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AN ALGORITHM FOR NUMERICAL
SOLUTION OF DIFFERENTIAL EQUATIONS
USING HARMONY SEARCH AND NEURAL

NETWORKS
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Abstract In this article, an algorithm based on artificial neural networks
(ANN) and harmony search algorithm (HSA) is presented for the numerical
solution of ordinary and partial differential equations. The power of ANN
is used to construct an approximate solution of differential equations (DEs)
such that it satisfies the DEs initial conditions (ICs) or boundary conditions
(BCs) automatically. An automated design parameter selection approach is
utilised to pick the optimum ANN ensemble from various combinations of ANN
design parameters, random beginning weights, and biases. An unsupervised
error is constructed in order to approximate the DE solution and HSA is used
to minimize this error by training the neural network design parameters. A
few test problems of various types are considered for verifying the algorithm’s
accuracy, convergence, and efficacy. The proposed algorithm is assessed using
the results of statistical analysis obtained from a large number of independent
runs for each model equation. The correctness and validity of the algorithm is
also verified by comparing the obtained numerical results to the exact solution.

Keywords Differential equations, harmony search algorithm, artificial neural
networks, length factor.
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1. Introduction
Differential equations are frequently used to model problems in real-world applica-
tions (DEs). In some circumstances, approximating the solution of DEs is a difficult
task, necessitating the use of numerical techniques. The finite difference, finite el-
ement, finite volume, and boundary element are commonly used methods to solve
DEs numerically [1] . All of these approaches are effective and efficient in solving
DEs, but they have limitations, such as the need for mesh discretization and the
difficulty of solving nonlinear DEs.

ANNs have evolved as a sophisticated approach for numerically solving DEs
because they avoid the drawbacks of traditional numerical methods. In recent
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research, the ANN method has been employed to tackle several DE problems, and
some variants of the ANN method have also been developed to handle DE problems.
A survey article [13] lists about 50 research that use ANNs to solve DEs. Various
forms of DEs, including ordinary DEs (ODEs), partial DEs (PDEs), and fractional
DEs (FDEs), have been solved using the ANN method in recent research [14–16,
19, 29]. For network parameter optimization, the majority of the studies described
above used gradient-based local search optimization methods. Furthermore, there
are two main problems in these methods: the first is the necessity of a differentiable
transform function, and the second is the high risk of trapping in local optima.

In order to avoid the local optima convergence, many global search optimiza-
tion algorithms have been embraced for training ANN for solving DEs, especially
for some nonlinear DE problems that are problematic while using gradient-based
algorithms [28]. Several ANN methods based on evolutionary computation and
swarm intelligence have thus been utilised to address various DE problems in the
literature [20,21,26].

The HSA is a music-inspired heuristic optimization algorithm developed by
Geem et al. in 2001 [7]. Since then, the technique has been used to handle
a wide range of optimization issues,including function optimization, groundwater
modelling, water distribution networks,and vehicle routing etc. Several HSA vari-
ants have also been developed in the literature and can be seen at [10, 12]. The
HSA has already been shown more efficient and more straightforward than other
optimization techniques. All these factors motivate us to explore the applicability
of the HSA for training ANN to solve some linear as well as nonlinear DEs.

In this paper, a standard HSA is used for training the feed-forward ANN model
of DEs. The rest of the paper is organized as follows. Section 2 gives brief idea of
the ANN method for solving DEs. Overview of HSA and implementation of HSA
for training ANN parameters is described in Section 3 and Section 4 respectively.
Section 5 is devoted to the test problems, their numerical formulation, and simu-
lation. A statistical analysis of results has been presented in Section 6, and the
conclusions drawn are presented in Section 7.

2. The artificial neural network method
The ANN method to solve DE can be described by considering a general kth order
DE of the form

F
(
y(k)(x), . . . , y′(x), y(x)

)
= f(x) (2.1)

over the domain D. In (2.1) F represents some differential operator and y(x) is
analytical solution subject to the following BC ’s, with p(x) being the BC on a
boundary

y = p(x), ∀x ∈ ∂D,

n̂(x).∇y(x) = p(x), ∀x ∈ ∂D.
(2.2)

In (2.2) n̂(x) represents the unit vector function normal to the boundary ∂D. The
first step in ANN is to construct a trial approximate solution for the given DE
problem. In the literature, there are many ways to write down the DE trial solution
in terms of ANN in such a way that it satisfies the desired BCs [14–16]. Here we
consider the following type of trial approximate solution for (2.1)

yT (x̄, w̄) = A(x̄) +B(x̄, N(x̄, w̄)). (2.3)
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In (2.3) yT represents the trial approximate solution, x̄ is the input vector (points
in the domain), w̄ is the ANN weight parameters (weights and biases). The first
term A(x̄) denotes a continuous function that is formed to satisfy the BCs, while
the second term denotes an ANN with input and weight parameters. Regardless of
the ANN output N(x̄, w̄), the trial solution specified in (2.3) satisfies the desired
BCs defined in (2.2). In a similar way, the value of trial solution within the domain
is optimized by ANN output N(x̄, w̄). Training in ANN refers to the optimization
of ANN parameters by minimizing the DE error function.

E(x̄, w̄) = f
(
x̄, F

(
ykT (x̄), . . . , y

′
T (x̄), yT (x̄)

)
. (2.4)

There are several techniques based on the gradient and non gradient methods used
in the literature for minimizing the DE error function of type given in (2.4). Here, in
this study we present a non gradient based method HSA for training ANN parame-
ters and minimizing the error function. A feed forward neural network with a single
hidden layer is commonly used network architecture of ANNs used in this study.
A sigmoid activation function is used in hidden nodes for transferring approximate
decisions, whereas a linear activation function is used at the output node.

3. Harmony search algorithm
The HSA is a population-based meta-heuristic algorithm developed by Geem et
al. [7] and inspired by the improvisation method used by musicians. During the
improvisation process, each musician plays a note to find the best state of harmony
altogether. This procedure is analogous to finding the optimality in an optimization
process. The “harmony at a time represents a solution vector in which; each musi-
cal instrument is identical to a decision variable; musical instruments’ pitch range
corresponds to search space, and the audience’s esthetics represent an objective
function” [18]. The improvisation process is mimicked by local and global searches
in optimization. Generally, global optimization problems can be defined as follows

Optimize (Max or Min)f(x), (3.1)
subject to xj ∈ [Lj , Uj ] , j = 1, 2, 3, . . . , N, (3.2)

where f(x) is an objective function; x is the set of each decision variable xj ;N is the
number of decision variable, and [Lj ≤ xj ≤ Uj ] are the possible upper and lower
bound for each decision variable.

In a standard HSA, an initial population of harmonies equal to the harmony
memory size (HMS) are randomly created and stored in harmony memory (HM).
Each iteration uses three major operators to create new harmony: harmony memory
consideration rate (HMCR [0, 1]), pitch adjustment rate (PAR [0, 1]), and random
consideration. The HMCR parameter controls the probability of new harmony
improvisation considering harmonies in HM, whereas the PAR parameter controls
the pace at which new harmony is generated in the bandwidth (BW) of variables.
The worst harmony in HM would be replaced with a superior new harmony. This
method is repeated until the desired number of improvisation (NI) has been reached
or when the stopping criterion satisfies. The general procedure of the standard HSA
is described in Algorithm 1.
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Algorithm 1 Pseudo-code of HSA
1: Initialization: First HSA parameters are initialized.
2: Calculating the fitness function value of each harmony vector.

Xi
j = Lj + a× (Uj − Lj) ; where a ∈ (0, 1)

3: Update of new harmony (Xnew) from HM as:
For (k = 1 to n) do
If (a1 < HMCR) then Xnew(k) = Xo(k); where o ∈ (1, 2, . . . , HMS) and
a1 ∈ (0, 1)
If (a2 < PAR) then Xnew(k) = Xnew(k)± a3 ×BW ; where a2, a3 ∈ (0, 1)
else Xnew(k) = Lj(k) + a× (Uj(k)− Lj(k)) ; where a ∈ (0, 1)
End for

4: If f (Xnew) is better than f (Xworst ), update HM as Xworst = Xnew .
5: Repeat steps 3 and 4 until NI is reached. Harmony vector Xbest in the HM is

the solution of the defined problem.

4. Training the ANN

Training the ANN or optimizing the network parameters can be performed by using
the HSA [12, 18]. For training ANN using HSA, weight parameters w of ANNs is
represented by a harmony vector in HM. Separate data strings are used in HM to
represent the weight parameters w of ANNs i.e., weights corresponding to the hidden
layer processing element from the input layer, output layer processing element from
hidden layer, hidden biases, and output biases, all are denoted by separate strings
of harmony vector in HM. The fitness function for the HSA for training the ANN is
the minimization of the DE error defined by (2.4). For all harmony vectors in HM,
weights are randomly generated and updated using (4.1):

wi
j = Lj + a× (Uj − Lj) . (4.1)

where, i = 1, 2, . . . ,HMS and j = 1, 2, . . . , N . The weights in the feed-forward ANN
can be updated by the algorithm step given in Table 1 . The detailed computational
procedure of the ANN-HSA method for obtaining approximate solutions of DEs is
presented in Figure 1.

Table 1. Improvisation of new harmony for training feed forward ANNs
For (k = 1 to n) do
If (a1 < HMCR) then wnew (k) = w0(k); where o ∈ (1, 2, . . . , HMS) and a1 ∈ (0, 1)
If (a2 < PAR) then wnew (k) = wnew (k)+ rand ×BWk; where a2 ∈ (0, 1)
End if
else wnew (k) = Lj(k) + rand× (Uj(k)− Lj(k));
End for
If f (wnew ) < f (wworst ), update HM as wworst = wnew
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Figure 1. Procedure to compute approximate solution of DEs using the ANN and HSA

5. Numerical Examples
In the previous sections, the proposed algorithm for the numerical solution of DEs
using ANN and HSA was discussed. In this segment, we mean to explore the
applicability of the algorithm to various test problems and analyze its precision.
The proposed algorithm can be applied to various types of ODEs as well as PDEs.
In order to demonstrate the illustrative applicability of the algorithm, we consider
five test problems that cover linear as well as nonlinear equations with different types
of initial or BCs. Numerical simulation for all the test problems was performed by
training ANN using the HSA considering different values of the number of hidden
nodes and starting weight parameters. The number of hidden nodes providing
the lowest standard deviation (STD) in the DE error represented for 100 runs is
considered as the best number of nodes, and the ANN solution is then computed by
selecting the best ANN parameters. In this study we have considered a number of
hidden nodes h = 5, 10, 15, 20, 25, 30 and 100 random starting weight parameters to
find the best ANN node parameter. Numerical outcomes of the proposed algorithm
are compared with the exact solution for all the test problems.
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5.1. Test Problem 1
Troesch’s problem defined by Weibel in [24] is an inherently unstable boundary
value problem of the nonlinear ODE. The governing modelled equation and BCs for
Troesch’s problem stated in [23] are as follows:

d2u

dt2
= µ sinh(µu(t)); t ∈ (0, 1), µ > 0

u(0) = 0, u(1) = 1

(5.1)

where µ is a constant parameter. The closed-form solution of (5.1) can be written
in the form of an elliptic Jacobian function as

u(t) =
2

µ
sinh−1

{
u′(0)

2
sc

(
µx, 1− 1

4
u′(0)2

)}
, (5.2)

where u′(0) = 2
√
1− k, k is the solution of the equation sinh(µ/2)√

1−k
= sc(µ, k). The

trial solution of (5.1) in terms of ANN parameters can be written as

uT (t, w) = t+ t(t− 1)N(t, w). (5.3)

Regardless of the ANN output, the trial solution provided by (5.3) satisfies the
necessary BCs.The ANN solution of (5.1) is computed for µ = 0.5 and 1. From
Figure 2., it is observed that for the case µ = 0.5, h = 10 number of hidden nodes
provides the solution with minimum STD and for µ = 1, h = 15 number of hidden
nodes provides the solution with minimum STD in the DE error with 100 different
starting weights.

Figure 2. Boxplots for MAE in the solution with 100 runs for solving test problem 1 with (a)µ = 0.5
and (b)µ = 1.0

The error in the ANN solution throughout the domain can be observed by
comparison with the exact solution and is presented in Figure 3 for µ = 0.5 and 1.
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Figure 3. Exact and ANN solutions for test problem 1 for (a)µ = 0.5 and (b)µ = 1.0

5.2. Test Problem 2
The second problem considered is a nonlinear DE having BCs different from that
in the test problem 1. The type of DE considered as test problem 2 is known as the
Bernoulli equation, which is a useful second-order boundary value problem. Here,
we consider a Bernoulli equation of the type shown below [1]:

d2u

dx2
+

(
du

dx

)2

− 2e−u(x); t ∈ (0, 1)

u(0) = 0, u(1) = 0.

(5.4)

The exact analytical solution of (5.4) can be calculated by transforming the equation
into a linear DE and is given as

u(x) = ln
(
(x− 1/2)2 + 3/4

)
. (5.5)

In terms of ANN parameters, the trial solution of (5.4) can be written as

uT (x,w) = x(x− 1)N(x,w). (5.6)

Regardless of the ANN output (5.6) satisfies the necessary BCs. After that, the
ANN is trained to find the best parameter combination. Figure 4. shows the
boxplots for MAE in the solution for test problem 2 for different numbers hidden
nodes.

Figure 4. Boxplots for MAE in the solution for 100 runs for solving test problem 2
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From Figure 4, we find that h = 5 number of hidden nodes gives the minimum
STD in the DE error for 100 independent runs. The error in the ANN solution for
(5.4) throughout the domain is then computed. Figure 5 shows a comparison of the
ANN solution and the exact solution.

Figure 5. Exact and ANN solutions for test problem 2

5.3. Test Problem 3
Following that, we consider a nonlinear Riccati DE, which is used in a wide range
of science and engineering applications, including random processes, stochastic re-
alization theory, robust stabilization, controls, and in areas such as financial math-
ematics [22]. Let us consider the Riccati DE as given below [5,17] :

dv

dtv
u(t) = −u2(t) + 1; t ∈ (0, 1)

u(0) = 0.
(5.7)

The exact solution of (5.7) for v = 1 can be written as

u(t) =
e2t − 1

e2t + 1
. (5.8)

The trial solution of the(5.7) in terms of ANN can be written as

uT (t, w) = t (N(t, w) +N0 − tN ′
0) (5.9)

which satisfies the desired initial condition given in(5.7). The trial solution pre-
sented in (5.9) includes the term N0 = N(0, w) and N ′

0 = ∂N
∂t

∣∣
t=0

, which represent
the output of ANN evaluated at t = 0 and the derivative of ANN output at t = 0
respectively. The calculated MAE in the ANN solution for (5.7) is presented in
Figure 6. From Figure 6, it can be observed that h = 20 number of hidden nodes
provides minimum STD in the DE error for 100 runs and is therefore chosen as the
winning number of hidden nodes for solving (5.7). To demonstrate the accuracy of
the ANN method using the HSA, the ANN solution is compared with the available
exact solution, as depicted in Figure 5.
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Figure 6. Boxplots for MAE in the solution for 100 runs for solving test problem 3

Figure 7. Exact and ANN solutions for test problem 3

5.4. Test Problem 4
In this example, we consider Bratu’s initial value problem, also known as “Liouville–
Gelfand or Liouville–Gelfand–Bratu problem in honor of Gelfand and the nineteenth-
century work of the great French mathematician Liouville” [2]. Here we consider
Bratu’s initial value problem of the following type [25]:

d2u

dx2
− 2eu = 0; t ∈ (0, 1)

u(0) = u′(0) = 0.

(5.10)

The exact solution of Bratu’s initial value problem can be given as

u(x) = −2 ln(cos(x)). (5.11)

The trial solution of (5.10) can be written as

uT (x,w) = x2 (N + x (N0 +N ′
0)) (5.12)

which satisfies the desired initial conditions defined in (5.10). The terms N0 =
N(0, p) and N ′

0 = ∂N
∂x

∣∣
x=0

in (5.12) represent the ANN output and its derivative
evaluated at x = 0 respectively. From Figure 8. , it can be observed that h = 25
number of hidden nodes is providing the solution with the lowest STD in DE error.
The ANN solution is also compared with the exact solution to check the accuracy
of the method over the domain, as shown in Figure 9.
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Figure 8. Boxplots for MAE in the solution for 100 runs for solving test problem 4

Figure 9. Exact and ANN solutions for test problem 4

5.5. Test Problem 5

An example of PDEs is considered as our next test problem to check the appli-
cability of the method to PDEs as well. We considered an advection diffusion
equation (ADE) used to describe many physical situations including heat transfer
to a draining film , mass transfer, flow in porous media, movement of contaminants
in subsurface, and water transport in soils [11]. The unsteady one-dimensional ADE
can be written as

∂u

∂t
+

∂u

∂x
=

1

Re

∂2u

∂x2
, 0 < x < 1, t > 0 (5.13)

together with the initial and BCs defined as

u(x, 0) = 0, 0 < x < 1

u(0, t) = 0, u(1, t) = 1, t > 0.
(5.14)
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The analytical solution of (5.13) can be obtained by the method of separation of
variables and given as

u(x, t) =

[
exp(Re×x)− 1

exp(Re)− 1

]
+

∞∑
m=1

{
(−1)mmπ

(mπ)2 + Re2

4

exp

(
Re×(x− 1)

2

)

× sin(mπx) exp

[
−t

(
(mπ)2

Re
+

Re

4

)]}
.

(5.15)

The problem defined in (5.13) has steep boundaries near x = 1 and many numerical
methods provide nonphysical oscillation near steep boundaries. The trial solution
for (5.13) can be written as

uT (x, t, w) =
xt√

Re2(x− 1)2 + t2
+

(
1

Re

)
x(x− 1)tN(x, t, w) (5.16)

which satisfies the desired BCs in (5.14). The MAE in the solution was calculated
for all considered hidden node number values and 100 random initial starting weight,
and is shown in Figure 10. Among all the hidden node combinations of the ANN,
h = 10 is chosen as the best performing hidden node having minimum STD in the
DE error. The comparison of ANN and exact solutions is presented in Figure 11.

Figure 10. Boxplots for MAE in the solution for 100 runs for solving test problem 5

Figure 11. Exact and ANN solutions for test problem 5
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6. Optimization results and discussions
In this section, the detailed analysis of statistical results obtained in optimizing ANN
parameters using the HSA is presented. Neural network parameters were optimized
using 100 independent runs for each of the test problems. A MATLAB code was
developed for training ANN parameters using the HSA, and all the test problems
were run on Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz with 8 GB RAM. The
chosen values for user parameters of the HSA for solving all test problems are listed
in Table 2.

Table 2. Parameter setting for the HSA
Parameters Numbers
Maximum Iteration 1000
Harmony Memory Size (HMS) 20
Harmony Memory Consideration Rate (HMCR) 0.9
Pitch Adjustment Rate (PAR) 0.05
Bounds of decision variables Initial or boundary conditions
Bandwidth (BW) Range of initial or boundary points

Statistical optimization results for the error functions (EFs) of all the test prob-
lems using the HSA are given in Tables 3-4. In Table 3, we choose the two best
representative hidden nodes of the ANN model for each test problem to demon-
strate the statistical optimization results. Statistical results for the MAE in the
solution of all the test problems are tabulated in Table 4, in which we present
the worst(maximum), best(minimum), average, and standard deviation (SD) of the
MAE in 100 independent runs with only the chosen winning number of hidden nodes
for all the test problems. Test problems 1a and 1b in all the Tables 3-7 indicate test
problem1 (Troesch’s problem) for µ = 0.5 and 1, respectively. A brief description of
the minimization of EFs over the number of iterations is shown in Figure 12 for all
the test problems, considering the chosen winning number of neurons. The running
time analysis is also presented for all the test problems in Table 5; we consider the
running time as the average computation time in 100 independent runs for all the
test problems.

Table 3. Statistical optimization results for all test problems using the HSA
Test Problems Number of Hidden Nodes Worst EF Average EF Best EF SD
1a h = 10 8.96E − 04 1.31E− 04 8.05E− 06 2.04E− 04

h = 20 1.55E− 03 1.12E− 04 7.18E− 06 1.96E− 04

1b h = 15 2.11E− 03 7.68E− 04 9.40E− 05 3.48E− 04

h = 20 1.42E− 03 7.03E− 04 1.55E− 04 2.81E− 04

2 h = 5 2.14E− 03 1.36E− 03 1.20E− 03 1.47E− 04

h = 10 2.51E− 03 1.38E− 03 1.22E− 03 2.00E− 04

3 h = 20 4.69E− 04 2.62E− 04 8.39E− 05 8.65E− 05

h = 25 4.79E− 04 2.72E− 04 9.96E− 05 8.18E− 05

4 h = 25 1.38E− 02 1.06E− 02 7.88E− 03 2.09E− 03

h = 30 1.42E− 02 1.02E− 02 7.83E− 03 2.14E− 03

5 h = 10 7.47E− 03 7.34E− 03 7.32E− 03 2.52E− 05

h = 20 7.45E− 03 7.34E− 03 7.32E− 03 2.30E− 05
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Table 4. Statistical optimization results for the MAE in the solution of all the test problems
Test Problems Number of Hidden Nodes Worst MAE Best MAE Average MAE SD
1a h = 10 3.53E− 03 1.28E− 03 2.33E− 03 4.15E− 03

1 b h = 15 1.15E− 02 8.36E− 03 1.00E− 02 4.56E− 04

2 h = 5 3.66E− 02 5.96E− 03 1.29E− 02 4.60E− 03

3 h = 20 5.00E− 02 6.00E− 04 3.43E− 02 1.20E− 02

4 h = 25 7.17E− 03 4.73E− 04 3.26E− 03 1.76E− 03

5 h = 10 3.17E− 02 1.12E− 02 2.20E− 02 3.26E− 03

Figure 12. Summary of minimization of EFs over the number of iterations (a) for test problems 1–3
and (b) for test problems 4,5.

From Table 5, it can be seen that increasing the number of hidden nodes or
training points inside the domain increases the computing time. Besides, the run-
ning time is problem-dependent and is based on the complexity of the problem and
the constructed trial approximate solution. For the test problems considered in this
work, we observe that on an average, the computing time for the six test problems
using n = 10 (number of training points) and h = 5, 10, 15, 20, 25, 30 (number of
hidden nodes) is 0.42, 0.62, 0.82, 1.03, 1.32, and 1.44 seconds respectively.

In order to prove the efficiency and correctness of the algorithm, the solution ob-
tained using the ANN-HSA method is also compared with the solutions obtained by
some traditional numerical methods in existing literature. The comparison of solu-
tions obtained by the ANN-HSA method and other numerical methods is presented
in Table 6 and 7 for all the test problems. ANN-HSA solution of Test Problem 1(a)
and (b) is compared with the Adomain decomposition method (ADM) [6], Homo-
topy perturbation method (HPM) [4] and Homotopy analysis method (HAM) [9].
Numerical solution obtained using ANN-HSA for test problem 3 is compared with
solution obtained using variational iteration method (VIM) , Modified homotopy
perturbation method (MHPM) and ADM results tabulated in [5, 22] and refrences
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Table 5. Average computational time for solving the six test problems using the ANN-HSA method
Test

- problem
Initial

/boundary condition
No of

- training points
Average running time for 100 independent runs
h = 5 h = 10 h = 15 h = 20 h = 25 h = 30

1(a) u(0) = 0, u(1) = 1 10 0.4062 0.5988 0.7836 1.019 1.707 1.360
1(b) u(0) = 0, u(1) = 1 10 0.4086 0.5988 0.7920 0.9847 1.185 1.359
2 u(0) = 0, u(1) = 1 10 0.4382 0.6554 0.8857 1.071 1.282 1.496
3 u(0) = 0 10 0.4438 0.6658 0.8757 1.086 1.307 1.510
4 u(0) = u′(0) = 0 10 0.4401 0.6518 0.8698 1.082 1.326 1.574

5
u(x, 0) = 0, 0 < x < 1

u(0, t) = 0
u(1, t) = 1, t > 0

10 0.3625 0.5564 0.7547 0.9554 1.153 1.360

therein. Following that for test problem 4 results are compared with Runge-Kutta
method (RKM), optimal homotopy asymptotic method (OHAM) and Bezier curve
method (BCR) [3, 8] and references therein. Results for test problem 5 is com-
pared with the results of Cranck-Nicolson method, High order exponentiat scheme
[HOE] and method based on difference scheme (DS) tabulated in [27] and references
therein. From Table 7 (a) and (b), we infer that the solution obtained using the
ANN-HSA method is approximate and comparable to the exact solution as well as
the solutions obtained by other numerical methods.

Table 6. Absolute error in the solutions obtained by the ANN-HSA method and other numerical
methods at some domain points for Test Problem 1(a), 1(b) and 2

Training
- Points Test problem 1a Test problem1b Test problem 2

ANN-HSA ADM [60] HPM HAM ANN-HSA ADM HPM HAM ANN-HSA
0.1 2.93E − 03 5.99E − 06 4.78E − 06 2.69E − 07 6.17E − 03 4.12E − 04 2.79E − 04 1.201E − 05 1.00E − 03

0.2 1.30E − 04 1.06E − 05 9.42E − 06 5.36E − 07 2.69E − 04 7.40E − 04 5.50E − 04 2.41E − 05 3.9E − 02

0.3 3.5E − 04 1.40E − 05 1.37E − 05 8.13E − 07 3.46E − 03 9.79E − 04 8.00E − 04 3.633E − 05 1E − 03

0.4 1.08E − 03 1.61E − 05 1.73E − 05 1.08E − 06 7.26E − 03 1.13E − 03 1.01E − 03 4.874E − 05 5.0E − 03

0.5 2.18E − 03 1.68E − 05 1.97E − 05 1.34E − 06 1.01E − 02 1.197E − 03 1.15E − 03 6.118E − 05 3.30E − 03

0.6 5.3E − 03 1.62E − 05 2.04E − 05 1.57E − 06 0.10E − 02 1.16E − 03 1.20E − 03 7.285E − 05 4.50E − 03

0.7 3.47E − 03 1.43E − 05 1.88E − 05 1.71E − 06 0.62E − 03 1.044E − 03 1.11E − 03 0.1105613 4.40E − 03

0.8 1.64E − 03 1.09E − 05 1.46E − 05 1.65E − 06 0.16E − 01 8.20E − 03 8.74E − 04 8.186E − 05 1.0E − 03

0.9 2.73E − 03 6.19E − 06 7.99E − 06 1.18E − 06 1.53E − 03 4.53E − 04 4.78E − 04 6.239E − 05 2.20E − 03

Table 7. Absolute error in the solutions obtained by the ANN-HSA method and other numerical
methods at some domain points for Test Problem 3, 4 and 5

Training
points Test problem 3 Test problem 4 Test problem 5

ANN
-HSA VIM MHPM ADM ANN

-HSA RKM BCM OHAM ANN
-HSA

Cranck-
Nicolson DIM HOE

0.1 2.44E − 04 0 1.00E − 06 9.94E − 07 6.32E − 04 1.66E − 05 2.98E − 04 6.41E − 07 2.08E − 03 5.50E − 01 3E − 06 3E − 06

0.2 7.35E − 04 0 0 3.22E − 07 1.56E − 03 3.1E − 07 0.0 9.74E − 06 4.34E − 03 5.7E − 05 5E − 06 5E − 06

0.3 7.13E − 04 0 0 6.20E − 07 1.54E − 03 1.13E − 06 1.69E − 04 4.52E − 05 1.25E − 03 8.1E − 05 7E − 06 7E − 06

0.4 2.37E − 03 2E − 06 4E − 06 9.80E − 07 1.92E − 04 2.12E − 06 1.10E − 04 1.27E − 04 2.94E − 03 9.9E − 05 9E − 06 9E − 06

0.5 1.72E − 02 1.45E − 05 3.90E − 05 1.88E − 07 2.81E − 03 2.9E − 06 0.0 2.68E − 04 6.84E − 03 1.09E − 04 1E − 05 1E − 05

0.6 1.30E − 02 6.6E − 05 1.92E − 04 6.12E − 07 6.59E − 03 4.1E − 06 0.0 4.83E − 04 1.05E − 02 1.12E − 04 9E − 06 9E − 06

0.7 1.67E − 02 2.43E − 04 7.36E − 04 8.41E − 07 9.86E − 03 4.5E − 06 7.77E − 04 8.36E − 04 1.10E − 03 1.05E − 04 9E − 06 9E − 06

0.8 1.61E − 02 7.36E − 04 2.33E − 03 1.00E − 06 6.23E − 03 3.35E − 05 0.0 1.60E − 03 4.55E − 02 8.5E − 05 7E − 06 0
0.9 9.20E − 02 7.16E − 01 1.55E − 02 2.51E − 06 4.34E − 03 4.37E − 05 3.47E − 04 3.64E − 03 3.98E − 03 5E − 05 3E − 06 3E − 06

Artificial intelligence algorithms have given numerical researchers new options
for solving extremely difficult problems with less computation time and calculus
effort. The recent development and advantages of using ANN methods for solving
DEs over traditional numerical methods makes this study more significant. In most
of the studies conducted in the recent past for solving DEs using ANNs, gradient-
based optimization techniques including gradient descent, Levenberg–Marquardt,
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and steepest descent algorithms have been used. In some researches, nongradient-
based metaheuristic algorithms including particle swarm optimization, genetic al-
gorithm, and hybrid algorithms that combine both have also been used to train
ANNs for solving DEs.

7. Conclusion
In this paper, we proposed an algorithm based on the length factor ANN method
and the HSA for obtaining approximate solutions of both ODEs and PDEs. We
considered six test problems having different initial or BCs to check the applica-
bility of our method. Based on the simulation results for all the test problems,
the following conclusions can be drawn: (i) The designed trial solution based on
the ANN method satisfies initial/boundary conditions exactly using a log-sigmoid
activation function. (ii) The computational intelligence algorithm based on ANN-
HSA provides reliably approximate solution for all the test problems. (iii) In its
current preliminary formulation, the algorithm produces a satisfactory accurate ap-
proximation of the solution. The proposed algorithm has been demonstrated to be
comparable to other numerical methods and to provide a more precise solution at
certain domain points. (iv) The lower values of statistical parameters such as aver-
age, SD in MAE, and EF confirm the proposed ANN models’ reliability, stability,
and effectiveness. (v) The results obtained using computational time show that the
proposed algorithm is simple to implement and takes less time to complete. Com-
putational time may vary depending upon the numbers of training points, hidden
nodes, and initial weight parameters. As the parameter values increase, the compu-
tational time required for calculating the approximate solutions will also increase.
In future work, investigation of an improved version of HSA for training network
parameters can be performed for solving a wide variety of DEs that have not been
solved until now as well as some other methods for construction of trial solution e.g.
Legendre polynomial [29,30] can be used to enhance the accuracy of the solution.
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