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ON THE SOLUTIONS OF
THREE-DIMENSIONAL SYSTEM OF

DIFFERENCE EQUATIONS VIA RECURSIVE
RELATIONS OF ORDER TWO AND

APPLICATIONS

Merve Kara1,† and Yasin Yazlik2

Abstract In this paper, we show that the following three-dimensional system
of difference equations

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

znzn−2

dyn−1 + czn−2
, zn+1 =

xnxn−2

fzn−1 + exn−2
,

for n ∈ N0, where the parameters a, b, c, d, e, f and the initial values x−i, y−i,
z−i, i ∈ {0, 1, 2}, are real numbers, can be solved, extending further some
results in literature. Also, we determine the forbidden set of the initial values
by using obtained formulas. Finally, some applications concerning aforemen-
tioned system of difference equations are given.
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1. Introduction and preliminaries
First, remind that N, N0, Z, R, C, stand for natural, non-negative integer, integer,
real and complex numbers, respectively. If m,n ∈ Z, m ≤ n the notation i =
m,n stands for {i ∈ Z : m ≤ i ≤ n}. The notation of Rn is a set of n−dimensional
Cartesian Products defined in the form R× R× · · · × R︸ ︷︷ ︸

n times

.

The difference equations and systems of difference equations has been attracted
by many authors in recent years [7, 8, 14–16,19,20,24,28–33,36].

Firstly, De Moivre solved the following homogeneous linear difference equation

xn+2 = αxn+1 + βxn, n ∈ N0, (1.1)

when β ̸= 0 and α2 ̸= −4β. He found the general solution for equation (1.1) as
follows:

xn =
(x1 − λ2x0)λ

n
1 + (λ1x0 − x1)λ

n
2

λ1 − λ2
, n ∈ N0, (1.2)
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where λ1,2 =
α±

√
α2+4β

2 , for α2 + 4β ̸= 0, are roots of the polynomial P (λ) =
λ2 − αλ − β = 0. The equation (1.2) is called the De Moivre formula and also
the polynomial P is called the characteristic polynomial associated to the linear
equation (1.1) in [4].

It is clear that the solutions of the difference equation with the same character-
istic equation as equation (1.1), with initial conditions s−1 = 0, s0 = 1, are called
Binet formula for generalized Fibonacci sequences

sn =
λn+1
1 − λn+1

2

λ1 − λ2
, n ≥ −1, (1.3)

where λ1 and λ2 are the roots of characteristic equation of equation (1.1). The
sequence (sn)n≥−1 is called the generalized Fibonacci sequence in the literature.
As seen in many papers, it is easy to obtain the solution (1.2) in terms of solution
(1.3). So solution (1.2) can be written as

xn = βx0sn−2 + x1sn−1, n ∈ N0, (1.4)

s−2 is calculated by using the following relations sn = (sn+2 − αsn+1) /β for n =
−2. By taking α = 1, β = 1 and α = 2, β = 1 in equation (1.1), with s−1 = 0,
s0 = 1, then the sequence (sn)n≥−1 reduce to the well known Fibonacci sequence
and the well known Pell sequence respectively. Such as (sn)n≥−1 sequence there are
a lot of generalization of Fibonacci and Pell sequences in the literature [3,9–13,18,
21–23,25,34,35].

One of the most well-known difference equations that can be reduced to equa-
tion (1.1) under convenient transformations in the literature, is Riccati difference
equation.

The Riccati difference equation is as follows

xn+1 =
axn + b

cxn + d
, n ∈ N0,

for c ̸= 0, ad ̸= bc, where parameters a, b, c, d and the initial value x0 are real
numbers.

Similarly, there are some papers that can be reduced to the Riccati difference
equation under convenient transformations in the literature [17,26,27]. The Riccati
difference equation is important for those papers that have been made.

One of the following difference equations that reduced to the Riccati difference
equation under appropriate transformations,

xn+1 =
xnxn−2

xn−1 − xn−2
and xn+1 =

xnxn−2

−xn−1 + xn−2
, n ∈ N0, (1.5)

was first presented, among other things, by Abo-Zeid et al. in [1]. Then, in [5, 6],
equations in (1.5) were generalized to the following equations

xn+1 =
axn−lxn−k

bxn−p + cxn−q
and xn+1 =

axn−lxn−k

bxn−p − cxn−q
, n ∈ N0,

where r := max{l, k, p, q} is nonnegative integer, a, b, c are positive constants.
Further, the equations in (1.5) were extended to the following two-dimensional

four systems of difference equations

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

xnxn−2

±yn−1 ± xn−2
, n ∈ N0 (1.6)
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in [2]. The solutions of systems in given (1.6) were found by using induction.
Induction method didn’t give much detail on how solutions were obtained.

But, two-dimensional system of difference equations in (1.6) was extended to the
following two-dimensional system of difference equations with constant coefficients

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

xnxn−2

dyn−1 + cxn−2
, n ∈ N0, (1.7)

and system (1.7) was solved using convenient transformations in [22].
A natural question is to study both three-dimensional form of equations in (1.5),

systems (1.6) and more general system of (1.7) solvable in explicit-form. Here we
study such a system. That is, we deal with the following system of difference
equations

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

znzn−2

dyn−1 + czn−2
, zn+1 =

xnxn−2

fzn−1 + exn−2
, n ∈ N0,

(1.8)
where the parameters a, b, c, d, e, f and the initial values x−i, y−i, z−i, i ∈ {0, 1, 2},
are real numbers. We solve system (1.8) in explicit form. Note that system (1.8) is
a natural extension of both equations in (1.5) and systems (1.6), (1.7).

Our paper is organized as follows: In the next section we solve system (1.8) in
explicit form by using convenient transformation and determine the forbidden set
of the initial values by using the obtained formulas. In the final section we obtain
well-known Fibonacci numbers and Pell numbers in the solutions of aforementioned
system when a = b = c = d = e = f = 1; a = d = e = f = −1, b = c = 1 and a = 3,
b = −1, c = 2, d = f = 1, e = 4.

2. Explicit solutions of the system (1.8)
Suppose that xn0 = 0 for some n0 ≥ −2. Then from the third equation in (1.8)
it follows that zn0+1 = 0. If zn0+1 = 0, then from the second equation in (1.8)
it follows that yn0+2 = 0, and consequently dyn0+2 + czn0+1 = 0, from which it
follows that yn0+4 = 0 is not defined. Assume that yn1

= 0 for some n1 ≥ −2.
Then from the first equation in (1.8) it follows that xn1+1 = 0. If xn1+1 = 0,
then from the third equation in (1.8) it follows that zn1+2 = 0, and consequently
fzn1+2 + exn1+1 = 0, from which it follows that zn1+4 = 0 is not defined. Suppose
that zn2

= 0 for some n2 ≥ −2. Then from the second equation in (1.8) it follows
that yn2+1 = 0. If yn2+1 = 0, then from the first equation in (1.8) it follows that
xn2+2 = 0, and consequently bxn2+2 + ayn2+1 = 0, from which it follows that
xn2+4 = 0 is not defined. This means that the set

2⋃
j=0

{(
x⃗−(2,0), y⃗−(2,0), z⃗−(2,0)

)
∈ R9 : x−j = 0 or y−j = 0 or z−j = 0

}
,

where x⃗−(2,0) = (x−2, x−1, x0), y⃗−(2,0) = (y−2, y−1, y0), z⃗−(2,0) = (z−2, z−1, z0), is a
subset of the forbidden set of solutions to system (1.8).

Hence, from now on we will assume that xnynzn ̸= 0, n ≥ −2. Note that the
system (1.8) can be written in the form

yn
xn+1

= b
xn−1

yn−2
+ a,

zn
yn+1

= d
yn−1

zn−2
+ c,

xn

zn+1
= f

zn−1

xn−2
+ e, n ∈ N0. (2.1)
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Next, by employing the change of variables

un+1 =
yn

xn+1
, vn+1 =

zn
yn+1

, tn+1 =
xn

zn+1
, n ≥ −2, (2.2)

system (2.1) can be written as

un+1 =
b

un−1
+ a, vn+1 =

d

vn−1
+ c, tn+1 =

f

tn−1
+ e, n ∈ N0. (2.3)

Let u
(k)
m = u2m+k, v

(k)
m = v2m+k, t

(k)
m = t2m+k, for m ≥ −1, k ∈ {1, 2}. Then,

from (2.3) we see that
(
u
(k)
m

)
m≥−1

,
(
v
(k)
m

)
m≥−1

,
(
t
(k)
m

)
m≥−1

, k ∈ {1, 2}, are three
solutions to the following difference equations

qm =
b

qm−1
+ a, q̂m =

d

q̂m−1
+ c, q̃m =

f

q̃m−1
+ e, m ∈ N0. (2.4)

Equations in (2.4) are solvable. Let

qm =
wm+1

wm
, q̂m =

ŵm+1

ŵm
, q̃m =

w̃m+1

w̃m
, m ≥ −1, (2.5)

where w−1 = 1, w0 = q−1, ŵ−1 = 1, ŵ0 = q̂−1, w̃−1 = 1, w̃0 = q̂−1. From now on,
we assume that the sequences of qm, q̂m and q̃m are well defined. By using (2.5) in
(2.4), we obtain following equations

wm+1 = awm + bwm−1, m ∈ N0, (2.6)
ŵm+1 = cŵm + dŵm−1, m ∈ N0, (2.7)
w̃m+1 = ew̃m + fw̃m−1, m ∈ N0. (2.8)

Let (sm)m≥−1, (ŝm)m≥−1, (s̃m)m≥−1 be the solutions to equations (2.6)-(2.8) re-
spectively, such that

s−1 = 0, s0 = 1, (2.9)
ŝ−1 = 0, ŝ0 = 1, (2.10)
s̃−1 = 0, s̃0 = 1. (2.11)

Then, from (1.4), the general solutions to equations (2.6)-(2.8) can be written in
the following form

wm = bw−1sm−1 + w0sm, m ≥ −1, (2.12)
ŵm = dŵ−1ŝm−1 + ŵ0ŝm, m ≥ −1, (2.13)
w̃m = fw̃−1s̃m−1 + w̃0s̃m, m ≥ −1, (2.14)

s−2, ŝ−2, s̃−2 are calculated by using the following relations sm−1 = sm+1−asm
b ,

ŝm−1 = ŝm+1−cŝm
d , s̃m−1 = s̃m+1−es̃m

f , respectively, for m = −1.
From the equations in (2.5) and the equation (2.12)-(2.14), it follows that

qm =
bw−1sm + w0sm+1

bw−1sm−1 + w0sm
=

bsm + q−1sm+1

bsm−1 + q−1sm
, m ≥ −1, (2.15)
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q̂m =
dŵ−1ŝm + ŵ0ŝm+1

dŵ−1ŝm−1 + ŵ0ŝm
=

dŝm + q̂−1ŝm+1

dŝm−1 + q̂−1ŝm
, m ≥ −1, (2.16)

q̃m =
fw̃−1s̃m + w̃0s̃m+1

fw̃−1s̃m−1 + w̃0s̃m
=

fs̃m + q̃−1s̃m+1

fs̃m−1 + q̃−1s̃m
, m ≥ −1. (2.17)

From (2.15)-(2.17), we obtain

u(k)
m =

bsm + u
(k)
−1sm+1

bsm−1 + u
(k)
−1sm

, m ≥ −1, (2.18)

v(k)m =
dŝm + v

(k)
−1 ŝm+1

dŝm−1 + v
(k)
−1 ŝm

, m ≥ −1, (2.19)

t(k)m =
fs̃m + t

(k)
−1 s̃m+1

fs̃m−1 + t
(k)
−1 s̃m

, m ≥ −1, (2.20)

for k ∈ {1, 2}. From (2.18)-(2.20), we get

u2m+k =
bsm + uk−2sm+1

bsm−1 + uk−2sm
, m ≥ −1, (2.21)

v2m+k =
dŝm + vk−2ŝm+1

dŝm−1 + vk−2ŝm
, m ≥ −1, (2.22)

t2m+k =
fs̃m + tk−2s̃m+1

fs̃m−1 + tk−2s̃m
, m ≥ −1, (2.23)

for k ∈ {1, 2}. From (2.2), we have that

xn+1 =
yn

un+1
=

zn−1

un+1vn
=

xn−2

un+1vntn−1
=

yn−3

un+1vntn−1un−2

=
zn−4

un+1vntn−1un−2vn−3
=

xn−5

un+1vntn−1un−2vn−3tn−4
, n ≥ 3, (2.24)

yn+1 =
zn

vn+1
=

xn−1

vn+1tn
=

yn−2

vn+1tnun−1
=

zn−3

vn+1tnun−1vn−2

=
xn−4

vn+1tnun−1vn−2tn−3
=

yn−5

vn+1tnun−1vn−2tn−3un−4
, n ≥ 3, (2.25)

zn+1 =
xn

tn+1
=

yn−1

tn+1un
=

zn−2

tn+1unvn−1
=

xn−3

tn+1unvn−1tn−2

=
yn−4

tn+1unvn−1tn−2un−3
=

zn−5

tn+1unvn−1tn−2un−3vn−4
, n ≥ 3. (2.26)

From (2.24)-(2.26), we get

x6m+l =
x6(m−1)+l

u6m+lv6m+l−1t6m+l−2u6m+l−3v6m+l−4t6m+l−5
, m ∈ N0, (2.27)

y6m+l =
y6(m−1)+l

v6m+lt6m+l−1u6m+l−2v6m+l−3t6m+l−4u6m+l−5
, m ∈ N0, (2.28)

z6m+l =
z6(m−1)+l

t6m+lu6m+l−1v6m+l−2t6m+l−3u6m+l−4v6m+l−5
, m ∈ N0, (2.29)

for l = 4, 9. Multiplying the equalities which are obtained from (2.27)-(2.29), from
0 to m, it follows that

x6m+2i+j =x2i+j−6
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×
m∏

p=0

1

u6p+2i+jv6p+2i+j−1t6p+2i+j−2u6p+2i+j−3v6p+2i+j−4t6p+2i+j−5
,

(2.30)
y6m+2i+j =y2i+j−6

×
m∏

p=0

1

v6p+2i+jt6p+2i+j−1u6p+2i+j−2v6p+2i+j−3t6p+2i+j−4u6p+2i+j−5
,

(2.31)
z6m+2i+j =z2i+j−6

×
m∏

p=0

1

t6p+2i+ju6p+2i+j−1v6p+2i+j−2t6p+2i+j−3u6p+2i+j−4v6p+2i+j−5
,

(2.32)

where m ∈ N0, i = 2, 4 and j ∈ {0, 1}. By substituting the formulas in (2.21)-(2.23)
into (2.30)-(2.32) and by using equations in (2.2), we obtain

x6m+2i = x2i−6

m∏
p=0

bx0s3p+i−2 + y−1s3p+i−1

bx0s3p+i−1 + y−1s3p+i

dy−1ŝ3p+i−2 + z−2ŝ3p+i−1

dy−1ŝ3p+i−1 + z−2ŝ3p+i

× fz0s̃3p+i−3 + x−1s̃3p+i−2

fz0s̃3p+i−2 + x−1s̃3p+i−1

bx−1s3p+i−3 + y−2s3p+i−2

bx−1s3p+i−2 + y−2s3p+i−1
(2.33)

× dy0ŝ3p+i−4 + z−1ŝ3p+i−3

dy0ŝ3p+i−3 + z−1ŝ3p+i−2

fz−1s̃3p+i−4 + x−2s̃3p+i−3

fz−1s̃3p+i−3 + x−2s̃3p+i−2
,

x6m+2i+1 = x2i−5

m∏
p=0

bx−1s3p+i−1 + y−2s3p+i

bx−1s3p+i + y−2s3p+i+1

dy0ŝ3p+i−2 + z−1ŝ3p+i−1

dy0ŝ3p+i−1 + z−1ŝ3p+i

× fz−1s̃3p+i−2 + x−2s̃3p+i−1

fz−1s̃3p+i−1 + x−2s̃3p+i

bx0s3p+i−3 + y−1s3p+i−2

bx0s3p+i−2 + y−1s3p+i−1
(2.34)

× dy−1ŝ3p+i−3 + z−2ŝ3p+i−2

dy−1ŝ3p+i−2 + z−2ŝ3p+i−1

fz0s̃3p+i−4 + x−1s̃3p+i−3

fz0s̃3p+i−3 + x−1s̃3p+i−2
,

y6m+2i = y2i−6

m∏
p=0

dy0ŝ3p+i−2 + z−1ŝ3p+i−1

dy0ŝ3p+i−1 + z−1ŝ3p+i

fz−1s̃3p+i−2 + x−2s̃3p+i−1

fz−1s̃3p+i−1 + x−2s̃3p+i

× bx0s3p+i−3 + y−1s3p+i−2

bx0s3p+i−2 + y−1s3p+i−1

dy−1ŝ3p+i−3 + z−2ŝ3p+i−2

dy−1ŝ3p+i−2 + z−2ŝ3p+i−1
(2.35)

× fz0s̃3p+i−4 + x−1s̃3p+i−3

fz0s̃3p+i−3 + x−1s̃3p+i−2

bx−1s3p+i−4 + y−2s3p+i−3

bx−1s3p+i−3 + y−2s3p+i−2
,

y6m+2i+1 = y2i−5

m∏
p=0

dy−1ŝ3p+i−1 + z−2ŝ3p+i

dy−1ŝ3p+i + z−2ŝ3p+i+1

fz0s̃3p+i−2 + x−1s̃3p+i−1

fz0s̃3p+i−1 + x−1s̃3p+i

× bx−1s3p+i−2 + y−2s3p+i−1

bx−1s3p+i−1 + y−2s3p+i

dy0ŝ3p+i−3 + z−1ŝ3p+i−2

dy0ŝ3p+i−2 + z−1ŝ3p+i−1
(2.36)

× fz−1s̃3p+i−3 + x−2s̃3p+i−2

fz−1s̃3p+i−2 + x−2s̃3p+i−1

bx0s3p+i−4 + y−1s3p+i−3

bx0s3p+i−3 + y−1s3p+i−2
,

z6m+2i = z2i−6

m∏
p=0

fz0s̃3p+i−2 + x−1s̃3p+i−1

fz0s̃3p+i−1 + x−1s̃3p+i

bx−1s3p+i−2 + y−2s3p+i−1

bx−1s3p+i−1 + y−2s3p+i
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× dy0ŝ3p+i−3 + z−1ŝ3p+i−2

dy0ŝ3p+i−2 + z−1ŝ3p+i−1

fz−1s̃3p+i−3 + x−2s̃3p+i−2

fz−1s̃3p+i−2 + x−2s̃3p+i−1
(2.37)

× bx0s3p+i−4 + y−1s3p+i−3

bx0s3p+i−3 + y−1s3p+i−2

dy−1ŝ3p+i−4 + z−2ŝ3p+i−3

dy−1ŝ3p+i−3 + z−2ŝ3p+i−2
,

z6m+2i+1 = z2i−5

m∏
p=0

fz−1s̃3p+i−1 + x−2s̃3p+i

fz−1s̃3p+i + x−2s̃3p+i+1

bx0s3p+i−2 + y−1s3p+i−1

bx0s3p+i−1 + y−1s3p+i

× dy−1ŝ3p+i−2 + z−2ŝ3p+i−1

dy−1ŝ3p+i−1 + z−2ŝ3p+i

fz0s̃3p+i−3 + x−1s̃3p+i−2

fz0s̃3p+i−2 + x−1s̃3p+i−1
(2.38)

× bx−1s3p+i−3 + y−2s3p+i−2

bx−1s3p+i−2 + y−2s3p+i−1

dy0ŝ3p+i−4 + z−1ŝ3p+i−3

dy0ŝ3p+i−3 + z−1ŝ3p+i−2
,

for m ∈ N0, i = 2, 4.

Theorem 2.1. The forbidden set of the initial values for system (1.8) is given by
the set

F =
⋃

m∈N0

1⋃
i=0

{ yi−2

xi−1
= f̂−m−1

(
− b

a

)
,

zi−2

yi−1
= g−m−1

(
−d

c

)
,

xi−2

zi−1
= h−m−1

(
−f

e

)}⋃ 2⋃
j=0

{(
x⃗−(2,0), y⃗−(2,0), z⃗−(2,0)

)
∈ R9 : (2.39)

x−j = 0 or y−j = 0 or z−j = 0
}
,

where x⃗−(2,0) = (x−2, x−1, x0), y⃗−(2,0) = (y−2, y−1, y0), z⃗−(2,0) = (z−2, z−1, z0),

Proof. At the beginning of Section 2, we have obtained that the set

2⋃
j=0

{(
x⃗−(2,0), y⃗−(2,0), z⃗−(2,0)

)
∈ R9 : x−j = 0 or y−j = 0 or z−j = 0

}
,

where x⃗−(2,0) = (x−2, x−1, x0), y⃗−(2,0) = (y−2, y−1, y0), z⃗−(2,0) = (z−2, z−1, z0),
belongs to the forbidden set of the initial values for system (1.8). If x−j ̸= 0,
y−j ̸= 0 and z−j ̸= 0, j ∈ {0, 1, 2}, then system (1.8) is undefined if and only if

bxn−1 + ayn−2 = 0, dyn−1 + czn−2 = 0, fzn−1 + exn−2 = 0, n ∈ N0.

By taking into account the change of variables (2.2), we can write the corresponding
conditions

un−1 = − b

a
, vn−1 = −d

c
and tn−1 = −f

e
, n ∈ N0. (2.40)

Therefore, we can determine the forbidden set of the initial values for system (1.8)
by using system (2.3). We know that the statements

u2m+i = f̂m+1 (ui−2) , (2.41)
v2m+i = gm+1 (vi−2) , (2.42)
t2m+i = hm+1 (ti−2) , (2.43)
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where m ∈ N0, i ∈ {1, 2}, f̂ (x) = ax+b
x , g (x) = cx+d

x and h (x) = ex+f
x , characterize

the solutions of system (2.3). By using the conditions (2.40) and the statements
(2.41)-(2.43), we have

ui−2 = f̂−m−1

(
− b

a

)
, (2.44)

vi−2 = g−m−1

(
−d

c

)
, (2.45)

ti−2 = h−m−1

(
−f

e

)
, (2.46)

where m ∈ N0, i ∈ {1, 2} and abcdef ̸= 0. This means that if one of the conditions
in (2.44)-(2.46) holds, then m−th iteration or (m+ 1)−th iteration in system (1.8)
can not be calculated. Consequently, desired result follows from (2.39).

3. Some applications
In this section, we will give some applications for some special cases of the coeffi-
cients of the system (1.8).

Corollary 3.1. Let (xn, yn, zn)n≥−2 be a well-defined solution to the following
system

xn+1 =
ynyn−2

xn−1 + yn−2
, yn+1 =

znzn−2

yn−1 + zn−2
, zn+1 =

xnxn−2

zn−1 + xn−2
, n ∈ N0. (3.1)

Then

x6m+2i = x2i−6

m∏
p=0

x0F3p+i−2 + y−1F3p+i−1

x0F3p+i−1 + y−1F3p+i

y−1F3p+i−2 + z−2F3p+i−1

y−1F3p+i−1 + z−2F3p+i

× z0F3p+i−3 + x−1F3p+i−2

z0F3p+i−2 + x−1F3p+i−1

x−1F3p+i−3 + y−2F3p+i−2

x−1F3p+i−2 + y−2F3p+i−1
(3.2)

× y0F3p+i−4 + z−1F3p+i−3

y0F3p+i−3 + z−1F3p+i−2

z−1F3p+i−4 + x−2F3p+i−3

z−1F3p+i−3 + x−2F3p+i−2
,

x6m+2i+1 = x2i−5

m∏
p=0

x−1F3p+i−1 + y−2F3p+i

x−1F3p+i + y−2F3p+i+1

y0F3p+i−2 + z−1F3p+i−1

y0F3p+i−1 + z−1F3p+i

× z−1F3p+i−2 + x−2F3p+i−1

z−1F3p+i−1 + x−2F3p+i

x0F3p+i−3 + y−1F3p+i−2

x0F3p+i−2 + y−1F3p+i−1
(3.3)

× y−1F3p+i−3 + z−2F3p+i−2

y−1F3p+i−2 + z−2F3p+i−1

z0F3p+i−4 + x−1F3p+i−3

z0F3p+i−3 + x−1F3p+i−2
,

y6m+2i = y2i−6

m∏
p=0

y0F3p+i−2 + z−1F3p+i−1

y0F3p+i−1 + z−1F3p+i

z−1F3p+i−2 + x−2F3p+i−1

z−1F3p+i−1 + x−2F3p+i

× x0F3p+i−3 + y−1F3p+i−2

x0F3p+i−2 + y−1F3p+i−1

y−1F3p+i−3 + z−2F3p+i−2

y−1F3p+i−2 + z−2F3p+i−1
(3.4)

× z0F3p+i−4 + x−1F3p+i−3

z0F3p+i−3 + x−1F3p+i−2

x−1F3p+i−4 + y−2F3p+i−3

x−1F3p+i−3 + y−2F3p+i−2
,
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y6m+2i+1 = y2i−5

m∏
p=0

y−1F3p+i−1 + z−2F3p+i

y−1F3p+i + z−2F3p+i+1

z0F3p+i−2 + x−1F3p+i−1

z0F3p+i−1 + x−1F3p+i

× x−1F3p+i−2 + y−2F3p+i−1

x−1F3p+i−1 + y−2F3p+i

y0F3p+i−3 + z−1F3p+i−2

y0F3p+i−2 + z−1F3p+i−1
(3.5)

× z−1F3p+i−3 + x−2F3p+i−2

z−1F3p+i−2 + x−2F3p+i−1

x0F3p+i−4 + y−1F3p+i−3

x0F3p+i−3 + y−1F3p+i−2
,

z6m+2i = z2i−6

m∏
p=0

z0F3p+i−2 + x−1F3p+i−1

z0F3p+i−1 + x−1F3p+i

x−1F3p+i−2 + y−2F3p+i−1

x−1F3p+i−1 + y−2F3p+i

× y0F3p+i−3 + z−1F3p+i−2

y0F3p+i−2 + z−1F3p+i−1

z−1F3p+i−3 + x−2F3p+i−2

z−1F3p+i−2 + x−2F3p+i−1
(3.6)

× x0F3p+i−4 + y−1F3p+i−3

x0F3p+i−3 + y−1F3p+i−2

y−1F3p+i−4 + z−2F3p+i−3

y−1F3p+i−3 + z−2F3p+i−2
,

z6m+2i+1 = z2i−5

m∏
p=0

z−1F3p+i−1 + x−2F3p+i

z−1F3p+i + x−2F3p+i+1

x0F3p+i−2 + y−1F3p+i−1

x0F3p+i−1 + y−1F3p+i

× y−1F3p+i−2 + z−2F3p+i−1

y−1F3p+i−1 + z−2F3p+i

z0F3p+i−3 + x−1F3p+i−2

z0F3p+i−2 + x−1F3p+i−1
(3.7)

× x−1F3p+i−3 + y−2F3p+i−2

x−1F3p+i−2 + y−2F3p+i−1

y0F3p+i−4 + z−1F3p+i−3

y0F3p+i−3 + z−1F3p+i−2
,

for m ∈ N0, i = 2, 4, where (Fm)m≥−1 is the solution to the following difference
equation

Fm+1 = Fm + Fm−1, m ∈ N0,

satisfying the initial conditions F−1 = 0, F0 = 1. The sequence (Fm)m≥−1 is called
the well-known Fibonacci sequence in literature.

Proof. System (3.1) is obtained from system (1.8) with a = b = c = d = e = f =
1. For these values of parameters a, b, c, d, e, f in equation (2.6), equation (2.7) and
equation (2.8) are the same, that is

wm+1 = wm + wm−1, m ∈ N0.

Hence, the sequences (sm)m≥−1, (ŝm)m≥−1 and (s̃m)m≥−1 satisfying conditions
(2.9)-(2.11) are the same and so we have

sm = ŝm = s̃m = Fm, m ≥ −1. (3.8)

By using (3.8) in formulas (2.33)-(2.38), formulas (3.2)-(3.7) follow.

Corollary 3.2. Let (xn, yn, zn)n≥−2 be a well-defined solution to the following
system

xn+1 =
ynyn−2

xn−1 − yn−2
, yn+1 =

znzn−2

−yn−1 + zn−2
, zn+1 =

xnxn−2

−zn−1 − xn−2
, n ∈ N0.

(3.9)
Then

x6m+4 = x−2

m∏
p=0

x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2

−y−1 + z−2

−y−1

x−1

−z0 − x−1
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× −x−1F3p−1 + y−2F3p

x−1F3p − y−2F3p+1

y0
x−2

, (3.10)

x6m+5 = x−1

m∏
p=0

−x−1F3p+1 + y−2F3p+2

x−1F3p+2 − y−2F3p+3

−y0 + z−1

−y0

−z−1 − x−2

z−1

× −x0F3p−1 + y−1F3p

x0F3p − y−1F3p+1

z−2

−y−1 + z−2

z0
x−1

, (3.11)

x6m+6 = x0

m∏
p=0

−x0F3p+1 + y−1F3p+2

x0F3p+2 − y−1F3p+3

y−1

z−2

−z0 − x−1

z0

× x−1F3p − y−2F3p+1

−x−1F3p+1 + y−2F3p+2

z−1

−y0 + z−1

x−2

−z−1 − x−2
, (3.12)

x6m+7 = x1

m∏
p=0

x−1F3p+2 − y−2F3p+3

−x−1F3p+3 + y−2F3p+4

y0
z−1

z−1

x−2

× x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2

−y−1 + z−2

−y−1

x−1

−z0 − x−1
, (3.13)

x6m+8 = x2

m∏
p=0

x0F3p+2 − y−1F3p+3

−x0F3p+3 + y−1F3p+4

z−2

−y−1 + z−2

z0
x−1

× −x−1F3p+1 + y−2F3p+2

x−1F3p+2 − y−2F3p+3

−y0 + z−1

−y0

−z0 − x−2

z−1
, (3.14)

x6m+9 = x3

m∏
p=0

−x−1F3p+3 + y−2F3p+4

x−1F3p+4 − y−2F3p+5

z−1

−y0 + z−1

x−2

−z−1 − x−2

× −x0F3p+1 + y−1F3p+2

x0F3p+2 − y−1F3p+3

y−1

z−2

−z0 − x−1

z0
, (3.15)

y6m+4 = y−2

m∏
p=0

−y0 + z−1

−y0

−z−1 − x−2

z−1

−x0F3p−1 + y−1F3p

x0F3p − y−1F3p+1

× z−2

−y−1 + z−2

z0
x−1

x−1F3p−2 − y−2F3p−1

−x−1F3p−1 + y−2F3p
, (3.16)

y6m+5 = y−1

m∏
p=0

y−1

z−2

−z0 − x−1

z0

x−1F3p − y−2F3p+1

−x−1F3p+1 + y−2F3p+2

× z−1

−y0 + z−1

x−2

−z−1 − x−2

x0F3p−2 − y−1F3p−1

−x0F3p−1 + y−1F3p
, (3.17)

y6m+6 = y0

m∏
p=0

y0
z−1

z−1

x−2

x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2

× −y−1 + z−2

−y−1

x−1

−z0 − x−1

−x−1F3p−1 + y−2F3p

x−1F3p − y−2F3p+1
, (3.18)

y6m+7 = y1

m∏
p=0

z−2

−y−1 + z−2

z0
x−1

−x−1F3p+1 + y−2F3p+2

x−1F3p+2 − y−2F3p+3

× −y0 + z−1

−y0

−z−1 − x−2

z−1

−x0F3p−1 + y−1F3p

x0F3p − y−1F3p+1
, (3.19)
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y6m+8 = y2

m∏
p=0

z−1

−y0 + z−1

x−2

−z−1 − x−2

−x0F3p+1 + y−1F3p+2

x0F3p+2 − y−1F3p+3

× y−1

z−2

−z0 − x−1

z0

x−1F3p − y−2F3p+1

−x−1F3p+1 + y−2F3p+2
, (3.20)

y6m+9 = y3

m∏
p=0

−y−1 + z−2

−y−1

x−1

−z0 − x−1

x−1F3p+2 − y−2F3p+3

−x−1F3p+3 + y−2F3p+4

× y0
z−1

z−1

x−2

x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2
, (3.21)

z6m+4 = z−2

m∏
p=0

−z0 − x−1

z0

x−1F3p − y−2F3p+1

−x−1F3p+1 + y−2F3p+2

z−1

−y0 + z−1

× x−2

−z−1 − x−2

x0F3p−2 − y−1F3p−1

−x0F3p−1 + y−1F3p

y−1

z−2
, (3.22)

z6m+5 = z−1

m∏
p=0

z−1

x−2

x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2

−y−1 + z−2

−y−1

× x−1

−z0 − x−1

−x−1F3p−1 + y−2F3p

x−1F3p − y−2F3p+1

y0
z−1

, (3.23)

z6m+6 = z0

m∏
p=0

z0
x−1

−x−1F3p+1 + y−2F3p+2

x−1F3p+2 − y−2F3p+3

−y0 + z−1

−y0

× −z−1 − x−2

z−1

−x0F3p−1 + y−1F3p

x0F3p − y−1F3p+1

z−2

−y−1 + z−2
, (3.24)

z6m+7 = z1

m∏
p=0

x−2

−z−1 − x−2

−x0F3p+1 + y−1F3p+2

x0F3p+2 − y−1F3p+3

y−1

z−2

× −z0 − x−1

z0

x−1F3p − y−2F3p+1

−x−1F3p+1 + y−2F3p+2

z−1

−y0 + z−1
, (3.25)

z6m+8 = z2

m∏
p=0

x−1

−z0 − x−1

x−1F3p+2 − y−2F3p+3

−x−1F3p+3 + y−2F3p+4

× y0
x−2

x0F3p − y−1F3p+1

−x0F3p+1 + y−1F3p+2

−y−1 + z−2

−y−1
, (3.26)

z6m+9 = z3

m∏
p=0

−z−1 − x−2

z−1

x0F3p+2 − y−1F3p+3

−x0F3p+3 + y−1F3p+4

z−2

−y−1 + z−2

× z0
x−1

−x−1F3p+1 + y−2F3p+2

x−1F3p+2 − y−2F3p+3

−y0 + z−1

−y0
, (3.27)

for m∈N0, where x1=
y0y−2

x−1−y−2
, x2=

z0z−2y−1

(x0−y−1)(z−2−y−1)
, x3=

x−2x0z−1(x−1−y−2)
(x−2+z−1)(z−1−y0)(x−1−2y−2)

,

y1 = z0z−2

z−2−y−1
, y2 = x0x−2z−1

(y0−z−1)(x−2+z−1)
, y3 = y−2y0x−1(z−2−y−1)

(x−1−y−2)(x−1+z0)y−1
, z1 = x0x−2

−x−2−z−1
,

z2 = y0y−2x−1

(z0+x−1)(y−2−x−1)
and z3 = z−2z0y−1(x−2+z−1)

(y−1−z−2)(x0−y−1)z−1
.

Proof. System (3.9) is obtained from system (1.8) with a = d = e = f = −1,
b = c = 1. For these values of parameters a, b, equation (2.6) becomes

wm+1 = −wm + wm−1, m ∈ N0. (3.28)
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Let
wm = (−1)

m
km, m ≥ −1. (3.29)

Employing (3.29) in (3.28), we get

km+1 = km + km−1, m ∈ N0. (3.30)

By considering (2.6) with conditions a = −1, b = 1 and (3.29) we obtain

sk−1 = 0, and sk0 = 1. (3.31)

From (3.31) and since skm is a solution to equation (3.30), we have

skm = Fm, m ≥ −1,

from which along with (3.29) it follows that

sm = (−1)
m
Fm, m ≥ −1. (3.32)

For these values of parameters c, d, equation (2.7) becomes

ŵm+1 = ŵm − ŵm−1, m ∈ N0. (3.33)

The solution ŝm to equation (3.33) satisfying the initial conditions in (2.10) is equal
to

ŝm =
λ̂m+1
1 − λ̂m+1

2

λ̂1 − λ̂2

, m ≥ −1, (3.34)

where
λ̂1,2 = cos

π

3
± i sin

π

3

after some calculation in (3.34), it follows that

ŝm =
2√
3
sin

(m+ 1)π

3
, m ≥ −1. (3.35)

Formula (3.35) shows that the sequence ŝm is six periodic. Namely, we have

ŝ6m−1 = ŝ6m+2 = 0, (3.36)
ŝ6m = ŝ6m+1 = 1, (3.37)
ŝ6m+3 = ŝ6m+4 = −1, (3.38)

for m ∈ N0. Equalities (3.36)-(3.38) can be written as follows

ŝ3m−1 = 0, (3.39)
ŝ3m = (−1)

m
, (3.40)

ŝ3m+1 = (−1)
m
, (3.41)

for m ∈ N0. For these values of parameters e, f , equation (2.8) becomes

w̃m+1 = −w̃m − w̃m−1, m ∈ N0. (3.42)

The solution s̃m to equation (3.42) satisfying the initial conditions in (2.11) is equal
to

s̃m =
λ̃m+1
1 − λ̃m+1

2

λ̃1 − λ̃2

, m ≥ −1, (3.43)
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where

λ̃1,2 = cos
2π

3
± i sin

2π

3
,

after some calculation in (3.43), it follows that

s̃m =
2√
3
sin

2 (m+ 1)π

3
, m ≥ −1. (3.44)

Formula (3.44) shows that the sequence s̃m is three periodic. Namely, we have

s̃3m = 1, (3.45)
s̃3m+1 = −1, (3.46)
s̃3m+2 = 0, (3.47)

for m ∈ N0. By using (3.32), (3.39)-(3.41), (3.45)-(3.47), in formulas (2.33)-(2.38),
after some simple calculations are obtained formulas (3.10)-(3.27).

Corollary 3.3. Let (xn, yn, zn)n≥−2 be a well-defined solution to the following
system

xn+1 =
ynyn−2

−xn−1 + 3yn−2
, yn+1 =

znzn−2

yn−1 + 2zn−2
, zn+1 =

xnxn−2

zn−1 + 4xn−2
, n ∈ N0.

(3.48)
Then

x6m+2i = x2i−6

m∏
p=0

−x0F6p+2i−3 + y−1F6p+2i−1

−x0F6p+2i−1 + y−1F6p+2i+1

y−1P3p+i−2 + z−2P3p+i−1

y−1P3p+i−1 + z−2P3p+i

× z0F9p+3i−7 + x−1F9p+3i−4

z0F9p+3i−4 + x−1F9p+3i−1

−x−1F6p+2i−5 + y−2F6p+2i−3

−x−1F6p+2i−3 + y−2F6p+2i−1

× y0P3p+i−4 + z−1P3p+i−3

y0P3p+i−3 + z−1P3p+i−2

z−1F9p+3i−10 + x−2F9p+3i−7

z−1F9p+3i−7 + x−2F9p+3i−4
,

(3.49)

x6m+2i+1 = x2i−5

m∏
p=0

−x−1F6p+2i−1 + y−2F6p+2i+1

−x−1F6p+2i+1 + y−2F6p+2i+3

y0P3p+i−2 + z−1P3p+i−1

y0P3p+i−1 + z−1P3p+i

× z−1F9p+3i−4 + x−2F9p+3i−1

z−1F9p+3i−1 + x−2F9p+3i+2

−x0F6p+2i−5 + y−1F6p+2i−3

−x0F6p+2i−3 + y−1F6p+2i−1

× y−1P3p+i−3 + z−2P3p+i−2

y−1P3p+i−2 + z−2P3p+i−1

z0F9p+3i−10 + x−1F9p+3i−7

z0F9p+3i−7 + x−1F9p+3i−4
,

(3.50)

y6m+2i = y2i−6

m∏
p=0

y0P3p+i−2 + z−1P3p+i−1

y0P3p+i−1 + z−1P3p+i

z−1F9p+3i−4 + x−2F9p+3i−1

z−1F9p+3i−1 + x−2F9p+3i+2

× −x0F6p+2i−5 + y−1F6p+2i−3

−x0F6p+2i−3 + y−1F6p+2i−1

y−1P3p+i−3 + z−2P3p+i−2

y−1P3p+i−2 + z−2P3p+i−1

× z0F9p+3i−10 + x−1F9p+3i−7

z0F9p+3i−7 + x−1F9p+3i−4

−x−1F6p+2i−7 + y−2F6p+2i−5

−x−1F6p+2i−5 + y−2F6p+2i−3
,

(3.51)
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y6m+2i+1 = y2i−5

m∏
p=0

y−1P3p+i−1 + z−2P3p+i

y−1P3p+i + z−2P3p+i+1

z0F9p+3i−4 + x−1F9p+3i−1

z0F9p+3i−1 + x−1F9p+3i+2

× −x−1F6p+2i−3 + y−2F6p+2i−1

−x−1F6p+2i−1 + y−2F6p+2i+1

y0P3p+i−3 + z−1P3p+i−2

y0P3p+i−2 + z−1P3p+i−1

× z−1F9p+3i−7 + x−2F9p+3i−4

z−1F9p+3i−4 + x−2F9p+3i−1

−x0F6p+2i−7 + y−1F6p+2i−5

−x0F6p+2i−5 + y−1F6p+2i−3
,

(3.52)

z6m+2i = z2i−6

m∏
p=0

z0F9p+3i−4 + x−1F9p+3i−1

z0F9p+3i−1 + x−1F9p+3i+2

−x−1F6p+2i−3 + y−2F6p+2i−1

−x−1F6p+2i−1 + y−2F6p+2i+1

× y0P3p+i−3 + z−1P3p+i−2

y0P3p+i−2 + z−1P3p+i−1

z−1F9p+3i−7 + x−2F9p+3i−4

z−1F9p+3i−4 + x−2F9p+3i−1

× −x0F6p+2i−7 + y−1F6p+2i−5

−x0F6p+2i−5 + y−1F6p+2i−3

y−1P3p+i−4 + z−2P3p+i−3

y−1P3p+i−3 + z−2P3p+i−2
,

(3.53)

z6m+2i+1 = z2i−5

m∏
p=0

z−1F9p+3i−1 + x−2F9p+3i+2

z−1F9p+3i+2 + x−2F9p+3i+5

−x0F6p+2i−3 + y−1F6p+2i−1

−x0F6p+2i−1 + y−1F6p+2i+1

× y−1P3p+i−2 + z−2P3p+i−1

y−1P3p+i−1 + z−2P3p+i

z0F9p+3i−7 + x−1F9p+3i−4

z0F9p+3i−4 + x−1F9p+3i−1

× −x−1F6p+2i−5 + y−2F6p+2i−3

−x−1F6p+2i−3 + y−2F6p+2i−1

y0P3p+i−4 + z−1P3p+i−3

y0P3p+i−3 + z−1P3p+i−2
,

(3.54)

for m ∈ N0, i = 2, 4, where (Pm)m≥−1 is the solution to the following difference
equation

Pm+1 = 2Pm + Pm−1, m ∈ N0,

satisfying the initial conditions P−1 = 0, P0 = 1. The sequence (Pm)m≥−1 is called
the Pell sequence in literature.

Proof. System (3.48) is obtained from system (1.8) with a = 3, b = −1, c = 2,
d = f = 1, e = 4. For these values of parameters a, b, equation (2.6) becomes

wm+1 = 3wm − wm−1, m ∈ N0. (3.55)

The solution sm to equation (3.55) satisfying the initial conditions in (2.9) is equal
to

sm =
λm+1
1 − λm+1

2

λ1 − λ2
, m ≥ −1, (3.56)

where

λ1,2 =
3±

√
5

2
.

Note that (
1±

√
5

2

)2

=
3±

√
5

2
. (3.57)
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Using (3.57) in (3.56), we obtain

sm =

(
1+

√
5

2

)2m+2

−
(

1−
√
5

2

)2m+2

(
1+

√
5

2

)2
−
(

1−
√
5

2

)2 = F2m+1, m ≥ −1. (3.58)

For these values of parameters c, d, equation (2.7) becomes

ŵm+1 = 2ŵm + ŵm−1, m ∈ N0. (3.59)
Hence the sequence ŝm satisfying conditions (2.10) and we have

ŝm = Pm, m ≥ −1. (3.60)
For these values of parameters e, f , equation (2.8) becomes

w̃m+1 = 4w̃m + w̃m−1, m ∈ N0. (3.61)
The solution s̃m to equation (3.61) satisfying the initial conditions in (2.11) is equal
to

s̃m =
λ̃m+1
1 − λ̃m+1

2

λ̃1 − λ̃2

, m ≥ −1, (3.62)

where
λ̃1,2 = 2±

√
5.

Note that (
1±

√
5

2

)3

= 2±
√
5. (3.63)

Using (3.63) in (3.62), we obtain

s̃m =

(
1+

√
5

2

)3m+3

−
(

1−
√
5

2

)3m+3

(
1+

√
5

2

)3
−
(

1−
√
5

2

)3 =
F3m+2

2
, m ≥ −1. (3.64)

By using (3.58), (3.60), (3.64), in formulas (2.33)-(2.38), after some simple calcula-
tions are obtained formulas (3.49)-(3.54).

4. Conclusion
In this paper, we have consider the following three-dimensional system of difference
equations

xn+1 =
ynyn−2

bxn−1 + ayn−2
, yn+1 =

znzn−2

dyn−1 + czn−2
, zn+1 =

xnxn−2

fzn−1 + exn−2
, n ∈ N0,

which is a generalization of both equations in (1.5) and systems in (1.6), (1.7),
where the parameters a, b, c, d, e, f and the initial values x−i, y−i, z−i, i ∈ {0, 1, 2},
are real numbers.

Firstly, we have obtained the explicit form of well defined solutions of the afore-
mentioned system using suitable transformation reducing to the equations in Riccati
type. Also, we describe the forbidden set of the initial values using the obtained
formulas. In addition, the solutions of this system are related to both Fibanacci
numbers and Pell numbers for some special cases of a, b, c, d, e, f .
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