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NEW OSCILLATION CRITERIA FOR FIRST
ORDER LINEAR DIFFERENTIAL EQUATIONS
WITH NON-MONOTONE DELAYS

Emad R. Attial? and Hassan A. El-Morshedy?>'

Abstract This paper is concerned with the oscillation of the first order lin-

ear delay differential equation z'(t) + q(t)z(7(t)) = 0, t > to, where ¢, 7 €

C([to, 00),[0,00)), 7(t) < ¢, such that tlim 7(t) = oo. Several new oscillation
— 00

criteria of iterative and non-iterative types are obtained. Two examples are

presented to show the strength and applicability of these criteria over known

ones.
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1. Introduction

The study of the oscillation theory of delay differential equations has attracted a
large number of researchers since the pioneering work of Myshkis [26]. The reader
is referred to the monographs [1,16,17] as well as the papers [2-15,18-31] for a
considerable account of results. One of the principal problems in oscillation theory
is to obtain sufficient criteria for the oscillation of certain equation. In this paper,
we investigate the oscillatory character of the delay differential equation

2'(t) + q(t)z(r(t)) =0, t > to, (1.1)

where ¢, 7 € C([tg, ), [0,00)), 7(t) < ¢, such that tlim 7(t) = oo.
— 00
Equation (1.1) is called oscillatory, if each of its solutions possesses arbitrary
large zeros. Due to the linearity of Eq.(1.1), it will be non-oscillatory if it has an
eventually positive solution. Although Eq.(1.1) looks simple, its oscillatory behavior
has not yet been fully characterized except for the constant coefficients case

2 (t) + pr(t —7) =0,
which is known to be oscillatory if and only if p7 > %, see [17]. Many oscillation
criteria were established for the non-autonomous case with nondecreasing delay
arguments, see for example [6,9,10,14,19,20,24,25,27,28] and the references cited
therein.
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The oscillatory behavior of equations with non-monotone delays is very chal-
lenging and not an easy extension of those results for equations with monotone
delays. A remarkable result in this direction is due to Braverman and Karpuz [5].
It states, in its simplest interpretation, that the classic condition for the oscillation
of Eq.(1.1) in monotone delay case

t
lim sup / q(u)du > 1, (1.2)

t—o00 (t)

is not applicable for the non-monotone case in general. This highlights the impor-
tance of obtaining necessary and/or sufficient conditions for the oscillation of the
general form (1.1). In [13-15,27] sharp oscillatory condition that improves (1.2)
is obtained for a particular class of Eq.(1.1) with coeflicients enjoying the slowly
varying property. In this work, we obtain new sufficient criteria for the oscillation
of Eq.(1.1) when 7 is not assumed to be monotone and ¢ need not to be of slowly
varying type.

We assume the existence of a non-decreasing continuous function h(t) such that
7(t) < h(t) <t for all ¢ > ¢1, and some ¢; > ty. A particular case of the function h
is the following one which has been employed in many known results

o(t) = Sli}zT(U), t > ty. (1.3)

We also, assume that A\(¢) is the smaller real root of the equation \ = e,

1—u—+v1—2u—u? 1
D(u) = 0<u< -
(u) 5 , 0<us<o,
K 1
k = liminf q(u) du < —|
t—o00 (1) e
t
k* = liminf / q(u) du,
t—o0 h(t)
1, k* =0,
p= (1.4)

and

¢
L* = limsup / q(u) du.
h

t—o00 (t)

For an easy reference we recall some known oscillation criteria of Eq.(1.1) with
non-monotone delay. The first one is due to Koplatadze and Kvinikadze [22];

t .5(t)
lim sup / q(u)elsc OValu)du g, k), (1.5)
t—o00 6(t)

where .
Vi(t) =0, Vp(t) =elrmt@Var(du 93

Braverman and Karpuz [5] obtained the condition

t 5(t)
lim sup / g(u) efron a0 dur gy 5, (1.6)
s

t—o00 (t)
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Stavroulakis [29] improved the preceding condition and (1.5) with n = 2 by the

criterion

t 5(t)
lim sup / qu) el 1) gy S 1 D).
5

t—o0 (t)

Infante etc [18] improved (1.6) by each one of the conditions

t h(t) ff(lu ) a(uz)dug
lim sup / q(u) el 1) €7 gy > 1,
t—o00 h(t)

and

t h(t)
lim sup (hmsup / q(u)e(k(k)_e)ff(u» q(“l)duldu> > 1.
h(t)

e—0t t—o00

El-Morshedy and Attia [11] derived the condition

t : e
lim sup < B (u)du + D(kj*)efh(t) i Bi(u)du> >1,

t—o00 h(t)

where
t

By(t) = q(t), Bi(t) = Bo(t) / Bo(u)elron Bolu)dur gy,
7(t)

and
t

Bu(t) = Bu1(t) / By (w)elicn Brosluddus gy g g

h(t)

Chatzarakis [7] improved (1.7) by the condition

t 5(t)
lim sup / q(u)efﬂu) (1) Qn (un)dur g, g D(k),
s

t—o00 (t)
where, n € N,
Qo(t) =q(t),
' S28 @ui ()
o) =q(t) |1+ w)edraw Qn-r(wdu g, 1
Qn(t) =q(t) q(u)
7(t)

Bereketoglu ete [4] derived the following improvement of (1.11),

¢ RO b und 1 or
lim sup / q(u)el~to Prlun)dua gy )
t—o0 h(t) 1 — D(k ),

for some n € N, where

t t
1 +/ q(u)el~w P”l(“l)d“ldu] .
h

(1.7)

(1.9)

(1.10)

(1.11)

(1.12)
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Attia etc [3] established the following general criterion that improves conditions
(1.8), (1.11) and (1.12),

t h( .
lim sup / q(u)e S atm) Wi g, >1—D(k*), forsomei,jeN, (1.13)
t—o0 h(t)
where the double sequence {¥; ;(¢)} is defined by
¢
Wm@:1+/ glu)elron S0P gy
(1)

with

By, (1) = efrw (@ Eeaaldu g g 91 1=1,2,...,],

)

and
* h(t *
o0(t) = AK) =) (1+ OAF) = o) [ awydu) . e € (0, A,
Dy (1) = ef:(t) ‘I(U)‘I>f),z—1(u)flu7 1=1,2,...,7j
Dpo(t) =0y (1), k=1,2,...,i—1.

Very Recently, Attia [2] established the condition

t h(t)
timsup [ glupel 1V gy > 1 D), (1.14)
t—o00 h(t)
where {Q,,(t)}°2, and {Y,(¢)}52, are defined as follows:
Qo(t) = p,
Ti(t) = /t q(ur)e f:L((uti) q(u2)Q0o(u2)dus dur, Q(t) = I
h(t) L—"7y(t)
t t R(t) n200) o
Ta(t)= [ a(u) dur+ @6 [ atur) [ alua)e e 0
h(t) h(t) 7(u1)
1

D(t) = —

() =12 To(t)

and
T, (%)
t t R(t)
:/ q(uy) duy + Qn,l(h(t))/ q(ul)/ q(ug)dug duy + ...
h(t) h(t) 7(u1)
t h(t) h"T2(t)
+ H o1 (B )))/ q(ul)/ q(u2)/ q(tp—1)dtp—1 ... duy
h(t) 7(u1) 7(Un_2)

+H nlhll)))

t h(t) R"T(t) () 0 .
X/ Q(Ul)/ (I(U2)/ q(un)efﬂun)q(“"“) ne1(Ung)dtngs g, o dus,
h

(®) 7(u1) 7(un—1)
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I
1=",(t)’

O,(t) = n=23,4,....

The above-mentioned criteria are of iterative integral types. These kind of crite-
ria are very powerful but look fairly applicable for large iterates. Therefore, in this
work, we derive new oscillation criteria of both iterative and non-iterative types.
Moreover, the strength of each type of our conditions over the above-mentioned
ones is supported by an illustrative example.

2. Preliminary Results

The following four lemmas are very crucial for proving the results of the next section.
The first one can be proved by using the non-increasing nature of z(¢) and Lemma
2.1.2 in [12].

Lemma 2.1. Let 2:(t) be an eventually positive solution of Eq.(1.1). Then

for all sufficiently large t, (2.1)

where p is defined by (1.4).

Lemma 2.2 ( [30]). Assume that x(t) is an eventually positive solution of Eq.(1.1).
Then

liminf —20 > D(k*).

Lemma 2.3. Assume that 2(t) is a solution of Eq.(1.1) and n is a positive integer.
Then

n—1
z(h(t) = z(t) + > a(h (£)QP(t) + =(h"(1)Qp(t), (2.2)
i=1
where
t h2(t) RiTL(t)
Q7 (t) / ul/ uQ/ / q(ug)du; duj—q ... dug, i=1,...,n—1,
h(t) (ul) (u2) (ui— 1)
and
B t h(t) n? h ® o e(rlun 1)) oo
sz/ q(u / q(us / / “‘”4( ) St " dupdug_q ... duy.
h(t) (u1) (“2) (un—1)

Proof. Integrating (1.1) from A(t) to ¢, we have
z(t) — z(h(t)) +/ )q(ul)x(T(ul))dul =0. (2.3)
h(t
Again integrating (1.1) from 7(v) to h(t), v < ¢, it follows that
h(t)

2(1(v)) = z(h(t)) +/( : q(u2)a (7 (uz))dus.
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Substituting into (2.3),

t

¢ h(t)
a?(t)—sc(h(t))—i—a?(h(t))/h(t) q(ul)dul—i—/h(t) q(ul)/( )q(uz)x(T(ug))duQ duy =0.

(2.4)
Notice that, 7(v) < h%(t), for all v < h(t). Hence, integrating (1.1) from 7(v) to
h2(t), we obtain

)
z(1(v)) = z(h%(t)) + /( : q(us)z(r(us))dus.

This, together with (2.4), leads to

t

a(t) ~ a(h(t)) + a(h(t)) |

h(t)

¢ h(t)
q(uq)duy +x(h2(t))/ ) q(ul)/ q(uz)dus duy

h( 7(u1)

t h(t) 2 (t)
+/h )Q(Ul)/ q(uz)/ q(u3)z(7(u3))dus dus duy = 0.

(t T(u1) 7(u2)

Similarly, we obtain

z(h(t))
n-1 ) t h(t) X))
:WHmequ/ w/ / a(us)dus duss.. duy
i=1 h(t) T ul) (u2) (uwiz1)
t h(t) h2(t) [ t)
+/ Q(Ul)/ (I(uz)/ / (7 (up))duy dup_1... duy.
h(t) 7(u1) 7(uz2) (Un— 1)

(2.5)

Dividing both sides of (1.1) by x(t), where ¢ is sufficiently large, and then integrating
from 7(v) to h™(t), we get

R (t) z(T(up41))
2(7(v)) = (k" ()l @ 1) T M here v < AP (E).

Substituting into (2.5), we finally obtain (2.2). O
Next, we define the finite sequence {QF(¢)}*,, for i = 1,2,...,n — 1 as in
Lemma 2.3, while Q7 (¢) is defined as follows:
Qn(t)
t h(t) h2(t) I
:/ q Ul/ UQ/ / pf(“ ya wnt )ty gy gy duy .
h(t) (ul) (uz) (un— 1)

Lemma 2.4. Assume that z(t) is an eventually positive solution of Eq.(1.1), and

M *hmlnf (h((z)) Then

lim sup (Z Z((};:((Z)))) Q?(t)) <1-M.

t—o00 i—1
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Proof. Using (2.2) and Lemma 2.1, we obtain

n

a(t) — x(h(t)) + Z (R (1))@} (t) < 0.

Dividing by z(h(t)),

Consequently

lim sup <Z Z((};: ((f)))) f(t)) <1- M.

3. Main Results

In this section, we derive sufficient criteria for the oscillation of Eq.(1.1) as well as
two applications of our results.

Theorem 3.1. Assume that n € N and

limsup (> | [[W (W7'(1) | Q1) | >1-D(k), (3.1)

t=o0 i=1 \j=2

where W (t) = 1 , by convention we set T[,_JW(1 (1)) =1.

1—_]}5(” q(uy )exp(f_f((qj)l ) 12;&32) du2)du1

Then Eq.(1.1) is oscillatory.

Proof. Let z(t) be a non-oscillatory solution of Eq.(1.1). Due to the linearity of
Eq.(1.1), we can chose z(t) to be eventually positive. The representation (2.2) with
n =1, leads to

¢ n(t) 2 (r(up))
w(t) = o(h(t)) — 2(h(t)) / gl )elrom 102 T gy
h(t)
Dividing by z(t) and rearranging, we get
x(h(t)) 1
x( ) = . T ) 202D g . (3.2)
1— fh(t) q(ul)e 7(uy) z(ug) dul
Using Lemma 2.1, we arrive at
x(h(t)) S 1 B 1
= 0] T 1 _ 0l
a(t) —q_ S gu)e? o atwduz gy 1= QY()
Substituting into (3.2),
z(h(t)) 1
Z ® _aGup) =W(). (3.3)

x(t) —

d’u.g

h
1- f}f(t) Q(Ul)eﬁ(ul) 1-Q1 () T gy
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But
z(h'(t) _ yp =W (t) L )
z(h(t) L x(hTN(D) f 2,3,....n. (3.4)
Then (3.3) yields
z(h'(t) _ 1 i
2(hD)) ~ [Twe =)

Combining this inequality with Lemmas 2.4 and using Lemma 2.2, we obtain

limsup | Y | [[W (W' @) | @r(t) | <1-D(k").

t—=o0 i=1 \j=2

The proof is complete. v O
Notice that (3.4) and Lemma 2.1 yield Z80) > pi=1 Therefore, using Lemmas

z(h(1))
2.2 and 2.4, we obtain the following result.

Theorem 3.2. Assume that n € N and
lim sup (Z pi—lQ?(t)) > 1— D(k*).
t— o0 i—1
Then Eq.(1.1) is oscillatory.
The following example shows the strength of condition (3.1), when k = 0.
Example 3.1. Consider the delay differential equation
P +qalr() =0,  t>2, (3.5)

where
7(t) =t — 1 — asin? (vrt),

and

0, t € [ar, b,

ﬂ(t—br)sinQ(g\/(t—br)(br+1—t)+1), t€ [by, by + 1],
qt):==9 B, te[b.+1,b,+6],

B (1= sty (t= b = 6)) cos® (my/TE— by — 6) (@ — D +1),

te [br + 6; ar+1},

reN 0<a <b.—1—aq, b.+6 < a,qq such that lim a, = co, = 0.0001,
T—00
B =0.449 and v = 20000. We choose h(t) = d(t) (that is defined by (1.3)), then

t—1—a<7(t)<h(t)=6(t)<t—1.

Therefore

by b,
0< / q(u)du < / q(u)du = 0.
7(br) b

(b r—1l—a
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Then, k = k* = litm inf th(t) q(u)du = 0, and hence, p =1 (from (1.4)). Clearly
— 00
br+6
@, +0= [ gl
h(b,+6)
b, +6 b,.+6
> / q(uq)duy z/ Bduy = 0.449,
br+5 br+5
br+6 h(b+6) 12 (brt6)
Q%(br + 6) = / (I(Ul / q(u2)epf7(“2’ Q(uz)dustQdul
h(b,+6) 7(u1)
b,.+6 br+5—a byt d— 20 J
> / q(ul)/ q(ug)elv2=1 90ua)dus gy duy > 0.117713.
b,.+5 up—1

Also, for b, +3<v<b,+4—«

v h(v) v
mm=AU«>p“w“W%m>/IWMe

= / Beluimt " Bdu2 gy S 0 56671
1

v—l—a
wp—1 q(ug)dugd

Consequently
1
W(h(b. +6
(h( ) = (b,16) f;L(u(b)T+6) 1:1(1{271 dus
th(b +6) ' e1t2) s duy
1
> > 4.71362.
= a br+4—2a  q(ug) du
1-— bl,)::f qlup)e ™™ el * duy
Then
2 i .
STTIwW (W10 +6) | QFbr+6)
i=1 \j=2
=Q3 (b, +6) + W (h(b, +6))Q3(b, + 6) > 1.001.
Therefore

lim sup Z HW (R~ 1 Q7 (t)
=1 Jj=2

t—o0
2 i

> lim STHITW (Wb +5) | Qbr+5) > 1
i=1 \j=2

It follows from (3.1) that Eq.(3.5) is oscillatory. However, since

t t
/ q(uq)duy < / Bduy = (1+ «)S.
7(t) t—l—«

Then
ug)du
Va(t) = elrm atm)e S 102, < BT 9 o1
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From this and D(k) = 0, we obtain

t ()
lim sup / g(u) el7e AOVa) dw g 731463 < 1~ D(K).  (3.6)
1

t—o0 (t)

On the other hand

t 5(t) t 5(t)
lim sup / q(u) e [scuy aw)Va(wa) duy g, < lim sup / q(u) e Jreay a(u V4(u1)dUId’LL,
é 6

t—00 (t) t—o0 (t)

and

t s (ug)du
. (t) T(ul) atuz)eu2 4
lim sup / q(u) el ) “du
5

t—o00 (t)

t 5(t)
<lim sup / q(u) elre aw)Vatua) dua g,
5

t—o00 (t)

This, together with (3.6), implies respectively that (1.5) with n = 4 and (1.8) are
not satisfied. As a result, conditions (1.6), (1.7) and (1.9) can not be applied. Since

t t u
/ By (u)du < / q(u)/ q(up)e’vi-1-o aluz)duz g, gy
h(t) t—l—a

< / 6/ Belir—1—a Pz g gy < 0.3988.

Then
t t

lim sup ( / By (u)du + D(k*)elro Bo<“)d“> < 0.3988 < 1.
h

t—o0 (t)

Therefore, condition (1.10) is not satisfied.
Finally

Pi(t) =q(t)

¢ t
1 +/ Q(Ul)eff(ul)Po(uz)du2du1
h(t)

t t
<8 [1 +/ ﬂeful—l—aﬁduzdul] < 0.84776,
t—1l—«

' oy 1(u3)(1+a)dug
\Ifl,l(t) <1 +/ q(uq)e fT(ul) q(uQ)c ruz) . g
7(t)

t ¢ eB+? gy,
SlJr/ Belir—1-a BT dua g 9 31604,
t—1l—«

: 1
O (t) = t LM g(uz)du < t — T
1-—- fh(t) (](u1)el’ r(up) 142 2duy 1- ft_1—a q(ul) wp— L i
1
i . <231
1-— fttflfa I@efilflfa ,@du2du1
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Then
t h(t)
lim sup / q(u)efﬂ“) Prlwn)dus gy <0707 < 1 — D(k),
t—o0 h(t)
t h(t)
lim sup / qu)elrto Tratmlatm)dn gy, g g 1 _ p(k),
t—o0 h(t)
and

t n(t)
lim sup / q(u)el~to P)audn gy 6 78865 < 1 — D(k).
h

t—o0 (t)

Hence the conditions (1.11), (1.12) with n = 1, (1.13) with ¢ = j = 1, and (1.14)
with n = 1 can not be applied.

Theorem 3.3. Assume that n € N, k* > 0 and

h(t) t
/ q(u)du > / q(u)du,  for all wuq € [h(t), t]. (3.7)
h(ul) U1
If
lim sup (; p”Q?(ﬂ) > k" + ﬁ (3.8)

then Eq.(1.1) is oscillatory..

Proof. Assume the existence of an eventually positive solution z(t) of Eq.(1.1).
For sufficiently small €; > 0 and sufficiently large ¢, Lemma 2.4 implies that

8

a0 <y g
; 2(h(0)) Qi (t) <1—M +e.

?

Using (3.4) and Lemma 2.1, it follows that
TR < 1-M+e.
i=1

On the other hand under assumption (3.7), in [29, Remark 2.3] it is shown that

liminfﬂ>1—k*— !

e 2(h(t) AR

Recall that this is denoted by M. So, 1 — M +¢; < k" + ﬁ + €1, and

7—1 n 1) < k* - )
;p Qz()— +A(l€*) +e

Then
Sy 1
. i—1 yn *
h?isoljp E p Qz (t) <k + W + €1.
=1
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As €1 goes to zero, we have
lim sup Y pTrQMt) | < EF+ 1
msup | > pQN) | <K+ o
i=1

This contradiction completes the proof. O
The following particular case of Theorem 3.3 provides a non-iterative criterion.

Corollary 3.1. Assume that (3.7) holds and

In (2 + K*A(E*))
(k") ’

where k* > 0. Then Eq.(1.1) is oscillatory.

L > (3.9)

Proof. If Eq.(1.1) has a non-oscillatory solution, then condition (3.8) does not
hold. That is, for n = 1, we have

1
k")

t * h(t)
lim sup / q(ul)eo‘(k )= Juu) AW g < K+
h(t)

t—o0

hence for any € > 0 and sufficiently large ¢, we obtain

t
AG=e) fi0 atwdu g e L
/h(t) e 1 " EPYCD R

This, in view of (3.7), implies that

t
(A(k*)=e) [1 q(w)du " 1
q(uy)e T duy < k" + ——— +e
/h(t) (1) A(k*)

By evaluating the integral, we obtain

1 (k") =€) [y, a(u)du .
. () -1) <k
M) — € (¢ ) <k

L
AE) O

that is

. ¢ 1
AR =€) [y 4y a(w)du <14+ (A\E*)—¢€) (k* + m + 6) .

Consequently
/t In <1+()\(k*) —¢) (k +ﬁ+e))
: .

q(u)du <
(t) ( ) )\(k*)—ﬁ

Therefore

q(u)du <
(t) ( ) )\(k*)—é

lim sup
t—o0

/t In <1+(>\(k:*) —¢€) (k +ﬁk*)+e>)
h

As € goes to zero, we obtain

In (2 + k*A(k*))
()

This contradicts (3.9). O

L* <
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Remark 3.1.

(i) Condition (3.9) improves the condition

) 1432 (k) 1 1\’
L 1+E* 1t (e ——
> min D) AR VI ) (¢

(3.10)
due to Attia etc [3].

(#) The conclusion of Theorem 3.3 is still valid, if ¢(¢) > 0 and condition (3.7) is
replaced by (see Remark 1 in [20])

faning LRI

m in o - (3.11)

Next, we show that condition (3.9) can be easily applied to study the oscillation
of certain equation, while the conditions (1.5)-(1.12) and (3.10) fail to do so.
Example 3.2. Consider the equation
@

1
' (t) +px(t(t) =0, t>b+—+
(1) + pa(r(t) 1,8

(3.12)

where )
7(t) :=t — bsin® (m\/pt) — — — 2 gin? (nmpt) ,
pe D

and b,p > 0 and pb = 0.40416 — %, a = 0.0001, and n = 20000. Let

1
h(t) =t — bsin® (7y/tp) — —.
pe
Then condition (3.11) is satisfied. Clearly
t
k =k* = liminf / q(u)du
h

t—o00 (t)

=liminf p <bsin2 (ﬂ'\/Fp) 4 1> = 1’
t—o0 pe e
it follows that A(k*) = e, so
In(2+ k*A(k*))  1In(3)
= .404157.
D) - < 0.404157

Also, we have

t
L* = limsup / q(u)du
h

t—o0 (t)

1
= limsup p (b sin® (mv/p) + pe) = 0.40416.

t—o0

Consequently, Corollary 3.1 implies the oscillation of Eq.(3.12). Choose h(t) = 4(¢),

then L L
t—b—— — L < @) <(t) <t— —.
pe p pe
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Clearly

t
L* < limsup / q(u)du

t—o00 (t)

1
= lim sup (bp sin? (7v/tp) + - + asin® (nwpt))

t—o0

1
<bp+ < + o = 0.40426,

—1+ /3 + 2k A (k"
/3 + 2 )>0.45472,

(k)

and

1 1 \?
1+k 4+ —— —4/1 k* 0.49425.
YD) \/+< U(m) -

Then condition (3.10) is not satisfied. Let

At) = /(t) q(u)du =p (b sin® (my/tp) + ]i + %Sin2 (nﬂpt)) .

Then A(t) is not slowly varying at infinity which means that Theorem 3 in [13] can
not be applied. Also, it is clear that
_ 1

t ) t e pe o du
/ g(u)e?®) oty atw) dus gy, o / pe et g P gy < 0812581,
h(t) t—b— -2

e

Then

t h(t)
lim sup / q(u)e® e 1D dn gy 0819582 < 1 — D(k) < 0.86346.  (3.13)
h(t)

t—o0

Therefore, conditions (1.6), (1.7) and (1.9) can not be applied.

Since
a pd

t U
el awdn o Jiogos P yogio4 AE) = e,

and

t t ' . o Pduy
1 +/ q(u)efr(u)Q(ul)duldu <1 +/ pefu_b_#_;p i du
h(t) o —é—%

<1.746391 < A(k) =e.
It follows from these inequalities and (3.13) that none of the conditions (1.5) with

n =3, (1.8) and (1.11), (1.12) with n = 1 is satisfied.
Finally, let

t u
I(t) = / q(u) / gy )elmon 120 gy gy,
7(t) 7(u)

Then

t “ “ 1 o Pduz
I(t) S/ p/ pe 7 pe s duydu < 0.301736.
t—b—L o Jy_p—1
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Since

t t t
limsup (/ Bl(u)du+D(k*)efh(t) (I(u)du> §hmsup (I(t) +D(k)efr(t)pdu>
h

t—o00 (t) t—o00

<0.5064 < 1.

Then condition (1.10) fails to apply when n = 1.
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