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LAGRANGE INTERPOLATION ON TIME
SCALES

Svetlin G. Georgiev1 and İnci M. Erhan2,†

Abstract In this paper, we introduce the Lagrange interpolation polynomials
on time scales. We define an alternative type of interpolation functions called
σ-Lagrange interpolation polynomials. We discuss some properties of these
polynomials and show that on some special time scales, including the set of
real numbers, these two types of interpolation polynomials coincide. We apply
our results on some particular examples.
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1. Introduction
Initiated by Hilger [16, 17], the studies on measure chains and time scales aim to
unify the continuous and discrete calculus. Consequently, both one-variable and
multi-vaviable calculus on time scales have been completely developed [4, 5]. The
dynamic and integral equations on time scales have been studied in details both
theoretically and in connection with their applications in various sciences [3,11,12,
14]. Recently, a book on fractional dynamic equations on time scales have been
published [13].

On the other hand, there is still a gap in the literature on numerical analysis
and methods on time scales. In some recent studies, numerical methods such as
Euler’s method, Taylor series method for dynamic equations on time scales have
been introduced [6,15]. However, there are not many studies related with numerical
methods on time scales reported so far. In particular, there is a gap in the studies
on Lagrange polynomials and Lagrange interpolation method on time scales.

The Lagrange interpolation is a very useful method to represent a discrete set
of data by a polynomial. Therefore, it is widely used both alone [7, 26] and in
combination with various numerical algorithms to solve problems of different kind
modelled by differential, integral or fractional differential equations, optimization
problems and other engineering problems [18, 19, 22]. Recently, Lagrange polyno-
mials have been used for deriving a formula for representing a given set of nu-
merical data on a pair of variables by a suitable polynomial(see [9] and references
therein). Barycentric Lagrange interpolation is used for solving Volterra integral
equations of the second kind(see [20] and references therein). Barycentric Lagrange
interpolation is used for vibration analysis of the plate with the regular and irreg-
ular domain(see [23] and references therein), for investigation of a 2D higher-order

†The corresponding author. Email: inci.erhan@atilim.edu.tr(İ. M. Erhan)
1Sorbonne University, Paris, France
2Department of Mathematics, Atılım University, İncek, 06830 Ankara, Turkey

http://www.jaac-online.com
http://dx.doi.org/10.11948/20200461


Lagrange interpolation on time scales 1295

time-fractional telegraph equation with nonlocal boundary condition(see [24] and
references therein). Barycentric Lagrange interpolation collocation method is used
for investigation of a hyperchaotic system(see [25] and references therein). The
pseudospectral methods on the other hand, are also based on Lagrange polyno-
mial interpolation (see [8, 10, 21]). These methods have been succesfully applied to
Sturm- Liouville and Schrödinger type eigenvalue problems in both one and two
dimensions (see [1, 2] for details).

In this study, we present the Lagrange interpolation polynomials on time scales.
We propose two types of Lagrange interpolation polynomials which we define in
Sections 3 and 4 and we give examples. Section 5 contains conclusion and directions
for further study.

2. Preliminaries
The two main features of time scales are unification of the discrete and continuous
problems and extension of the existing theory on continuous problems to discrete
ones. Numerical methods on the other hand, are usually based on discretization
of the continuous structures involved in the problem. In this sense, development
of numerical methods on time scales is mainly related with the extension feature
of time scales, so that, a numerical method constructed for an arbitrary time scale
reduces to its known counterpart whenever the time scale under consideration is
the set of real numbers.

In this study, we assume that the readers are familiar with the basic notions on
time scales. However, for the sake of completeness, we briefly recall some of these
concepts below.

Definition 2.1 ( [4]).

1. Any nonempty closed subset of the set of real numbers R is called a time scale
and is usually denoted by T.

2. The function σ : T −→ T defined as σ(t) = inf{s ∈ T : s > t}, t ∈ T, is called
the forward jump operator.

3. The function ρ : T −→ T, defined as ρ(t) = sup{s ∈ T : s < t}, t ∈ T, is
called the backward jump operator.

4. The function µ : T −→ [0,∞) defined as µ(t) = σ(t) − t, t ∈ T, is called the
graininess function.

5. A point t ∈ T is
(a) right scattered if σ(t) > t;
(b) left scattered if ρ(t) < t;
(c) isolated if it is both right and left scattered;
(d) right dense if σ(t) = t and t < supT;
(e) left dense if ρ(t) = t and t > inf T;
(f) dense if it is both right and left dense.

In this study, we assume that T is a time scale with forward jump operator σ,
backward jump operator ρ, graininess function µ and delta differentiation opera-
tor ∆. For readers who are not familiar with time scale calculus we suggest the
monographs [4, 5].
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In order to give the definiton and the properties of the Lagrange interpolation
polynomial we need the definition of generalized zeros of functions on time scales
and the Rolle Theorem on time scales. Below we discuss the related theoretical
background.

Definition 2.2 ( [4]). Let y : T → R be (k − 1) times delta differentiable function
for some k ∈ N. We say that y has a generalized zero (GZ) of order greater than or
equal to k at t ∈ Tκk−1 provided

y∆
i

(t) = 0, i ∈ {0, . . . , k − 1}, (2.1)

or

y∆
i

(t) = 0 for i ∈ {0, . . . , k − 2} and y∆
k−1

(ρ(t))y∆
k−1

(t) < 0 (2.2)

holds.

Remark 2.1. Note that in the above definition, the case (2.1) is related with dense
points and in case (2.2) t must be left-scattered. Otherwise, ρ(t) = t and (2.2) yields

0 > y∆
k−1

(ρ(t))y∆
k−1

(t) =
(
y∆

k−1

(t)
)2

≥ 0,

which is a contradiction.

Theorem 2.1 ( [4]). The condition (2.2) holds if and only if

y∆
j

(t) = 0, j ∈ {0, . . . , k − 2}, and (−1)k−1y(ρ(t))y∆
k−1

(t) < 0. (2.3)

Theorem 2.2 ( [4]). Let j ∈ N0 and t ∈ Tκj . Then

y∆
i

(t) = 0, 0 ≤ i ≤ j, (2.4)

if and only if
y∆

i

(σl(t)) = 0, 0 ≤ i ≤ j − l, 0 ≤ l ≤ j. (2.5)

In this case,

y∆
j+1−l

(σl(t)) =

l−1∏
s=0

µ(σs(t))y∆
j+1

(t). (2.6)

Definition 2.3 ( [4]). If y has a GZ of order greater than or equal to k at t we will
say that y has at least k GZs, counting multiplicities. By Theorem 2.2, it follows
that if y has a GZ of order greater than or equal to k at t, then y has a GZ of order
greater than or equal to k − 1 at σ(t). Therefore, if y has a GZ of order greater
than or equal to k1 at t1 and a GZ of order greater than or equal to k2 at t2 and
σk1(t1) < t2, then we will say that y has at least k1+k2 GZs, counting multiplicities.

Theorem 2.3 (Rolle’s Theorem, [4]). If y has at least k ∈ N GZs on [a, b], counting
multiplicities, then y∆ has at least k − 1 GZs on [a, b], counting multiplicities.
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3. Lagrange Interpolation
In this section, we will define the Lagrange interpolation polynomial.

Let Pn, n ∈ N0, denote the set of all polynomials of degree ≤ n defined over
the set R of real numbers. Assume that n ∈ N and xi ∈ T, i ∈ {0, 1, . . . , n}, are
distinct and yi, i ∈ {0, 1, . . . , n}, are real numbers. We will find pn ∈ Pn such that
pn(xi) = yi, i ∈ {0, 1, . . . , n}.

Theorem 3.1. Suppose that n ∈ N. Then there exist polynomials Lk ∈ Pn, k ∈
{0, 1, . . . , n}, such that

Lk(xi) =

1 if i = k

0 if i ̸= k,

i, k ∈ {0, 1, . . . , n}. Moreover,

pn(x) =

n∑
k=0

Lk(x)yk

satisfies the condition pn(xi) = yi, i ∈ {0, 1, . . . , n}, pn ∈ Pn.

Proof. Define
Lk(x) = Ck

n∑
i=0,i̸=k

(x− xi),

where Ck ∈ R, k ∈ {0, 1, . . . , n}, will be determined below. We have Lk(xi) = 0,
i ∈ {0, 1, . . . , n}, i ̸= k, and

Lk(xk) = Ck

n∏
i=0,i̸=k

(xk − xi)

= 1, k ∈ {0, 1, . . . , n}.

Thus,
Ck =

1∏n
i=0,i̸=k(xk − xi)

, k ∈ {0, 1, . . . , n},

and hence
Lk(x) =

n∏
i=0,i̸=k

x− xi

xk − xi
, k ∈ {0, 1, . . . , n}. (3.1)

We have that Lk ∈ Pn, k ∈ {0, 1, . . . , n}, and pn ∈ Pn. This completes the proof.

Theorem 3.2. Assume that n ∈ N0. Let xi ∈ T, i ∈ {0, 1, . . . , n}, be distinct and
yi ∈ R, i ∈ {0, 1, . . . , n}. Then there exists a unique polynomial pn ∈ Pn such that

pn(xi) = yi, i ∈ {0, 1, . . . , n}.

Proof. The existence of the polynomial pn follows by Theorem 3.1. Suppose that
there exist two polynomials pn, qn ∈ Pn such that

pn(xi) = qn(xi) = yi, i ∈ {0, 1, . . . , n}.

Then the polynomial hn = pn − qn has n + 1 distinct roots. Therefore hn ≡ 0 or
pn ≡ qn. This completes the proof.
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Definition 3.1. Assume that n ∈ N0. Let xi ∈ T, i ∈ {0, 1, . . . , n}, be distinct and
yi ∈ R, i ∈ {0, 1, . . . , n}. The polynomial

pn(x) =

n∑
k=0

Lk(x)yk,

where Lk, k ∈ {0, 1, . . . , n}, are defined with (3.1), will be called the Lagrange inter-
polation polynomial of degree n with interpolation points (xi, yi), i ∈ {0, 1, . . . , n}.

Definition 3.2. Assume that n ∈ N0. Let xi ∈ [a, b] ⊂ T, i ∈ {0, 1, . . . , n}, be
distinct and f : [a, b] → R be a given function. The polynomial

pn(x) =

n∑
k=0

Lk(x)f(xk),

where Lk, k ∈ {0, 1, . . . , n}, are defined in (3.1), will be called the Lagrange inter-
polation polynomial of degree n with interpolation points xi, i ∈ {0, 1, . . . , n}, for
the function f .

Suppose that n ∈ N0 and xj ∈ T, j ∈ {0, 1, . . . , n}, are distinct points. For
x ∈ T, we denote the polynomials

πn+1(x) =

n∏
j=0

(x− xj), Πk
n+1(x) = π∆k

n+1(x), k ∈ N0,

which we will employ in the next theorem related with the error in the Lagrange
interpolation.

Theorem 3.3. Suppose that n ∈ N0, a, b ∈ T, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n},
are distinct and f : [a, b] → R, f∆k

(x) exist for any x ∈ [a, b] and for any k ∈
{1, . . . , n+ 1}. Then for any x ∈ [a, b] there exists ξ = ξ(x) ∈ (a, b) such that

f(x)− pn(x) =
f∆n+1

(ξ)

Πn+1
n+1(ξ)

πn+1(x)

or
Fmin,n+1(ξ) ≤

f(x)− pn(x)

πn+1(x)
≤ Fmax,n+1(ξ),

where

Fmax,n+1(ξ) = max

{
f∆n+1

(ξ)

Πn+1
n+1(ξ)

,
f∆n+1

(ρ(ξ))

Πn+1
n+1(ρ(ξ))

}
,

Fmin,n+1(ξ) = min

{
f∆n+1

(ξ)

Πn+1
n+1(ξ)

,
f∆n+1

(ρ(ξ))

Πn+1
n+1(ρ(ξ))

}
.

Proof. Let pn be the Lagrange interpolation polynomial for the function f with
interpolation points xj , j ∈ {0, 1, . . . , n}. Define the function

ϕ(t) = f(t)− pn(t)−
f(x)− pn(x)

πn+1(x)
πn+1(t), t ∈ [a, b].
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Then

ϕ(xj) = f(xj)− pn(xj)−
f(x)− pn(x)

πn+1(x)
πn+1(xj)

= f(xj)− f(xj)

= 0, j ∈ {0, 1, . . . , n},

and ϕ(x) = 0. Thus, ϕ : [a, b] → R has at least n + 2 generalized zeros (GZs).
Hence and the Rolle theorem 2.3, it follows that ϕ∆n+1 has at least one GZ on
(a, b). Therefore there exists ξ = ξ(x) ∈ (a, b) such that

ϕ∆n+1

(ξ) = 0 or ϕ∆n+1

(ρ(ξ))ϕ∆n+1

(ξ) < 0.

Note that

ϕ∆n+1

(t) = f∆n+1

(t)− f(x)− pn(x)

πn+1(x)
π∆n+1

n+1 (t), t ∈ [a, b].

1. Let ϕ∆n+1

(ξ) = 0. Then

f∆n+1

(ξ) =
f(x)− pn(x)

πn+1(x)
π∆n+1

n+1 (ξ)

or

f(x)− pn(x) =
f∆n+1

(ξ)

π∆n+1

n+1 (ξ)
πn+1(x)

=
f∆n+1

(ξ)

Πn+1
n+1(ξ)

πn+1(x).

2. Let
ϕ∆n+1

(ρ(ξ))ϕ∆n+1

(ξ) < 0.

Then

ϕ∆n+1

(ρ(ξ)) = f∆n+1

(ρ(ξ))− f(x)− pn(x)

πn+1(x)
π∆n+1

n+1 (ρ(ξ))

= f∆n+1

(ρ(ξ))− f(x)− pn(x)

πn+1(x)
Πn+1

n+1(ρ(ξ)),

and
ϕ∆n+1

(ξ) = f∆n+1

(ξ)− f(x)− pn(x)

πn+1(x)
Πn+1

n+1(ξ).

Hence,

0 > ϕ∆n+1

(ρ(ξ))ϕ∆n+1

(ξ)

=

(
f∆n+1

(ρ(ξ))− f(x)− pn(x)

πn+1(x)
Πn+1

n+1(ρ(ξ))

)
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×
(
f∆n+1

(ξ)− f(x)− pn(x)

πn+1(x)
Πn+1

n+1(ξ)

)

=

(
f(x)− pn(x)

πn+1(x)

)2

Πn+1
n+1(ρ(ξ))Π

n+1
n+1(ξ)

−f(x)− pn(x)

πn+1(x)

(
Πn+1

n+1(ρ(ξ))f
∆n+1

(ξ) + Πn+1
n+1(ξ)f

∆n+1

(ρ(ξ))
)

+f∆n+1

(ρ(ξ))f∆n+1

(ξ).

Hence,

Fmin,n+1(ξ) ≤
f(x)− pn(x)

πn+1(x)
≤ Fmax,n+1(ξ).

This completes the proof.

Remark 3.1. Suppose that all conditions of Theorem 3.3 hold. If

lim
n→∞

max
x∈[a,b]

(
f∆n+1

(ξ)

Πn+1
n+1(ξ)

πn+1(x)

)
= 0

and

lim
n→∞

max
x∈[a,b]

(
f∆n+1

(ρ(ξ))

Πn+1
n+1(ρ(ξ))

πn+1(x)

)
= 0,

then
lim
n→∞

max
x∈[a,b]

|f(x)− pn(x)| = 0.

4. σ-Lagrange Interpolation
In this section, we will show that a given function can be approximated with the so
called σ-Lagrange polynomials. We will show that there are classes of time scales
for which the Lagrange interpolation polynomials and the σ-Lagrange interpolation
polynomials are different and classes of time scales for which these two types of
polynomials coincide.

By Pσ
n , n ∈ N0, we will denote the set of all functions in the form

an(σ(x))
n + an−1(σ(x))

n−1 + · · ·+ a1(x)σ(x) + a0, (4.1)

where aj ∈ R, j ∈ {0, 1, . . . , n}.

Remark 4.1. Notice that depending on the time scale and on the forward jump
operator σ, the expression above may not be a polynomial in the classical sense.
For example, on T = N2

0 = {0, 1, 4, 9, . . .} we have σ(x) = (
√
x+ 1)2 and hence, on

this time scale the expression (4.1) is not a polynomial.

Definition 4.1. We will call the functions of the form (4.1) σ-polynomials.

Let a, b ∈ T, a < b.
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Definition 4.2. Let n ∈ N0. The points xj ∈ [a, b), j ∈ {0, 1, . . . , n}, will be called
σ-distinct if σ(xn) ≤ b and

σ(x0) < σ(x1) < . . . < σ(xn).

Example 4.1. Let T = {−1, 1}
∪{

1 +
(
1
2

)n
: n ∈ N0

}∪
{3, 4, 5} and a = −1, b =

5. Take the points
x0 = −1, x1 = 1, x2 = 3.

Then
σ(x0) = 1, σ(x1) = 1, σ(x2) = 4.

Thus, the points {x0, x1, x2} are not σ-distinct.

Example 4.2. Let T = 2N0 , a = 1, b = 16. Take the points

x0 = 1, x1 = 2, x2 = 4.

Then
σ(x0) = 2, σ(x1) = 4, σ(x2) = 8.

Therefore, {x0, x1, x2} are σ-distinct points.

As in the previous section, one can prove the following result.

Theorem 4.1. Suppose that n ∈ N and xj ∈ T, j ∈ {0, 1, . . . , n}, are σ-distinct.
Then there exist unique σ-polynomials Lσk ∈ Pσ

n , k ∈ {0, 1, . . . , n}, such that

Lσk(xi) =

1 if i = k

0 if i ̸= k,

i, k ∈ {0, 1, . . . , n}. Moreover,

pσn(x) =

n∑
k=0

Lσk(x)yk

=

n∑
k=0

 n∏
j=0,j ̸=k

σ(x)− σ(xj)

σ(xk)− σ(xj)

 yk

satisfies the condition pσn(xi) = yi, i ∈ {0, 1, . . . , n}, pσn ∈ Pσ
n .

Definition 4.3. Assume that n ∈ N0. Let xi ∈ T, i ∈ {0, 1, . . . , n}, be σ-distinct
and yi ∈ R, i ∈ {0, 1, . . . , n}. The σ-polynomial

pσn(x) =

n∑
k=0

Lσk(x)yk,

where Lσk, k ∈ {0, 1, . . . , n}, are defined in Theorem 4.1, will be called the σ-
Lagrange interpolation polynomial of degree n with σ-interpolation points (xi, yi),
i ∈ {0, 1, . . . , n}.
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Definition 4.4. Assume that n ∈ N0. Let xi ∈ [a, b] ⊂ T, i ∈ {0, 1, . . . , n}, be
σ-distinct and f : [a, b] → R be a given function. The σ-polynomial

pσn(x) =

n∑
k=0

Lσk(x)f(xk),

where Lσk, k ∈ {0, 1, . . . , n}, are defined in Theorem 4.1, will be called the σ-
Lagrange interpolation polynomial of degree n with σ-interpolation points xi, i ∈
{0, 1, . . . , n}, for the function f .

Example 4.3. Let T = {−2,−1, 0, 3, 7},

a = −2, b = 7, x0 = −2, x1 = 0,

and f : T → R be defined by

f(x) = x+ 3, x ∈ T.

We will find the σ-Lagrange interpolation polynomial for the function f with σ-
interpolation points x0, x1. We have

σ(x0) = σ(−2) = −1,

σ(x1) = σ(0) = 3,

Lσ0(x) =
σ(x)− σ(x1)

σ(x0)− σ(x1)
=

σ(x)− 3

−1− 3
= −1

4
(σ(x)− 3),

Lσ1(x) =
σ(x)− σ(x0)

σ(x1)− σ(x0)
=

σ(x) + 1

3 + 1
=

1

4
(σ(x) + 1),

f(x0) = f(−2) = 1,

f(x1) = f(0) = 3.

Thus,

pσ1(x) = f(x0)Lσ0(x) + f(x1)Lσ1(x)

= −1

4
(σ(x)− 3) +

3

4
(σ(x) + 1)

=
1

2
(σ(x) + 3), x ∈ [−2, 7].

Next,

pσ1(0) =
1

2
(σ(0) + 3) =

1

2
(3 + 3) = 3,

pσ1(−1) =
1

2
(σ(−1) + 3) =

1

2
(0 + 3) =

3

2
.

Now, we will find the Lagrange interpolation polynomial for the function f with
interpolation points x0, x1. We have

L0(x) =
x− x1

x0 − x1
= −x

2
,

L1(x) =
x− x0

x1 − x0
=

x+ 2

2
, x ∈ [−2, 7].
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Therefore,

p1(x) = f(x0)L0(x) + f1(x)L1(x)

= −1

2
x+ 3

x+ 2

2

=
3x+ 6− x

2
= x+ 3, x ∈ [−2, 7].

Then
p1(0) = 3, p1(−1) = 2.

We see that
p1(0) = pσ1(0), p1(−1) ̸= pσ1(−1),

which follows from the fact that 0 is one of the interpolation points while −1 is not.

Remark 4.2. By the above example we see that there are cases for which the
Lagrange interpolation polynomial and the σ-Lagrange interpolation polynomial
for a function f are different.

Now, we will describe the classes of time scales for which the σ-Lagrange and
Lagrange interpolation polynomials coincide.

Theorem 4.2. Let T be a time scale such that σ(t) = ct + d for any t ∈ T and
some constants c, d. Let also, n ∈ N and

a = x0 < x1 < . . . < xn = b, xj ∈ T, j ∈ {0, 1, . . . , n},

are σ-interpolation and interpolation points. Then

Lk(x) = Lσk(x), x ∈ [a, b], k ∈ {0, 1, . . . , n}.

Proof. Since σ(t) = ct+ d for any t ∈ T, then

Lσk(x) =

n∏
j=0,j ̸=k

σ(x)− σ(xj)

σ(xk)− σ(xj)

=

n∏
j=0,j ̸=k

(cx+ d)− (cxj + d)

(cxk + d)− (cxj + d)

=

n∏
j=0,j ̸=k

x− xj

xk − xj

= Lk(x), k ∈ {0, 1, . . . , n}, x ∈ [a, b].

This completes the proof.

Remark 4.3. 1. Theorem 4.2 states that on time scales with a linear forward
jump operator, the Lagrange and σ-Lagrange interpolation polynomials co-
incide. Examples of such time scales are T = 3Z, where σ(t) = t + 3, or
T = qN0 , q > 1, where σ(t) = qt. On time scales such as T = N2

0, where

σ(t) = (
√
t + 1)2, or T =

{
1

n
: n ∈ N

}
, where σ(t) =

t

1− t
, the Lagrange
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and σ-Lagrange polynomials are different which provides an alternative way
to represent a discrete set of data.

2. From Theorem 4.2, it is clear that the uniqueness of interpolating polynomial
of degree n is not violated. Indeed, if σ is not a linear function, the σ-Lagrange
interpolation polynomial of a function f is not a polynomial of degree n or
not a polynomial at all. Therefore, for any function f defined on a time scale
T there is a unique interpolation polynomial of degree n.

Suppose that n ∈ N0 and xj ∈ T, j ∈ {0, 1, . . . , n}, are σ-distinct points. For
x ∈ T, define the σ-polynomials

πσn+1(x) =

n∏
j=0

(σ(x)− σ(xj)), Πk
σn+1(x) = π∆k

σn+1(x), k ∈ N0,

to be employed in the error discussion of σ-Lagrange interpolation.

Theorem 4.3. Suppose that n ∈ N0, a, b ∈ T, a < b, xj ∈ [a, b], j ∈ {0, 1, . . . , n},
are σ-distinct and f : [a, b] → R, f∆k

(x) exist for any x ∈ [a, b] and for any
k ∈ {1, . . . , n+ 1}. Then for any x ∈ [a, b] there exists ξ = ξ(x) ∈ (a, b) such that

f(x)− pσn(x) =
f∆n+1

(ξ)

Πn+1
σn+1(ξ)

πσn+1(x)

or
Fσmin,n+1(ξ) ≤

f(x)− pσn(x)

πσn+1(x)
≤ Fσmax,n+1(ξ),

where

Fσmax,n+1(ξ) = max

{
f∆n+1

(ξ)

Πn+1
σn+1(ξ)

,
f∆n+1

(ρ(ξ))

Πn+1
σn+1(ρ(ξ))

}
,

Fσmin,n+1(ξ) = min

{
f∆n+1

(ξ)

Πn+1
σn+1(ξ)

,
f∆n+1

(ρ(ξ))

Πn+1
σn+1(ρ(ξ))

}
.

Proof. Let pσn be the σ-Lagrange interpolation polynomial for the function f
with interpolation points xj , j ∈ {0, 1, . . . , n}. Define the function

ϕ(t) = f(t)− pσn(t)−
f(x)− pσn(x)

πσn+1(x)
πσn+1(t), t ∈ [a, b].

From here, the proof repeats the corresponding proof of Theorem 3.3 and we omit
it. This completes the proof.

Remark 4.4. Suppose that all conditions of Theorem 4.3 hold. If

lim
n→∞

max
x∈[a,b]

(
f∆n+1

(ξ)

Πn+1
σn+1(ξ)

πσn+1(x)

)
= 0

and

lim
n→∞

max
x∈[a,b]

(
f∆n+1

(ρ(ξ))

Πn+1
σn+1(ρ(ξ))

πσn+1(x)

)
= 0,

then
lim
n→∞

max
x∈[a,b]

|f(x)− pσn(x)| = 0.
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Example 4.4. Let T = 2N0 = {1, 2, 4 · · · } and f(x) = eα(x, 1) be the exponential
function where α ∈ R. Then

eα(x, 1) =
∏

s∈[1,x)

(1 + sα).

We will compute the third degree Lagrange and σ-Lagrange interpolation polyno-
mials for eα(x, 1) by taking the interpolation points as

x0 = 1, x1 = 2, x2 = 4, x3 = 8.

Notice that these points are σ-distinct. The values of eα(x, 1) at these points are

eα(1, 1) = 1, eα(2, 1) = (1 + α),

eα(4, 1) = (1 + α)(1 + 2α), eα(8, 1) = (1 + α)(1 + 2α)(1 + 4α).

Since σ(x) = 2x, we have

Lk(x) =

3∏
i=0,i̸=k

x− xi

xk − xi
,

and,

Lσk(x) =

3∏
i=0,i̸=k

σ(x)− σ(xi)

σ(xk)− σ(xi)
=

3∏
i=0,i̸=k

2(x− xi)

2(xk − xi)
= Lk(x).

Therefore,
L0(x) = Lσ0(x) = − 1

21
(x− 2)(x− 4)(x− 8),

L1(x) = Lσ1(x) =
1

12
(x− 1)(x− 4)(x− 8),

L2(x) = Lσ2(x) = − 1

24
(x− 1)(x− 2)(x− 8),

L3(x) = Lσ3(x) =
1

168
(x− 1)(x− 2)(x− 4).

We conclude that both interpolatiom polynomials are identical and have the form

p3(x) = pσ3(x) = − 1

21
(x− 2)(x− 4)(x− 8) +

(1 + α)

12
(x− 1)(x− 4)(x− 8)

− (1 + α)(1 + 2α)

24
(x− 1)(x− 2)(x− 8)

+
(1 + α)(1 + 2α)(1 + 4α)

168
(x− 1)(x− 2)(x− 4).

5. Conclusion
In this study, for the first time the polynomial interpolation on time scales has been
introduced. We expect that this work will focus attention on numerical methods on
time scales and increase the research in this direction. The interpolation problem
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on time scales may, for example, be discussed by means of using backward jump
operator ρ instead of the forward jump operator σ and thus, define ρ-Lagrange
interpolation polynomial. Another perspective is using divided differences and σ-
divided differences to introduce Newton interpolation polynomial and σ-Newton
interpolation polynomial, respectively.
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