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ANALYTIC INTEGRABILITY AROUND THE
ORIGIN OF CERTAIN DIFFERENTIAL

SYSTEM∗

Jaume Giné1,† and Claudia Valls 2

Abstract In this work we consider the polynomial differential system ẋ =
−y+xyn−1, ẏ = x+ayxn−1, where a ∈ R and n ≥ 2 with n ∈ N. This system
is a certain generalization of the classical Liénard system. We study the center
problem and consequently the analytic integrability problem for such family
around the origin for any value of n.
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1. Introduction and statement of the main results
Two of the main problems in the qualitative theory of differential systems are the
center/focus problem and the integrability problem that are equivalent for systems
with a linear part of center type. For other singularities the existence of analytic
invariant curves is also connected with the analytic integrability and the existence of
a explicit first integral, see for instance [1] and references therein. Here we consider
systems of the form

ẋ = P (x, y), ẏ = Q(x, y) (1.1)

where P and Q are polynomials in the variables x and y. Despite the intense activity
on the well-known center/focus problem, there are very few satisfactory results on
characterizing whether a given finite singular point is a center or a weak focus for
any polynomial system in function of its degree, see for instance [4–6, 26]. This is
mainly due to the fact that most of the results on the center/focus problem has
been done considering particular differential systems because the computations of
the focal values (see below for a definition) are very involved needing a computer
algebra assistance, in the majority of the cases. Moreover when the degree of the
polynomial system is arbitrary the problem becomes extremely difficult.

Assume that the origin is a singular point and that the system can be written
into the form

ẋ = λx+ y + p(x, y), ẏ = −x+ λy + q(x, y) (1.2)
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where p and q are polynomials that do not have neither linear nor constant terms.
When λ = 0, the origin is said to be a weak focus. One of the existing methods to
distinguish if we have a center or a weak focus is to propose a power series H such
that, its derivative with respect to the time, Ḣ, which is computed as

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ,

that is, is the rate of change of H along the solutions of the system, is of the form

Ḣ = v2r
2 + v4r

4 + . . . , where r2 = x2 + y2,

where the quantities v2ℓ are the so-called Poincaré-Liapunov constants or simply
focal values. It is known that they are the coefficients of the even terms of the
development of Ḣ, see for instance [8,13]. If v2ℓ = 0 for all ℓ then we have a center,
otherwise we have a weak focus and we say that the order of the weak focus is ℓ if

v2k = 0 for k ≤ ℓ and v2k+2 ̸= 0. (1.3)

In other words, ℓ is in fact the multiplicity of the origin as a fixed point of the
Poincaré map and at most ℓ limit cycles bifurcate from this weak focus of order ℓ.
Moreover these focal values are polynomials in the parameters of system (1.1). If
system (1.1) is polynomial then the Hilbert basis theorem assures that there exists
m ∈ N such that v2ℓ = 0 for all ℓ if v2ℓ = 0 for ℓ ≤ m, see for instance [6, 8, 14, 20]
and references therein. These method can be generalized through the search for
an inverse integrating factor [13], method that can be used also for some nilpotent
centers, see [25]. Moreover, system (1.2) can be complexified obtaining a differential
system with a resonant saddle at the origin and we can find, in this context, the
integrability conditions for such singular point, see [9, 10] where is presented a
method to find formal integrability.

One of the most famous second order differential equation is the well-known
Liénard equation given by

ẍ+ f(x)ẋ+ g(x) = 0, (1.4)

mainly due to the fact that they appear in many applications and also that many
other systems can be transformed to it, see for instance [11,29]. Equation (1.4) can
be written as

ẋ = y, ẏ = −g(x)− yf(x), (1.5)

where f(x) and g(x) are analytic functions with f(0) = g(0) = 0 and g′(0) >
0. For these equations there are many results for the existence, nonexistence and
uniqueness of periodic orbits (see [3,29,30]) and if one fixes some class of functions
of f and g some lower bounds on the maximum number of bifurcating limit cycles
has been found, see [22].

In the last decades several generalizations of the Liénard equations have been
proposed, see for instance [2, 5, 7, 16–18, 23, 24, 27] where the authors studied the
center problem and the number of limit cycles that bifurcate from the singular
point at the origin.

Recently in [21] is studied the polynomial differential system

ẋ = −y + xf(y), ẏ = x+ yf(x), (1.6)
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where f is a polynomial. This system is a certain generalization of the classical Lié-
nard system which has g(x) = x. For such system, the center and ciclicity problems
of the origin are solved in [21]. More specifically the system has a center if and
only if all the even terms of the development of f are zero. Some particular systems
which are possible generalizations of system (1.6) have been studied recently, see
for instance [28,31,32].

In this paper we propose the simple case generalizing (1.6) which is when f is
different in both equations but a unique monomial

ẋ = −y + xyn−1, ẏ = x+ ayxn−1, (1.7)

where a ∈ R and n ≥ 2 with n ∈ N. We will see that although is one of the simplest
systems that we can propose as generalization of system (1.6) the center problem for
such system becomes very involved and in fact we will see that we cannot completely
solve. The paper shows how difficult is to solve the center problem for a polynomial
system of arbitrary degree.

The following is the main result of the paper.

Theorem 1.1. The following statements hold for system (1.7).

1. For n odd it has a center at the origin if and only if a = −1.
2. For n = 2 it has a center at the origin for all a ∈ R.
3. For n even with n ≥ 4 it has a center at the origin if a ∈ {−1, 0, 1}.

From the previous results and the computations given in the last part of the
paper in order to compute the first non zero focal value of system (1.7) we can
establish the following conjecture.

Conjecture 1.1. For n even with n ≥ 4 it has a center at the origin if and only if
a ∈ {−1, 0, 1}.

The proof of Theorem 1.1 is given in the following sections. In order to proof
Theorem 1 we need to prove the necessity and sufficiency. The necessity is proved
computing the focal values and establishing the decomposition in primary ideals
of the ideal generated by the focal values. The sufficiency is proved looking for
a first integral or the reversibility that is approached by several methods, see for
instance [15,19,26] and references therein. However there is no a unified method.

In the proof of Theorem 1.1 for n odd it is used the technique of the wedge
product to compare the vector fields defined by system (1.7) and the one with a
center. The idea of this technique was introduced for the first time in [2]. This
method to study the centers in the Liénard systems was used lately in [4,12,17,21].

The proof of Theorem 1.1 for n odd is given in Section 2 and for n even in
Section 3.

2. Proof of Theorem 1.1 for n odd
First we prove the sufficiency. We apply the linear change of variables

x =
u√
2
+

v√
2
, y = − u√

2
+

v√
2
, (2.1)
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and system (1.7) with a = −1 takes the form

u̇ = −v + 1
2u
(
− u√

2
+ v√

2

)n−1

+ 1
2v
(
− u√

2
+ v√

2

)n−1

− 1
2u
(

u√
2
+ v√

2

)n−1

+ 1
2v
(

u√
2
+ v√

2

)n−1

,

v̇ = u+ 1
2u
(
− u√

2
+ v√

2

)n−1

+ 1
2v
(
− u√

2
+ v√

2

)n−1

+ 1
2u
(

u√
2
+ v√

2

)n−1

− 1
2v
(

u√
2
+ v√

2

)n−1

.

(2.2)

System (2.2) is time-reversible because has the symmetry (u, v, t) → (−u, v,−t).
This can be seen verifying that u̇ − u̇u→−u = 0 and v̇ + v̇u→−u = 0 for all n ∈ N.
As the system is time-reversible, the system has a center at the origin, see [26].

To prove necessity we will proceed by contradiction using the method of the
wedge product of an arbitrary system with the system with a center. Hence we
consider the wedge product of system (1.7) with n odd, that in the vector field form
we call X , and system

ẋ = −y + xyn−1, ẏ = x− yxn−1, (2.3)
that in the vector field form we call Xc. This wedge product gives

X ∧ Xc = −(1 + a)xn−1y2 +O(n+ 1). (2.4)
If a ̸= −1, from equation (2.4) we deduce that, in a neighborhood of the origin, the
level curves of the solutions of Xc do not have contact with the flow of X giving
the impossibility of having a center for X . This contradiction shows that a = −1 is
necessary for having a center. Note that this argument is only valid if n is odd and
so it concludes the proof of statement (1) of Theorem 1.1.

3. Proof of Theorem 1.1 for n even
System (1.7) for n = 2 has the first integral

H(x, y) = ea(ax−y)(x− 1)a
2

(1 + ay),

and the inverse integrating factor V = (x − 1)(1 + ay). Taking into account that
V (0, 0) ̸= 0 and that the origin is a nondegenerate singular point by the Reeb’s
criterion we have that the origin of system (1.7) is a center, see [13]. Hence the
system has a center for any value of a. This prove statement (2) of Theorem 1.1.

Now we can assume that n ≥ 4 with n even. For a = 0 system (1.7) takes the
form

ẋ = −y + xyn−1, ẏ = x, (3.1)
which is a time reversible system because has the symmetry (x, y, t) → (x,−y,−t).
Hence, system (3.1) has a center at the origin and consequently an analytic first
integral around it.

For a ̸= 0 we apply the linear change of variables (2.1) and system (1.7) can be
written as

u̇ =
(
√
2 a(u− v)2(u+ v)n −

√
2(v − u)n(u+ v)2 + 2

n+2
2 v(v2 − u2)

2
n+2
2 (u2 − v2)

,

v̇ =
(−

√
2a(u− v)2(u+ v)n −

√
2(v − u)n(u+ v)2 + 2

n+2
2 u(u2 − v2)

2
n+2
2 (u2 − v2)

.

(3.2)
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Now it is easy to see that for the case a = 1 with n even and n ≥ 4 system
(3.2) is time-reversible because has the symmetry (u, v, t) → (u,−v,−t). This can
be seen verifying that the first equation of system (3.2) satisfies u̇ + u̇v→−v = 0
and the second equation of system (3.2) verifies v̇ − v̇u→−u = 0 for all n ∈ N. For
a = −1 happens the same that in the proof of statement (1) of Theorem 1.1. This
completes the proof of statement (3) of Theorem 1.1.

4. About the proof of the conjecture
The study of the necessary conditions needs many computations which have been
made proposing a power series of the form

H(x, y) = x2 + y2 +Hn+1(x, y) +H2n(x, y) +H3n−1(x, y) +H4n−2(x, y) + · · ·

= x2 + y2 +

n+1∑
j=0

bjx
n+1−jyj +

2n∑
j=0

cjx
2n−jyj

+

3n−1∑
j=0

djx
3n−1−jyj +

4n−2∑
j=0

fjx
4n−2−jyj + · · ·

as a first integral. The main strategy of the proof is as follows: we will compute
Hn+1(x, y), H2n(x, y), H3n−1(x, y), and H4n−2(x, y) and we will show that focal
value V4n−2(x, y) is a polynomial in a of the form V4n−2(x, y) = C4n−2a(a

2 − 1)
with some constant C4n−2 that depends on n. We will see that we are not able to
prove that C4n−2 ̸= 0 for all n ≥ 4 and we only can provide a table with the values
of C4n−2 for n = 4, . . . , 10 where it is shown that indeed this constant is different
from zero.

Computation of Hn+1

Computing the terms of order n+ 1 for H we need to solve

2x2yn−1 + 2ay2xn−1 −
n+1∑
j=0

(n+ 1− j)bjx
n−jyj+1 + jbjx

n+2−jyj−1

=2x2yn−1 + 2ay2xn−1 − bny
n+1 + b1x

n+1

−
n∑

j=1

[(n+ 2− j)bj−1 − (j + 1)bj+1]x
n+1−jyj .

Hence,
b1 = bn = 0, b3 = −2a

3
, bn−2 =

2

3
and proceeding recursively we get

b2l =
2

3

n/2−2∏
k=l

2k + 2

n− 2k + 1
, l = 0, . . . ,

n

2
− 1,

and

b2l+1 = −2a

3

l∏
k=2

n+ 2− 2k

2k + 1
, l = 1, . . . ,

n

2
,
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where we have used the convention that
∏1

k=2 ·k = 1. In particular taking the
change l = n/2− p and k = n/2− j (and then renaming p by l and j by k) we can
see that

ab2l = −bn−2l+1, l = 0, . . . , n/2. (4.1)

Computation of H2n and some useful relations
Computing the terms of order 2n for H and proceeding as above we need to solve

n+1∑
j=1

(n+ 1− j)bjx
n−j+1yn−1+j +

n+1∑
j=1

ajbjx
2n−jyj

−
2n∑
j=0

(2n− j)cjx
2n−1−jyj+1 + jcjx

2n+1−jyj−1

=

2n−1∑
j=n−1

(2n− j)bj−n+1x
2n−jyj +

n+1∑
j=1

ajbjx
2n−jyj − c2n−1y

2n

+ c1x
2n −

2n−1∑
j=1

[(2n+ 1− j)cj−1 − (j + 1)cj+1]x
2n−jyj .

(4.2)

Let

Tj =



0, j = 0,

ajbj , j = 1, . . . , n− 2

ajbj + bj−n+1(2n− j), j = n− 1;n+ 1

0, j = n

(2n− j), j = n+ 1

bj−n+1(2n− j), j = n+ 2, . . . , 2n− 1,

0 j = 2n.

(4.3)

Then relation (4.2) becomes

(2n+ 1− j)cj−1 − (j + 1)cj+1 = Tj , c1 = 0, c2n−1 = 0. (4.4)

First note that the solution of (4.4) is c1 = 0 and

c2p+1 = − 1

2p+ 1

p∑
j=1

p−1∏
k=j

2n− 1− 2k

2k + 1
T2j (4.5)

for p = 1, . . . , n/2− 1 and

c2p =

p∏
k=1

2n+ 2− 2k

2k
c0 −

1

2p

p∑
j=2

p−1∏
k=j

n− k

k
T2j−1, (4.6)

for p = 1, . . . , n/2 (note that since T1 = 0, the index in j starts with j = 2).
Observe that in view of (4.1) we have

T2j = −T2n−2j for j = 0, . . . , n/2, (note that Tn = 0)
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and
T2j−1 = −a2T2n−2j+1 for j = 0, . . . , n/2− 1 (4.7)

and
Tn−1 = −Tn+1 + (1− a2)(n+ 1)b2. (4.8)

Indeed, it follows from (4.3) that Tn = 0 and for j = 1, . . . , n/2− 1 we get

T2j + T2n−2j = 2jab2j + (2n− (2n− 2j))b2n−2j−n+1

= 2j(ab2j + bn−2j+1) = 0.

Moreover, for j = 1, . . . , n/2− 1

T2j−1 + a2T2n−2j+1 =(2j − 1)ab2j−1

+ a2(2n− (2n− 2j + 1))b2n−2j+1−n+1

=(2j − 1)a(b2j−1 + abn−2j+2) = 0

and

Tn−1 + Tn+1 = a(n− 1)bn−1 + (n+ 1)b0 + a(n+ 1)bn+1 + (n− 1)b2

= −a2(n− 1)b2 + (n+ 1)b0 − a2(n+ 1)b0 + (n− 1)b2

= (1− a2)((n+ 1)b0 + (n− 1)b2) = (1− a2)(n+ 1)b2.

Using (4.5) and (4.6) we get

c2p+1 = c2n−2p−1, p = 0, . . . , n/2− 1, (4.9)

with

c2p+1 = −2a

3

( 1

2p+ 1

p∑
j=2

2j

p−1∏
k=j

2n− 1− 2k

2k + 1

n/2−2∏
k=j

2k + 2

n− 2k + 1

+
2

3

n/2−2∏
k=1

2k + 2

n− 2k + 1

p∏
k=2

2n+ 1− 2k

2k + 1

) (4.10)

for p = 1, . . . , n/2− 1 with c1 = c2n−1 = 0 (here we have used the convention that∑1
j=2 ·j = 0). Moreover,

c2p = α2p − β2p := c0

p∏
k=1

2n+ 2− 2k

2k
− 1

2p

p∑
j=2

p−1∏
k=j

n− k

k
T2j−1

where α2n = 1, and

α2p = α2n−2p, p = 1, . . . , n/2− 1. (4.11)

Note that c0 = c2n. Finally, we recall a relation that will be used later on. We
claim that for 1 ≤ j < n/2 we obtain

c2j − c2n−2j = (a2 − 1)Kj (4.12)



8 J. Giné & C. Valls

where

Kj = − 1

2(n− j)

(n+ 1)b2

n−j−1∏
k=n/2

n− k

k
+

n/2−1∑
i=j+1

T2n−2i+1

n−j−1∏
k=i

n− k

k

 (4.13)

and taking into account that bn = 0 we get that K0 = 1
nK1.

For j = n/2 + 1, . . . , n we write j = n− p with p = 1, . . . , n/2− 1 and then we
have

c2j − c2n−2j = c2n−2p − c2p = −(c2p − c2n−2p) = −(a2 − 1)Kp

= −(a2 − 1)Kn−j .
(4.14)

Now we shall prove the claim. By definition and in view of (4.11) we get

c2p − c2n−2p = α2p − α2n−2p − β2p + β2n−2p = −β2p + β2n−2p

= − 1

2p

p∑
j=2

p−1∏
k=j

n− k

k
T2j−1 +

1

2(n− p)

n−p∑
j=2

n−p−1∏
k=j

n− k

k
T2j−1

= − 1

2p

p∑
j=2

p−1∏
k=j

n− k

k
T2j−1 +

1

2(n− p)

p∑
j=2

n−p−1∏
k=j

n− k

k
T2j−1

+
1

2(n− p)

n−p∑
j=p+1

n−p−1∏
k=j

n− k

k
T2j−1.

(4.15)

Note that

1

2p

p∑
j=2

p−1∏
k=j

n− k

k
T2j−1 −

1

2(n− p)

p∑
j=2

n−p−1∏
k=j

n− k

k
T2j−1 = 0

because

1

n− p

n−p−1∏
k=j

n− k

k
=

1

n− p

p−1∏
k=j

n− k

k

n−p−1∏
k=p

n− k

k
=

1

p

p−1∏
k=j

n− k

k
.

Moreover,

n−p∑
j=p+1

n−p−1∏
k=j

n− k

k
T2j−1 =

n/2∑
j=p+1

n−p−1∏
k=j

n− k

k
T2j−1

+

n−p∑
j=n/2+1

n−p−1∏
k=j

n− k

k
T2j−1

=

n−p−1∏
k=n/2

n− k

k
Tn−1 +

n/2−1∑
j=p+1

n−p−1∏
k=j

n− k

k
T2j−1

+

n−p−1∏
k=n/2+1

n− k

k
Tn+1 +

n−p∑
j=n/2+2

n−p−1∏
k=j

n− k

k
T2j−1
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and
n−p∑

j=n/2+2

n−p−1∏
k=j

n− k

k
T2j−1 =

p+1∑
m=n/2−1

n−p−1∏
k=n+1−m

n− k

k
T2n−2m+1

=

n/2−1∑
m=p+1

n−p−1∏
k=m

n− k

k
T2n−2m+1,

where we have used that (recall that m ≥ n/2 + 1)
n−p−1∏

k=n+1−m

n− k

k
=

n−p−1∏
k=m

n− k

k

m−1∏
k=n+1−m

n− k

k

n+1−m∏
k=m+1

n− k

k

=

n−p−1∏
k=m

n− k

k
.

Now using (4.7) and (4.8) we conclude that
n−p∑

j=p+1

n−p−1∏
k=j

n− k

k
T2j−1 =

n−p−1∏
k=n/2

n− k

k
Tn−1 +

n−p−1∏
k=n/2+1

n− k

k
Tn+1

− a2
n/2−1∑
j=p+1

n−p−1∏
k=j

n− k

k
T2n−2j+1 +

n/2−1∑
j=p+1

n−p−1∏
k=j

n− k

k
T2n−2j+1

=(1− a2)

(n+ 1)b2

n−p−1∏
k=n/2

n− k

k
+

n/2−1∑
j=p+1

n−p−1∏
k=j

n− k

k
T2n−2j+1

 .

This last relation together with (4.15) yields the claim provided by relations (4.12)
and (4.13). Note that in view of (4.3) and the definition of bj the constant Kj in
(4.13) is in fact

Kj =− n+ 1

3(n− j)

n/2−2∏
k=1

2k + 2

n− 2k + 1

n−j−1∏
k=n/2

n− k

k

− 1

3(n− j)

n/2−1∑
i=j+1

(2i− 1)

n/2−2∏
k=n/2−i+1

2k + 2

n− 2k + 1

n−j−1∏
k=i

n− k

k
.

Note that Kj < 0. Moreover, for n/2 ≤ j ≤ n − 1 it follows from equation (4.10)
that

a2c3n−1−2j − c2j−n+1 = (a2 − 1)c2j−n+1 = −2

3
a(a2 − 1)Dj

with

Dj =
2

2j − n+ 1

j−n/2∑
i=2

i

j−n/2−1∏
k=i

2n− 1− 2k

2k + 1

n/2−2∏
k=i

2k + 2

n− 2k + 1

+

n/2−2∏
k=1

2k + 2

n− 2k + 1

j−n/2−1∏
k=1

2n− 1− 2k

2k + 1

 .
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Note that Dj > 0 and Dn/2 = 0 because c1 = 0. Moreover, when j = n, . . . , 3n/2−1
in view of (4.9) we have that

a2c3n−1−2j − c2j−n+1 = (a2 − 1)c2j−n+1 = (a2 − 1)c3n−2j−1

= −2

3
a(a2 − 1)D2n−1−j

(for the last relation we just need to set 3n − 2j − 1 = 2p − n + 1 and we get
p = 2n− 1− j).

Computation of H3n−1 and some useful relations
Computing the terms of order 3n − 1 for H and proceeding as above we need to
solve

2n−1∑
j=1

(2n− j)cjx
2n−jyn−1+j +

2n∑
j=1

ajcjx
3n−1−jyj

−
3n−1∑
j=0

(3n− 1− j)djx
3n−2−jyj+1 + jdjx

3n−jyj−1

=

3n−2∑
j=n−1

(3n− 1− j)cj−n+1x
3n−1−jyj +

2n∑
j=1

ajcjx
3n−1−jyj

− d3n−2y
3n−1 + d1x

3n−1 −
3n−2∑
j=1

[(3n− j)dj−1 − (j + 1)dj+1]x
3n−1−jyj .

Let

Rj =



0, j = 0,

ajcj , j = 1, . . . , n− 2

ajcj + cj−n+1(3n− 1− j), j = n− 1, . . . , 2n

cj−n+1(3n− 1− j), j = 2n+ 1, . . . , 3n− 2,

0 j = 3n− 1

We have that the solution is given recursively by the relation

(3n− j)dj−1 − (j + 1)dj+1 = Rj , d1 = d3n−2 = 0.

Note that again by recursivity the general solution for j odd is

d2p+1 = − 1

2p+ 1

p∑
j=1

p−1∏
k=j

3n− 2− 2k

2k + 1
R2j (4.16)

(using that d1 = 0) and for j even is

d2p =
1

3n− 2p− 1

3n/2−2∑
j=p

j−1∏
k=p

2k + 2

3n− 3− 2k
R2j+1 (4.17)

(using that d3n−2 = 0 and so the recursion have to be made isolating dj−1 in terms
of dj+1 instead of the other way around as we do for the case in which j is odd).
Note that here there are no restrictions in the computations of the constants dj .
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Now we compute some relation that will be used later on. For 1 ≤ p ≤ 3n
2 − 2

we claim that

ad2p + d3n−1−2p

=
1

3n− 2p− 1

3n/2−1−p∑
j=1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
(aR3n−1−2j −R2j).

(4.18)

We prove the claim. We note that it follows from (4.16) with the change m =
3n/2− 1− j that

d2p =
1

3n− 2p− 1

3n/2−1−p∑
m=1

3n/2−2−m∏
k=p

2k + 2

3n− 3− 2k
R3n−1−2m

=
1

3n− 2p− 1

3n/2−1−p∑
m=1

3n/2−1−m∏
k=p+1

2k

3n− 1− 2k
R3n−1−2m,

(4.19)

where in the last identity we have changed k by k + 1.
On the other hand, it follows from (4.16) (with p interchanged by 3n/2− 1− p)

that

d3n−1−2p = − 1

3n− 2p− 1

3n/2−1−p∑
j=1

3n/2−2−p∏
k=j

3n− 2− 2k

2k + 1
R2j .

Now making the change ℓ = 3n/2− 1− k we get

d3n−1−2p = − 1

3n− 2p− 1

3n/2−1−p∑
j=1

3n/2−1−j∏
ℓ=p+1

2ℓ

3n− 1− 2ℓ
R2j . (4.20)

Therefore, the relation in (4.18) follows directly from (4.19) and (4.20) and so the
claim follows.

Note that
ad2p + d3n−1−2p = 0 for p =

3n

2
− 1.

Now we want to compute the quantity aR3n−1−2j − R2j for 1 ≤ j ≤ n− 1. To
do so, we note that for 1 ≤ j ≤ n/2− 1 we have

aR3n−1−2j −R2j = 2ja(c2n−2j − c2j)

and for n/2 ≤ j ≤ n− 1 we have

aR3n−1−2j −R2j = 2ja(c2n−2j − c2j) + (3n− 1− 2j)(a2c3n−1−2j − c2j−n+1).

On the other hand, for j = n, . . . , 3n/2 − 2, taking into account that c0 = c2n
we get

aR3n−1−2j −R2j = (3n− 1− 2j)(a2c3n−1−2j − c2j−n+1)

and for j = 3n
2 − 1 we have

aR3n−1−2j −R2j = 0.
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From (4.12), (4.14) and the fact that Kn = −K0 = −K1/n we get that

aR3n−1−2j −R2j

=a(a2 − 1)



−2jKj for 1 ≤ j ≤ n/2− 1 ,

0 for j = n/2 ,

2jKn−j − 2
3 (3n− 1− 2j)Dj for n/2 + 1 ≤ j ≤ n− 1,

2K1 − 2
3 (n− 1)Dn−1 for j = n ,

− 2
3 (3n− 1− 2j)D2n−1−j for n+ 1 ≤ j ≤ 3n/2− 2,

0 for j = 3n/2− 1.

(4.21)

Therefore,
ad2p + d3n−1−2p = a(a2 − 1)Fp (4.22)

where in view of (4.21) we get for 1 ≤ p ≤ n/2− 1,

Fp =
1

3n− 2p− 1

−
n/2−1∑
j=1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
2jKj

+

n−1∑
j=n/2+1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
(2jKn−j −

2

3
(3n− 1− 2j)Dj)

+

n/2−1∏
k=p+1

2k

3n− 2k − 1
(2K1 −

2

3
(n− 1)Dn−1)

−
3n/2−1−p∑
j=n+1

3n/2−1−j∏
k=p+1

4k

3(3n− 2k − 1)
(3n− 1− 2j)D2n−1−j)

 ,

for p = n/2, . . . , n− 1 we get

Fp =
1

3n− 2p− 1

−
n/2−1∑
j=1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
2jKj

+

3n/2−1−p∑
j=n/2+1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
(2jKn−j −

2

3
(3n− 1− 2j)Dj)

 ,

for p = n, . . . , 3n/2− 2 we have

Fp = − 1

3n− 2p− 1

3n/2−1−j∑
j=1

3n/2−1−j∏
k=p+1

2k

3n− 2k − 1
2jKj ,

and for p = 3n/2− 1,
Fp = 0.
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Computation of H4n−2 and some useful relations
Computing the terms of order 4n − 2 for H and proceeding as above we need to
solve

3n−2∑
j=0

(3n− 1− j)djx
3n−1−jyn−1+j +

3n−1∑
j=1

ajdjx
4n−2−jyj

−
4n−2∑
j=0

(4n− 2− j)fjx
4n−3−jyj+1 + jfjx

4n−1−jyj−1

=

4n−3∑
j=n−1

(4n− 2− j)dj−n+1x
4n−2−jyj +

3n−1∑
j=1

ajdjx
4n−1−jyj

− f4n−3y
4n−2 + f1x

4n−2 −
4n−3∑
j=1

[(4n− 1− j)fj−1 − (j + 1)fj+1]x
4n−2−jyj .

Let

Sj =



0, j = 0,

ajdj , j = 1, . . . , n− 2

ajdj + dj−n+1(4n− 2− j), j = n− 1, . . . , 3n− 1

dj−n+1(4n− 2− j), j = 3n, . . . , 4n− 3,

0 j = 4n− 2.

We have that the solution is given recursively by the relation

(4n− 1− j)fj−1 − (j + 1)fj+1 = Sj , f1 = f4n−3 = 0.

Note that for j even there are no conditions on fj (and so thye can be obtained in
function of a new parameter f0) and the condition will be given in the case of j
odd. In this case the general solution is

f2p+1 = − 1

2p+ 1

p∑
j=1

p−1∏
k=j

4n− 3− 2k

2k + 1
S2j

(using that d1 = 0). Then, we need to impose the condition f4n−3 = 0 which will
lead to the Liapunov constant. Note that

0 = −(4n− 3)f4n−3 =

2n−2∑
j=1

2n−3∏
k=j

4n− 3− 2k

2k + 1
S2j

=

n−1∑
j=1

2n−3∏
k=j

4n− 3− 2k

2k + 1
S2j +

2n−2∑
j=n

2n−3∏
k=j

4n− 3− 2k

2k + 1
S2j

=

n−1∑
j=1

2n−3∏
k=j

4n− 3− 2k

2k + 1
S2j +

n−1∑
m=1

2n−3∏
k=2n−1−m

4n− 3− 2k

2k + 1
S4n−2−2m

=

n−1∑
j=1

2n−3∏
k=j

4n− 3− 2k

2k + 1
(S2j + S4n−2−2j),
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where we have used that

2n−3∏
k=2n−1−m

4n− 3− 2k

2k + 1
=

2n−3∏
k=m

4n− 3− 2k

2k + 1

(
2n−2−m∏

k=m

4n− 3− 2k

2k + 1

)−1

=

2n−3∏
k=m

4n− 3− 2k

2k + 1
.

Moreover, we have that for j = 1, . . . , n/2− 1,

S2j + S4n−2−2j = 2j(ad2j + d3n−1−2j)

and for j = n/2, . . . , n− 1 then

S2j + S4n−2−2j = 2j(ad2j + d3n−1−2j) + (4n− 2− 2j)(ad4n−2−2j + d2j−n+1).

Applying identities (4.22) we conclude that

S2j + S4n−2−2j

= a(a2 − 1)

{
2jFj , for j = 1, . . . , n/2− 1

2jFj + (2n− 1− j)F2n−1−j for j = n/2, . . . , n− 1,

where we have used that

(4n− 2− 2j)(ad4n−2−2j + d2j−n+1) = ad2p + d3n−1−2p = F2n−1−p

with p = 2n− 1− j. So,

0 =

n−1∑
j=1

2n−3∏
k=j

4n− 3− 2k

2k + 1
(S2j + S4n−2−2j) = C4n−2a(a

2 − 1),

where

C4n−2 =

n/2−1∑
j=1

2jFj

2n−3∏
k=j

4n− 3− 2k

2k + 1

+

n−1∑
j=n/2

(2jFj + (2n− 1− j)F2n−1−j)

2n−3∏
k=j

4n− 3− 2k

2k + 1
.

We claim that C4n−2 ̸= 0 for all n ≥ 4 but we are not able to prove this statement.
In the following we add a table of the values of C4n−2.

Table 1. Values of C4n−2 for n even and n ≥ 4.

n 4 6 8 10 12 14

C4n−2
4

429
2552

793611
7556

581690713
490921616

773177645625
3415220

9653339997
9525314385967112

44271577283526521775
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