result.
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tion method, finite element method, error analysis.

MSC(2010) 65N12, 65N30, 35K61.

1. Introduction
The dynamics of the magnetic distribution in a ferromagnetic material is governed
by the Landau-Lifshitz (LL) equation (cf. [29]):

mt = γm ×∆m − λγm × (m ×∆m). (1.1)

where m : (0, T ] × Ω → R3 denotes the magnetization and Ω is a bounded and
convex domain in Rd with d = 2, 3. The constant λ > 0 denotes the dimension-
less damping parameter and γ > 0 is the exchange constant. Since the exchange
constant γ is not critical for the description of the Crank-Nicolson scheme, we set
γ = 1. It is easy to see that |m(t)| is constant in time. Then we assume that
|m(t)| = 1 in the point-wise sense. The LL equation (1.1) is closed by imposing the
following initial and boundary conditions:

m(0,x) = m0 with |m0| = 1 in Ω and ∂nm = 0 on (0, T )× ∂Ω, (1.2)
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where n is the unit outward normal vector to ∂Ω.
From |m(t)| = 1 for any t > 0 and the following vector formula:

u × (v × w) = (u · w)v − (u · v)w,

the Landau-Lifshitz equation (1.1) can be rewritten as (cf. [23])

mt − λ∆m − m ×∆m = λ|∇m|2m. (1.3)

Since |m(t)| remains the constant during the evolution process, a key issue
in designing numerical algorithms is that one need to take into account the non-
convex constraint. In general, there are two methods to deal with this difficulty,
i.e., the scheme of approximating the unit length of magnetization and the scheme
of preserving the unit length of magnetization exactly.

For the first method, a technique is to relax |m| = 1 by introducing some penalty
terms. In [35], based upon different penalty strategies, some penalty schemes were
studied. Pistella and Valente [34] used Ginzburg-Landau penalty function 1

ε (|m|2−
1)m to relax the non-convex constraint and gave an explicit finite difference scheme
to solve the penalty problem numerically. They proved the convergence of the
numerical solution under the time step restriction τ ≤ C(ε)h2, where τ and h are
the time step size and the mesh size, respectively. Usually, the penalty methods
result in the use of a very small time step as h and ε tend to zero, and extremely
time-consuming in practical computations. Another choice is using the semi-implicit
schemes to discrete the LL equation, such as the first-order backward Euler scheme
[16, 21] and the second-order Crank-Nicolson scheme [3]. But these semi-implicit
schemes fail to preserve the unit length of magnetization exactly.

For the second method, the numerical explicit scheme with a finite element ap-
proximation to the weak solution was proposed by Alouges and Jaisson [2], where
the orthogonal projection method was used to preserve the unit length of magne-
tization. However, at each time step, one has to build a new finite element space
which is orthogonal point-wisely to the finite element solution at the previous time
step. Bartels, Ko and Prohl [8] studied Alouges and Jaisson’s scheme and proved
the convergence of numerical solutions. Bartles and Prohl [10] studied a fully im-
plicit FEM scheme. Although the fully implicit scheme in [10] was unconditionally
stable and can preserve the unit length of magnetization at each time step, but one
has to solve a nonlinear problem which was solved by using a fixed-point strategy.

The sphere projection method is a natural numerical method in designing the
numerical scheme of preserving the unit length of magnetization. The first sphere
projection method was suggested by E and Wang [20] where the term |∇m|2 in
the LL equation was treated as the Lagrange multiplier for the constraint |m| = 1.
The proposed projection scheme consists of two steps. Firstly, since |∇m|2 was
treated as the Lagrange multiplier, a simplified linear system was solved to obtain
an intermediate magnetization field m̃n

h. Secondly, the intermediate magnetization
field was projected to obtain mn

h =
m̃n

h

|m̃n
h |

at the next time step. The idea of treating
the term |∇m|2 as a Lagrange multiplier was later discussed in the framework of
the weak solution for the harmonic map heat flows [7,9]. In [35], Prohl proposed a
nonlinear Euler projection scheme by using a more general projection mn

h =
m̃n

h

|m̃n
h |2−γ ,

which remains the non-convex constraint only when γ = 1. Moreover, the sub-
optimal error estimate in L2-norm for 2D problem was derived. Recently, a second-
order partially-updated projection finite difference scheme was studied by Chen,



Crank-Nicolson projection scheme for the Landau-Lifshitz equation 3117

Wang and Xie in [13], where the following un-updated BDF approximation

mn+1
t ≈ 1

τ

(
m̃n+1

h − 3

2
m̃n

h +
1

2
m̃n−1

h

)
was used in the time direction. If we consider the updated approximation

mn+1
t ≈ 1

τ

(
m̃n+1

h − mn
h

)
,

the fully-updated projection Euler and Crank-Nicolson finite difference schemes
were studied in [5], where the optimal convergence rates were derived. A modified
BDF2 scheme in [13] was proposed for the micromagnetics simulations in [39]. A
linear Euler finite element scheme with the fully-updated sphere projection was
investigated in [6] and the optimal convergence rate in L2-norm was derived by
using the r-th order element to approximate the magnetization with r ≥ 2. There
have other numerical schemes of preserving the unit length of magnetization in the
point-wise sense, such as Gauss-Seidel Projection method [12, 38], the mid-point
scheme [18, 33, 36] and the mimetic finite difference method [27]. For a review of
numerical methods, we refer to Cimrák [17], Kruzík and Prohl [28] and Prohl [35]
and other references cited therein.

In this paper, we study a partially-updated projection scheme for the LL equa-
tion (1.3) based upon the second-order Crank-Nicolson scheme. The nonlinear term
m ×∆m is treated by the second-order extrapolation technique [37]. For the non-
linear term |∇m|2m, we use the implicit-explicit technique. Thus, the proposed
projection scheme is a linearized scheme and leads to a linear system at each time
step. For the spatial discretization, the piecewise linear finite element is used to
approximate the magnetization field m. It is proved that the proposed partially-
updated projection scheme is of the optimal second-order convergence rate in time
and space under the time step restriction τ ≤ Ch.

The rest of the paper is organized as follows. In Section 2, we present the
Crank-Nicolson partially-updated projection scheme for the approximation of the
LL equation (1.3) and the main result on the optimal L2 error estimates. Its proof
is given in Section 3 by using the method of mathematical induction. In Section 4,
numerical results are provided to confirm our theoretical analysis.

2. Crank-Nicolson partially-updated projection sch-
eme

For k ∈ N+, 1 ≤ p ≤ +∞, let W k,p(Ω) denote the standard Sobolev space. For p =
2, we use Hk(Ω) to denote W k,2(Ω). The boldface Sobolev spaces Hk(Ω),Wk,p(Ω)
and Lp(Ω) are used to denote the vector Sobolev spaces Hk(Ω)3,W k,p(Ω)3 and
Lp(Ω)3, respectively.

We suppose that Ω is a bounded and convex polygon or polyhedron domain.
Let Th = {K} be a shape regular quasi-uniform partition of Ω with mesh size h.
For a given partition of Ω, we define

Vh = {wh ∈ C(Ω)3, | wh ∈ P1(K)3, ∀ K ∈ Th},

where P1(K) is space of continuous piecewise linear polynomial on K ∈ Th.
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Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the time interval
[0, T ] with time step size τ = T/N and tn = nτ . For 0 ≤ n ≤ N , let us denote
mn(x) = m(tn,x) in Ω. For any sequence of functions {fn}Nn=0, we define

Dτf
n+1 =

fn+1 − fn

τ
, f

n+1/2
=
fn+1 + fn

2
, f̂n+1/2 =

1

2
(3fn − fn−1).

Start with m̃0
h = m0

h = Π0
hm0 ∈ Vh, where Π0

h is a projection operator from
H1(Ω) to Vh and defined by

λ
(
∇(Π0

hu − u),∇vh

)
+ λ

(
Π0

hu − u,vh

)
+
(
m0 ×∇(Π0

hu − u),∇vh

)
= 0.

We propose the following extrapolation Crank-Nicolson partially-updated projec-
tion finite element scheme for the LL equation (1.3).

Step I: For n = 0, 1, · · · , N−1, we find an intermediate magnetization m̃n+1
h ∈

Vh to satisfy(
m̃n+1

h − m̃n
h

τ
,vh

)
+ λ

(
∇m̃n+1/2

h ,∇vh

)
+
(

m̂n+1/2
h ×∇m̃n+1/2

h ,∇vh

)
=λ
(
∇m̂n+1/2

h · ∇m̃n+1/2

h , m̂n+1/2
h · vh

)
, ∀ vh ∈ Vh, (2.1)

where m̂1/2
h ∈ Vh is determined by a semi-implicit Euler scheme:(

m̂1/2
h − m0

τ/2
,vh

)
+ λ

(
∇m̂1/2

h ,∇vh

)
+
(

m0 ×∇m̂1/2
h ,∇vh

)
=λ
(
|∇m0|2m0,vh

)
, ∀ vh ∈ Vh. (2.2)

Step II: We perform the sphere projection by

mn+1
h =

m̃n+1
h

|m̃n+1
h |

. (2.3)

Remark 2.1. In (2.1), for the diffusion term, we use the standard Crank-Nicolson
scheme with the well-known coefficient 1/2 at time node points tn+1 and tn, which
yields the second-order temporal convergence rate. We note that there exists other
different second-order time-discrete strategy for the long time numerical simulation.
For example, in [14, 24], the authors used the Adams-Moulton interpolation to
discrete the diffusion term by taking the coefficients 3/4 and 1/4 at time node points
tn+1 and tn−1 for 1 ≤ n ≤ N . The proposed schemes in [14,24] are unconditionally
stable and the second-order temporal convergence rate was presented. Such discrete
technique has been studied for the Cahn-Hilliard equation in [15,19,25] and can be
extended to the LL equation (1.3).

It is clear that the proposed Crank-Nicolson projection scheme (2.1)-(2.3) can
preserve the unit length of numerical solutions exactly. The emphasis of this paper
is to show the optimal temporal-spatial error estimates for (2.1)-(2.3) under the
condition τ ≤ κh for some κ > 0. Thus, we assume that the LL problem (1.3) with
(1.2) has a unique smooth solution m satisfying

∥m0∥H2 + ∥m∥L∞(0,T ;W 2,4) + ∥mt∥L∞(0,T ;H3)

+ ∥mtt∥L∞(0,T ;H2) + ∥mttt∥L2(0,T ;L2) ≤ C. (2.4)

We present our main result in the following theorem.
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Theorem 2.1. Suppose that the solution m to (1.3) with (1.2) satisfies the regular-
ity assumption (2.4). Under the condition τ ≤ κh for some κ > 0, there exists some
small constant h0 such that when h < h0, the discrete system (2.1)-(2.3) admits a
unique solution mn+1

h ∈ Vh for 0 ≤ n ≤ N − 1. Moreover, we have the following
optimal error estimate:

max
1≤n≤N

∥mn − mn
h∥L2 ≤ C0(τ

2 + h2) (2.5)

for some C0 > 0 independent of h, τ and κ.

The proof of Theorem 2.1 will be given in next section. To prove it, we recall
some inequalities frequently used in our proof. The first one is the inverse inequality
(cf. [11]):

∥vh∥W l,q1 ≤ Chm−l+dmin{ 1
q1

− 1
q2

,0}∥vh∥Wm,q2 (2.6)

for all vh ∈ Vh, 1 ≤ q1, q2 ≤ ∞ and 0 ≤ m ≤ l.
The second one is the discrete Gronwall’s inequality established in [26].

Lemma 2.1. Let ak, bk, γk and B be the nonnegative numbers such that

an + τ

n∑
k=0

bk ≤ τ

n∑
k=0

γkak +B, for n ≥ 0. (2.7)

Suppose that τγk < 1 and set σk = (1− τγk)
−1. Then

an + τ

n∑
k=0

bk ≤ B exp

(
τ

n∑
k=0

γkσk

)
. (2.8)

Remark 2.2. If the first sum on the right in (2.7) extends only up to n− 1, then
estimate (2.8) holds for all τ > 0 with σk = 1.

3. Error analysis
Suppose that m is a solution to (1.3) with |m| = 1 and using

m ×∆m = div (m ×∇m), (3.1)

then the weak formulation of (1.3) with (1.2) reads as

(mt,v) + λ(∇m,∇v) + (m ×∇m,∇v) = λ(|∇m|2m,v) ∀ v ∈ H1(Ω) (3.2)

for 0 < t ≤ T and m(0, ·) = m0. Furthermore, the exact solution mn+1 satisfies
the following discrete parabolic system:

Dτmn+1 − λ∆mn+1/2 − m̂n+1/2 ×∆mn+1/2 −∇m̂n+1/2 ×∇mn+1/2

=Rn+1 + λ
(
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2 (3.3)

with Neumann boundary condition ∇mn+1 · n = 0 on ∂Ω for 0 ≤ n ≤ N − 1, and
m̂1/2 is defined as the solution to the following linearized problem:

m̂1/2 − m0

τ/2
− λ∆m̂1/2 − m0 ×∆m̂1/2 −∇m0 ×∇m̂1/2 = R0 + λ|∇m0|2m0,

(3.4)
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with Neumann boundary condition ∇m̂1/2 · n = 0 on ∂Ω, where the truncation
functions Rn+1 and R0 are given by

Rn+1

= Dτmn+1−mn+1/2
t −λ∆(mn+1/2−mn+1/2)−m̂n+1/2 ×∆(mn+1/2−mn+1/2)

− (m̂n+1/2 − mn+1/2)×∆mn+1/2 −∇m̂n+1/2 ×∇(mn+1/2 − mn+1/2)

−∇(m̂n+1/2 − mn+1/2)×∇mn+1/2 + λ|∇mn+1/2|2mn+1/2

− λ
(
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2,

and

R0 =
m1/2 − m0

τ/2
− m1/2

t − (m0 − m1/2)×∆m1/2

−∇(m0 − m1/2)×∇m1/2 + λ|∇m1/2|2m1/2 − λ|∇m0|2m0.

By using the regularity (2.4) and the Taylor’s formula, we can derive that

τ

N−1∑
n=0

∥Rn+1∥2L2 + τ2∥R0∥2L2 ≤ Cτ4. (3.5)

From (3.1), the variational formulations of (3.3) and (3.4) read, respectively, as(
Dτmn+1,v

)
+ λ

(
∇mn+1/2,∇v

)
+
(

m̂n+1/2 ×∇mn+1/2,∇v
)

=
(
Rn+1,v

)
+ λ

(
∇m̂n+1/2 · ∇mn+1/2, m̂n+1/2 · v

)
, ∀ v ∈ H1(Ω), (3.6)

and

2

(
m̂1/2 − m0

τ
,v
)

+ λ
(
∇m̂1/2,∇v

)
+
(

m0 ×∇m̂1/2,∇v
)

=
(
R0,v

)
+ λ

(
|∇m0|2 m0,v

)
, ∀ v ∈ H1(Ω). (3.7)

For 1 ≤ n ≤ N , we define projection operator Πn
h from H1(Ω) onto Vh by

λ (∇(Πn
hu − u),∇vh) + λ (Πn

hu − u,vh) +
(

m̂n−1/2 ×∇(Πn
hu − u),∇vh

)
= 0

for all vh ∈ Vh. Introduce error functions

en = Πn
hmn − mn

h, ẽn = Πn
hmn − m̃n

h, En = Πn
hmn − mn, 0 ≤ n ≤ N,

and

ê1/2 = Π0
hm̂1/2 − m̂1/2

h , Ê1/2
= Π0

hm̂1/2 − m̂1/2.

Then En and Ê1/2 satisfy the following approximation properties (cf. [11, 21]):

∥En∥W i,4 + ∥Ê1/2
∥W i,4 ≤ Ch2−i∥m∥L∞(0,T ;W 2,4), i = 0, 1, (3.8)
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∥Πn
hmn∥W 1,p ≤ C, 2 ≤ p ≤ +∞ (3.9)

for 0 ≤ n ≤ N .

Now, we begin to prove Theorem 2.1. Firstly, ∥ê1/2∥L2 is estimated in the
following lemma.

Lemma 3.1. Suppose that the solution m to (1.3) with (1.2) satisfies the regularity
(2.4). Then there exists some C > 0 independent of τ and h such that ê1/2 satisfies

∥ê1/2∥L2 ≤ C
(
τ2 + h2

)
. (3.10)

Proof. Taking v = vh ∈ Vh in (3.7) and subtracting from (2.2) yields

2
(

ê1/2,vh

)
+ λτ

(
∇ê1/2,∇vh

)
+ τ

(
m0 ×∇ê1/2,∇vh

)
=2
(

Ê1/2
,vh

)
+ λτ

(
Ê1/2

,vh

)
+ τ

(
R0,vh

)
,

where we use the definition of Π0
h. Setting vh = ê1/2 leads to

2∥ê1/2∥2L2 + λτ∥∇ê1/2∥2L2

≤ 2∥Ê1/2
∥L2∥ê1/2∥L2 + λτ∥Ê1/2

∥L2∥ê1/2∥L2 + τ∥R0∥L2∥ê1/2∥L2

≤ ∥ê1/2∥2L2 + C∥Ê1/2
∥2L2 + Cτ2∥Ê1/2

∥2L2 + Cτ2∥R0∥2L2

≤ ∥ê1/2∥2L2 + C(τ4 + h4),

which completes the proof of (3.10).
On the other hand, taking v = vh ∈ Vh in (3.6) and subtracting the resulting

equation from (2.1), we obtain error equations for n = 0,(
Dτ ẽ1,vh

)
+ λ

(
∇ẽ1/2

,∇vh

)
=
(
DτE1,vh

)
− λ

2

(
E1 + E0,vh

)
+

1

2

(
(m̂1/2 − m0)×∇E0,∇vh

)
+
(
(m̂1/2 − m̂1/2

h )×∇ẽ1/2
,∇vh

)
−
(

m̂1/2 ×∇ẽ1/2
,∇vh

)
−
(
(m̂1/2 − m̂1/2

h )×∇E1/2
,∇vh

)
−
(
(m̂1/2 − m̂1/2

h )×∇m1/2,∇vh

)
+
(
R1,vh

)
+ λ

((
∇m̂1/2 · ∇m1/2

)
m̂1/2 −

(
∇m̂1/2

h · ∇m̃1/2

h

)
m̂1/2

h ,vh

)
,

(3.11)

and (
Dτ ẽn+1,vh

)
+ λ

(
∇ẽn+1/2

,∇vh

)
=
(
DτEn+1,vh

)
− λ

(
En+1/2

,vh

)
+

1

2

(
(m̂n+1/2 − m̂n−1/2)×∇En,∇vh

)
−
(

ên+1/2 ×∇En+1/2
,∇vh

)
+
(

ên+1/2 ×∇ẽn+1/2
,∇vh

)
+
(

Ên+1/2
×∇En+1/2

,∇vh

)
−
(

Ên+1/2
×∇ẽn+1/2

,∇vh

)



3122 G. Zhao & R. An

−
(

m̂n+1/2 ×∇ẽn+1/2
,∇vh

)
−
(

ên+1/2 ×∇mn+1/2,∇vh

)
+
(

Ên+1/2
×∇mn+1/2,∇vh

)
+
(
Rn+1,vh

)
+ λ

((
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2 −

(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h ,vh

)
(3.12)

for 1 ≤ n ≤ N − 1. In (3.11) and (3.12), we use

λ
(
∇E1/2

,∇vh

)
+
(

m̂1/2 ×∇E1/2
,∇vh

)
=
1

2

(
(m̂1/2 − m0)×∇E0,∇vh

)
− λ

2

(
E1 + E0,vh

)
and

λ
(
∇En+1/2

,∇vh

)
+
(

m̂n+1/2 ×∇En+1/2
,∇vh

)
=
1

2

(
(m̂n+1/2 − m̂n−1/2)×∇En,∇vh

)
− λ

(
En+1/2

,vh

)
thanks to the definitions of Π0

h and Πn
h, respectively.

Lemma 3.2. Suppose that the solution m to (1.3) with (1.2) satisfies the regularity
assumptions (2.4). If τ ≤ κh, then there exists some h1 > 0 such that when h < h1,
there holds

∥ẽ1∥L2 = ∥Π1
hm1 − m̃1

h∥L2 ≤ C1(τ
2 + h2), (3.13)

where C1 > 0 is independent of h, τ and κ.

Proof. It follows from (3.8), (3.10) and the inverse inequality that

∥m̂1/2 − m̂1/2
h ∥L2 ≤ C(1 + κ2)h2,

and

∥m̂1/2 − m̂1/2
h ∥H1 ≤ ∥m̂1/2 −Π0

hm̂1/2∥H1 + Ch−1∥ê1/2∥L2 ≤ C(1 + κ2)h,

under the condition τ ≤ κh. Due to ẽ0 = 0 and ẽ1/2
= 1

2 ẽ1, we set vh = 2τ ẽ1 in
(3.11) to yield

2∥ẽ1∥2L2 + λτ∥∇ẽ1∥2L2

=2
(

E1−E0, ẽ1
)
+2τ

(
R1, ẽ1

)
−λτ

(
E1+E0, ẽ1

)
+τ
(
(m̂1/2−m0)×∇E0,∇ẽ1

)
− 2τ

(
(m̂1/2 − m̂1/2

h )×∇E1/2
,∇ẽ1

)
− 2τ

(
(m̂1/2 − m̂1/2

h )×∇m1/2,∇ẽ1
)

+ 2λτ
((

∇m̂1/2 · ∇m1/2
)

m̂1/2 −
(
∇m̂1/2

h · ∇m̃1/2

h

)
m̂1/2

h , ẽ1
)
.

(3.14)

From the Hölder inequality, the Young inequality, the Sobolev imbedding inequality
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and (2.4), the right-hand side of (3.14) can be bounded by

2∥ẽ1∥2L2 + λτ∥∇ẽ1∥2L2

≤1

2
∥ẽ1∥2L2 +

λτ

4
∥ẽ1∥2H1 + C

(
∥E0∥2L2 + ∥E1∥2L2 + τ2∥R1∥2L2

)
+ Cτ3∥∇E0∥2L2 + Cτ∥m̂1/2 − m̂1/2

h ∥2H1∥∇E1/2∥2L3 + Cτ∥m̂1/2 − m̂1/2
h ∥2L2

+ 2λτ
((

∇m̂1/2 · ∇m1/2
)

m̂1/2 −
(
∇m̂1/2

h · ∇m̃1/2

h

)
m̂1/2

h , ẽ1
)

≤1

2
∥ẽ1∥2L2 +

λτ

4
∥ẽ1∥2H1 + C

(
τ4 + h4 + τ3h2 + κ(1 + κ2)2h5

)
+ 2λτ

((
∇m̂1/2 · ∇m1/2

)
m̂1/2 −

(
∇m̂1/2

h · ∇m̃1/2

h

)
m̂1/2

h , ẽ1
)

≤1

2
∥ẽ1∥2L2 +

λτ

4
∥ẽ1∥2H1 + C

(
τ4 + h4

)
+ 2λτ

((
∇m̂1/2 · ∇m1/2

)
m̂1/2 −

(
∇m̂1/2

h · ∇m̃1/2

h

)
m̂1/2

h , ẽ1
)

(3.15)

for h1≤ 1
κ(1+κ2)2 . Rewrite

(
∇m̂n+1/2 ·∇mn+1/2

)
m̂n+1/2−

(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h

as (
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2 −

(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h

=
(
∇m̂n+1/2 · ∇mn+1/2

)(
ên+1/2 − Ên+1/2

)
+∇(ên+1/2 − Ên+1/2

) · ∇ẽn+1/2
(

ên+1/2 − Ên+1/2
)

−∇(ên+1/2 − Ên+1/2
) · ∇En+1/2

(
ên+1/2 − Ên+1/2

)
−∇(ên+1/2 − Ên+1/2

) · ∇ẽn+1/2m̂n+1/2

+∇(ên+1/2 − Ên+1/2
) · ∇En+1/2m̂n+1/2

− 2
(
∇m̂n+1/2 · ∇(ẽn+1/2

− En+1/2
)
)

m̂n+1/2

+ 2
(
∇m̂n+1/2 · ∇(ẽn+1/2

− En+1/2
)
)(

ên+1/2 − Ên+1/2
)
=

7∑
i=1

Ii.

(3.16)

Taking n = 0 in (3.16), by the Hölder inequality, the Young inequality and the
inverse inequality (2.6), we can estimate the last term in the right-hand side of
(3.15) by

2λτ(I1, ẽ1) ≤ Cλτ
(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥ẽ1∥L2

≤ 1

10
∥ẽ1∥2L2 + Cτ2(τ4 + h4),

and

2λτ(I2, ẽ1)

≤ 2λτ
(
∥ê1/2∥L∞+∥Ê1/2

∥L∞

)(
∥∇ê1/2∥L3+∥∇Ê1/2

∥L3

)
∥ẽ1∥H1∥ẽ1∥L6
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≤ Cλτ
(
(1 + κ2)h2−d/2 + h

)(
(1 + κ2)h1−d/6 + h

)
∥ẽ1∥2H1 ≤ λτ

16
∥ẽ1∥2H1 ,

for some h1 with C
(
(1 + κ2)h

2−d/2
1 + h1

)(
(1 + κ2)h

1−d/6
1 + h1

)
≤ 1

16 , and

2λτ(I3, ẽ1)

≤2λτ
(
∥ê1/2∥L2+∥Ê1/2

∥L2

)(
∥∇ê1/2∥L3+∥∇Ê1/2

∥L3

)
∥∇E1/2∥L∞∥ẽ1∥L6

≤Cλτ
(
(1+κ2)h1−d/6+h

)(
∥ê1/2∥L2+∥Ê1/2

∥L2

)
∥ẽ1∥H1

≤ λτ

16
∥ẽ1∥2H1 + Cτ

(
∥ê1/2∥2L2 + ∥Ê1/2

∥2L2

)
≤ λτ

16
∥ẽ1∥2H1 + Cτ

(
τ4 + h4

)
,

for some h1 with
(
(1 + κ2)h

1−d/6
1 + h1

)
≤ 1, and

2λτ(I4, ẽ1) ≤ Cλτ
(
∥∇ê1/2∥L3 + ∥∇Ê1/2

∥L3

)
∥ẽ1∥2H1

≤ Cλτ
(
(1 + κ)h1−d/6 + h

)
∥ẽ1∥2H1 ≤ λτ

16
∥ẽ1∥2H1 ,

for some h1 with C
(
(1 + κ2)h

1−d/6
1 + h1

)
≤ 1

16 , and, by integration by parts,

2λτ(I5, ẽ1) ≤Cλτ∥E1/2∥W 2,4∥m̂1/2∥L∞

(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥ẽ1∥L6

+ Cλτ∥∇E1/2∥L3∥∇m̂1/2∥L∞

(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥ẽ1∥L6

+ Cλτ∥∇E1/2∥L3∥m̂1/2∥L∞

(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥∇ẽ1∥L2

≤Cτ
(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥ẽ1∥H1

≤λτ
16

∥ẽ1∥2H1 + Cτ(τ4 + h4),

and

2λτ(I6, ẽ1) ≤Cτ
(
∥ẽ1∥L2 + ∥E1/2∥L2

)
∥ẽ1∥H1

≤λτ
16

∥ẽ1∥2H1 + Cτ
(
∥ẽ1∥2L2 + ∥E1/2∥2L2

)
.

For last term, we have

2λτ(I7, ẽ1) ≤Cτ
(
∥ê1/2∥L3 + ∥Ê1/2

∥L3

)
∥ẽ1∥2H1

+ Cτ
(
∥ê1/2∥L2 + ∥Ê1/2

∥L2

)
∥∇E1/2∥L3∥ẽ1∥H1

≤λτ
16

∥ẽ1∥2H1 + Cτ
(
(1 + κ2)h2−d/6 + h2

)
∥ẽ1∥2H1

+ Cτ
(
∥ê1/2∥2L2 + ∥Ê1/2

∥2L2

)
∥∇E1/2∥2L3

≤λτ
16

∥ẽ1∥2H1 + Cτ
(
∥ê1/2∥2L2 + ∥Ê1/2

∥2L2

)
∥∇E1/2∥2L3
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≤λτ
16

∥ẽ1∥2H1 + Chτ
(
τ4 + h4

)
,

for some h1 with C
(
(1 + κ2)h

2−d/6
1 + h21

)
≤ λ

16 . Substituting these estimates into
(3.15), we obtain

3

2
∥ẽ1∥2L2 +

λτ

4
∥ẽ1∥2H1 ≤ Cτ∥ẽ1∥2L2 + C(τ4 + h4) ≤ 1

2
∥ẽ1∥2L2 + C(τ4 + h4)

for some h1 with Cτ ≤ Cκh1 ≤ 1
2 . Thus, there exists some small h1 > 0 such that

when h < h1, the desired estimate (3.13) holds.

Lemma 3.3. Suppose that the solution m to (1.3) with (1.2) satisfies the regularity
assumptions (2.4). If τ ≤ κh, then there exist some h2 > 0 such that when h < h2,
we have

max
1≤k≤N

∥ẽk∥L2 = max
1≤k≤N

∥Πn
hmk − m̃k

h∥L2 ≤ C2(τ
2 + h2), (3.17)

where C2 > 0 is independent of h, τ and κ.

Proof. We will use the method of mathematical induction to prove this lemma.
From Lemma 3.2, the estimate (3.17) is valid for k = 1 and C2 > C1. Now, we
assume that (3.17) is valid for k ≤ n with n ≤ N − 1, i.e.,

∥ẽn∥L2 ≤ C2(τ
2 + h2) ≤ C2(1 + κ2)h2. (3.18)

To close the mathematical induction, we need to show that (3.17) is valid for k ≤
n+ 1.

By the definition of mn
h, it is easy to check that

|mn
h − m̃n

h| ≤ |mn − m̃n
h| in the point-wise sense. (3.19)

Furthermore, under the assumption (3.18), we can prove that there exists some h2
such that when h < h2, there holds (cf. [4, 6]):

∥mn
h − m̃n

h∥W 1,i ≤ C∥mn − m̃n
h∥W 1,i for 1 ≤ n ≤ N − 1 and i = 2, 3, (3.20)

which is a key result in our proof since the inverse inequality is not valid for mn
h

due to mn
h /∈ Vh.

For 1 ≤ n ≤ N − 1, by (3.19), (3.20) and inverse inequality, one has

∥en∥Li ≤ 2∥ẽn∥L2 + ∥En∥Li , i = 2, 3,

∥en∥H1 ≤ Ch−1∥ẽn∥L2 + ∥En∥H1 ,

∥en∥W 1,3 ≤ Ch−1−d/6∥ẽn∥L2 + ∥En∥W 1,3 .

Then, from the definition of ên+1/2, we have

∥ên+1/2∥L2 ≤ C
(
∥ẽn∥L2 + ∥ẽn−1∥L2

)
+ Ch2, (3.21)

∥ên+1/2∥H1 ≤ Ch−1
(
∥ẽn∥L2 + ∥ẽn−1∥L2

)
+ Ch, (3.22)

∥ên+1/2∥W 1,3 ≤ Ch−1−d/6
(
∥ẽn∥L2 + ∥ẽn−1∥L2

)
+ Ch. (3.23)
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In (3.12), we take vh = τ ẽn+1/2 to yield

1

2
∥ẽn+1∥2L2 −

1

2
∥ẽn∥2L2 + λτ∥∇ẽn+1/2

∥2L2

= τ(DτEn+1, ẽn+1/2
)− λτ(En+1/2

, ẽn+1/2
) + τ(Rn+1, ẽn+1/2

)

+
τ

2

(
(m̂n+1/2 − m̂n−1/2)×∇En,∇ẽn+1/2

)
− τ(ên+1/2 ×∇En+1/2

,∇ẽn+1/2
) + τ(Ên+1/2

×∇En+1/2
,∇ẽn+1/2

)

− τ(ên+1/2 ×∇mn+1/2,∇ẽn+1/2
) + τ(Ên+1/2

×∇mn+1/2,∇ẽn+1/2
)

+λτ
((

∇m̂n+1/2 ·∇mn+1/2
)

m̂n+1/2−
(
∇m̂n+1/2

h ·∇m̃n+1/2

h

)
m̂n+1/2

h , ẽn+1/2
)

:= RHS.

(3.24)

From the Hölder inequality and (2.4), the right-hand side of (3.24) can be bounded
by

RHS ≤Cτ
(
∥DτEn+1∥L2 + ∥En+1/2∥L2 + ∥Rn+1∥L2

)
∥ẽn+1/2

∥L2

+ Cτ2∥mt∥L∞∥∇En∥L2∥∇ẽn+1/2
∥L2

+ Cτ
(
∥ên+1/2∥L4 + ∥Ên+1/2

∥L4

)
∥∇En+1/2∥L4∥∇ẽn+1/2

∥L2

+ Cτ
(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥∇mn+1/2∥L∞∥∇ẽn+1/2

∥L2

+ λτ

((
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2

−
(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h , ẽn+1/2
)
,

where we use m̂n+1/2 − m̂n−1/2 = O(τ). Using the Young inequality, the Sobolev
embedding inequality, (2.4) and the inverse inequality (2.6), we obtain

RHS ≤λτ
4
∥ẽn+1/2

∥2H1 + Cτh4
(
∥Dτmn+1∥H2 + ∥mn+1/2∥H2

)
+ Cτ∥Rn+1∥2L2

+ Cτ3∥∇En∥2L2 + Cτ
(
∥ên+1/2∥2L2 + ∥Ên+1/2

∥2L2

)
+ Ch2τ

(
h−d/2∥ên+1/2∥2L2 + ∥Ên+1/2

∥L2∥Ên+1/2
∥H1

)
+ λτ

((
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2

−
(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h , ẽn+1/2
)
,

which implies that

RHS ≤λτ
4
∥ẽn+1/2

∥2H1 + Cτ
(
h4 + τ4 + ∥Rn+1∥2L2 + ∥ẽn∥2L2 + ∥ẽn−1∥2L2

)
+ λτ

((
∇m̂n+1/2 · ∇mn+1/2

)
m̂n+1/2



Crank-Nicolson projection scheme for the Landau-Lifshitz equation 3127

−
(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h , ẽn+1/2
)
.

From (3.16), we rewrite the last term in the right-hand side of of the above inequality
as

λτ
((

∇m̂n+1/2 · ∇mn+1/2
)

m̂n+1/2 −
(
∇m̂n+1/2

h · ∇m̃n+1/2

h

)
m̂n+1/2

h , ẽn+1/2
)

=λτ
((

∇m̂n+1/2 · ∇mn+1/2
)(

ên+1/2 − Ên+1/2
)
, ẽn+1/2

)
+ λτ

(
∇(ên+1/2 − Ên+1/2

) · ∇ẽn+1/2
(

ên+1/2 − Ên+1/2
)
, ẽn+1/2

)
− λτ

(
∇(ên+1/2 − Ên+1/2

) · ∇En+1/2
(

ên+1/2 − Ên+1/2
)
, ẽn+1/2

)
− λτ

(
∇(ên+1/2 − Ên+1/2

) · ∇ẽn+1/2m̂n+1/2, ẽn+1/2
)

+ λτ
(
∇(ên+1/2 − Ên+1/2

) · ∇En+1/2m̂n+1/2, ẽn+1/2
)

− 2λτ
((

∇m̂n+1/2 · ∇(ẽn+1/2
− En+1/2

)
)

m̂n+1/2, ẽn+1/2
)

+ 2λτ
((

∇m̂n+1/2 · ∇(ẽn+1/2
− En+1/2

)
)(

ên+1/2 − Ên+1/2
)
, ẽn+1/2

)
=

7∑
i=1

Ji.

Using (2.4), (3.8), the Hölder inequality and the Young inequality, we can esti-
mate J1 by

J1 ≤ Cτ
(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥ẽn+1/2

∥L2

≤ λτ

28
∥ẽn+1/2

∥2H1 + Cτ
(
∥ên+1/2∥2L2 + h4

)
.

For J2, from (3.8), (3.18) and (3.23), we have

J2 ≤ Cτ∥ên+1/2 − Ên+1/2
∥L∞

(
∥∇ên+1/2∥L3 + ∥∇Ên+1/2

∥L3

)
∥ẽn+1/2

∥2H1

≤ C
(
(1 + C2)(1 + κ2)h1−

d
6 + h

)
τ∥ẽn+1/2

∥2H1 ≤ λτ

28
∥ẽn+1/2

∥2H1

for h2 such that C
(
(1 + C2)(1 + κ2)h

1− d
6

2 + h2

)
≤ λ

28 . For J3, from (3.8), (3.23),
we have

J3 ≤ Cτ
(
∥∇ên+1/2∥L3 + ∥∇Ên+1/2

∥L3

)
∥En+1/2∥L∞

×
(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥ẽn+1/2

∥L6

≤ C
(
(1 + C2)(1 + κ2)h1−

d
6 + h

)
τ
(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥ẽn+1/2

∥H1

≤ λτ

28
∥ẽn+1/2

∥2H1 + Cτ
(
∥ên+1/2∥2L2 + ∥Ên+1/2

∥2L2

)
,

for h2 such that (1+C2)(1+ κ2)h
1− d

6
2 + h2 ≤ 1. For J4, from (3.8), (3.23), we have

J4 ≤ Cτ
(
∥∇ên+1/2∥L3 + ∥∇Ên+1/2

∥L3

)
∥ẽn+1/2

∥2H1
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≤ C
(
(1 + C2)(1 + κ2)h1−

d
6 + h

)
τ∥ẽn+1/2

∥2H1 ≤ λτ

28
∥ẽn+1/2

∥2H1

for h2 such that C
(
(1 + C2)(1 + κ2)h

1− d
6

2 + h2

)
≤ λ

28 . For J5, from (3.9) and
(3.22), we have

J5 ≤ Cτ∥∇ên+1/2∥L2∥∇En+1/2∥L3∥ẽn+1/2
∥L6 + Cτ∥En+1/2∥2W 1,3∥ẽn+1/2

∥L6

≤ Cτ
(
∥ẽn∥L2 + ∥ẽn−1∥L2 + h2

)
∥ẽn+1/2

∥H1

≤ λτ

28
∥ẽn+1/2

∥2H1 + Cτ
(
∥ẽn∥2L2 + ∥ẽn−1∥2L2 + h4

)
.

By integtation by parts, we can estimate J6 by

J6 ≤ λτ∥m̂n+1/2∥W 2,3∥m̂n+1/2∥L∞

(
∥ẽn+1/2

∥L2 + ∥En+1/2∥L2

)
∥ẽn+1/2

∥L6

+ λτ∥∇m̂n+1/2∥2L∞

(
∥ẽn+1/2

∥L2 + ∥En+1/2∥L2

)
∥ẽn+1/2

∥L6

+ λτ∥∇m̂n+1/2∥L∞∥m̂n+1/2∥L∞

(
∥ẽn+1/2

∥L2 + ∥En+1/2∥L2

)
∥ẽn+1/2

∥H1

≤ λτ

28
∥ẽn+1/2

∥2H1 + Cτ
(
∥ẽn+1/2

∥2L2 + ∥En+1/2∥2L2

)
.

For J7, from (2.6), (3.21), we have

J7 ≤ Cτ
(
∥ên+1/2∥L3 + ∥Ên+1/2

∥L3

)
∥ẽn+1/2

∥2L6

+ Cτ∥∇En+1/2∥2L3

(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥ẽn+1/2

∥L6

≤ C
(
(1 + C2)(1 + κ2)h2−

d
6 + h2

)
τ∥ẽn+1/2

∥2H1

+ Cτh2
(
∥ên+1/2∥L2 + ∥Ên+1/2

∥L2

)
∥ẽn+1/2

∥L6

≤ λτ

14
∥ẽn+1/2

∥2H1 + Cτ
(
∥ẽn+1/2

∥2L2 + ∥En+1/2∥2L2

)
,

for h2 such that C
(
(1 + C2)(1 + κ2)h

2− d
6

2 + h22

)
≤ λ

28 . Substituting the above
estimates into (3.24) yields

∥ẽn+1∥2L2 − ∥ẽn∥2L2 + λτ∥ẽn+1/2
∥2H1

≤Cτ∥ẽn+1∥2L2 + Cτ
(
h4 + τ4 + ∥Rn+1∥2L2 + ∥ẽn∥2L2 + ∥ẽn−1∥2L2

)
.

For some h2 such that Cτ ≤ Cκh2 < 1/2, from the discrete Gronwall inequality
and (3.5), we have

∥ẽn+1∥2L2 ≤ C exp(TC)(τ4 + h4) ≤ C2
2 (τ

4 + h4), ∀ 1 ≤ n ≤ N − 1

for C2
2 ≥ C exp(TC). Thus, we close the mathematical induction and finish the

proof of Lemma 3.3.
Proof of Theorem 2.1. To prove the existence and uniqueness of solution m̃n

h ∈
Vh to (2.1), we only consider the following homogeneous problem:

(ψh,vh) + λτ(∇ψh,∇vh) + τ
(

m̂n+1/2
h ×∇ψh,∇vh

)
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− λτ
(
∇m̂n+1/2

h · ∇ψh, m̂n+1/2
h · vh

)
= 0, ∀ vh ∈ Vh. (3.25)

Taking vh = ψh in (3.25) leads to

0 = ∥ψh∥2L2 + λτ∥∇ψh∥2L2 − λτ
(
∇m̂n+1/2

h · ∇ψh, m̂n+1/2
h · ψh

)
≥ ∥ψh∥2L2 +

λτ

2
∥∇ψh∥2L2 − Cτ∥∇m̂n+1/2

h ∥2L4∥ψh∥2L4

≥ ∥ψh∥2L2 +
λτ

4
∥∇ψh∥2L2 − Cτ∥∇m̂n+1/2

h ∥
8

4−d

L4 ∥ψh∥2L2 − Cτ∥ψh∥2L2

≥ ∥ψh∥2L2 +
λτ

4
∥∇ψh∥2L2 − Cτ∥ψh∥2L2

≥ ∥ψh∥2L2 +
λτ

4
∥∇ψh∥2L2 − Cκh∥ψh∥2L2 ≥ 1

2
∥ψh∥2L2 +

λτ

4
∥∇ψh∥2L2 ,

(3.26)

for h3 with Cκh3 < 1/2, where we use the Young inequality, ∥∇m̂n+1/2
h ∥L4 ≤ C,

and

∥ψh∥L4 ≤ C∥ψh∥
4−d
4

L2 ∥∇ψh∥
d
4

L2 + C∥ψh∥L2 .

To prove ∥∇m̂n+1/2
h ∥L4 ≤ C, we only need to prove

∥∇mn
h∥L4 =

∥∥∥∥∇ m̃n
h

|m̃n
h|

∥∥∥∥
L4

≤ C

for 1 ≤ n ≤ N − 1. In fact, from (3.17), we have

∥m̃n
h∥L∞ ≤ ∥Πn

hmn∥L∞ + Ch−d/2∥ẽn∥L2 ≤ C + CC2(1 + κ2)h2−d/2 ≤ C

for h3 with CC2(1 + κ2)h
2−d/2
3 < 1, and

∥m̃n
h∥L∞ ≥ ∥mn∥L∞ − Ch−d/2∥ẽn∥L2 − C∥En∥W 1,4

≥ 1− CC2(1 + κ2)h2−d/2 − Ch ≥ 1/2

for h3 with CC2(1 + κ2)h
2−d/2
3 + Ch3 < 1/2, and

∥∇m̃n
h∥L4 ≤ ∥∇mn∥L4 + ∥∇ẽn∥L4 + ∥∇En∥L4

≤ C + Ch+ CC2(1 + κ2)h1−d/4 ≤ C

for h3 with C2(1+κ
2)h

1−d/4
3 < 1. The estimate (3.26) implies ψ ≡ 0 and we obtain

the solvability and uniqueness of the solution to (2.1). Moreover, mn
h is uniquely

determined by using the projection step (2.3). Next, we prove the optimal error
estimate (2.5). It follows from (3.19) and (3.17) that

∥mn − mn
h∥L2 ≤ 2 (∥ẽn∥L2 + ∥En∥L2) ≤ C0(τ

2 + h2).

We complete the proof of Theorem 2.1 with h0 = min{h1, h2, h3}.



3130 G. Zhao & R. An

4. Numerical results
In this section, we present the numerical result to check the optimal error estimate
(2.5) derived in Theorem 2.1. We consider the LL problem (1.3) with (1.2) in the
unit circle Ω = {(x, y) : x2 + y2 ≤ 1}. The initial value m0 is taken as

m0 = (sin(x) cos(y), cos(x) cos(y), sin(y)).

Gilbert damping constant is set as λ = 1. We take a uniform triangular partition
with M nodes on ∂Ω. In addition, we set the final time T = 1.0 in this numerical
result.

Table 1. Numerical errors and convergence rates for linear FEM

M ∥m(1, ·)− m̃N
h ∥L2 rate ∥m(1, ·)− mN

h ∥L2 rate ∥m(1, ·)− mN
h ∥H1 rate

21 4.23322E-03 4.23322E-03 1.05620E-02

41 1.09936E-03 1.95 1.09936E-03 1.95 3.87279E-03 1.45

61 4.97106E-04 1.96 4.97107E-04 1.96 2.37107E-03 1.21

101 1.76029E-04 2.03 1.76028E-04 2.03 1.33087E-03 1.13

To confirm the optimal convergence rates for the errors ∥mn − m̃n
h∥L2 , ∥mn −

mn
h∥L2 and ∥mn−mn

h∥H1 , the time step is taken as τ = 0.01/M . On the other hand,
since no analytical solution exists, the reference solution is taken as the numerical
solution corresponding to M = 601 and τ = 0.01/M . The numerical errors are
displayed in Tables 1, from which we can see that the convergence rates are in good
agreement with our theoretical analysis in Theorem 2.1.
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